
Algorithmica manuscript No.
(will be inserted by the editor)

Non-preemptive Scheduling in a Smart Grid Model
and its Implications on Machine Minimization

Fu-Hong Liu · Hsiang-Hsuan Liu ·
Prudence W.H. Wong

Received: date / Accepted: date

Abstract We study a scheduling problem arising in demand response manage-
ment in smart grid. Consumers send in power requests with a flexible feasible
time interval during which their requests can be served. The grid controller,
upon receiving power requests, schedules each request within the specified
interval. The electricity cost is measured by a convex function of the load
in each timeslot. The objective is to schedule all requests with the minimum
total electricity cost. Previous work has studied cases where jobs have unit
power requirement and unit duration. We extend the study to arbitrary power
requirement and duration, which has been shown to be NP-hard. We give
the first online algorithm for the general problem and prove that the problem
is fixed parameter tractable. We also show that the online algorithm is the
best-possible in an asymptotically sense when the objective is to minimize the
peak load. In addition, we observe that the classical non-preemptive machine
minimization problem is a special case of the smart grid problem with min-peak
objective and show that we can achieve the best-possible competitive ratio in an
asymptotically sense when solving the non-preemptive machine minimization
problem.

A preliminary version of this paper titled “Optimal Nonpreemptive Scheduling in a Smart
Grid Model” appeared in Proceedings of the 27th International Symposium on Algorithms
and Computation, ISAAC 2016 [30] and some results are improved in this version.

Fu-Hong Liu
Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
E-mail: fhliu@cs.nthu.edu.tw

Hsiang-Hsuan Liu (partially supported by a studentship from the University of Liverpool-
National Tsing-Hua University Dual PhD programme.)
Department of Information and computing sciences, Utrecht University, Netherlands
E-mail: h.h.liu@uu.nl

Prudence W.H. Wong (partially supported by the Networks Sciences & Technologies (NeST)
initiative of University of Liverpool.)
Department of Computer Science, University of Liverpool, Liverpool, UK
E-mail: pwong@liverpool.ac.uk

2 Fu-Hong Liu et al.

Keywords Scheduling · Non-preemptive · Convex cost function · Online
algorithms · Fixed parameter tractable

1 Introduction

The smart grid [14, 46, 47] is a power grid system [17, 37] that makes power
generation, distribution and consumption more efficient through information
and communication technologies compared to the traditional power system.
Peak demand hours happen only for a short duration, which makes existing
electrical grid less efficient. It has been noted in [9] that in the US power grid,
10% of all generation assets and 25% of distribution infrastructure are required
for less than 400 hours per year, roughly 5% of the time [47]. Demand response
management [16, 21,22,34,51] attempts to overcome this problem by shifting
users’ demand to off-peak hours in order to reduce peak load [7,26,33,36,39,42].
Research initiatives in the area include [24,32,40,45].

We study a scheduling problem arising in demand response management.
The electricity grids supports demand response mechanisms and obtains energy
efficiency by organizing customer consumption of electricity in response to
supply conditions. It is demonstrated in [34] that demand response is of
remarkable advantage to consumers, utilities and society. Effective demand
load management brings down the cost of operating the grid, as well as energy
generation and distribution [33]. Demand response management is not only
advantageous to the supplier but also to the consumers as well. It is common
that electricity supplier charges according to the generation cost, i.e., the
higher the generation cost the higher the electricity price. Therefore, it is to
the consumers’ advantage to reduce electricity consumption at high price and
hence reduce the electricity bill [42].

The smart grid operator and consumers communicate through smart me-
tering devices [27, 37]. A consumer sends in a power request with the power
requirement (cf.height of request), required non-preemptable duration of ser-
vice (cf.width of request) and the time interval that this request can be served
(giving some flexibility). For example, a consumer may want the dishwasher to
operate for one hour during the periods from 8am to 11am. The grid operator
upon receiving requests has to schedule them in their respective time intervals
using the minimum energy cost. The load of the grid at each timeslot is the
sum of the power requirements of all requests allocated to that timeslot. The
electricity cost is modeled by a convex function on the load, in particular
we consider the cost to be the α-th power of the load, where α > 1 is some
constant. Typically, α is small, e.g., α = 2 [13,43].

Previous work. Koutsopoulos and Tassiulas [26] has formulated a similar
problem to our problem where the cost function is piecewise linear. They
show that the problem is NP-hard and their proof can be adapted to show
the NP-hardness of the general problem studied in this paper [6]. Burcea et
al. [6] gave polynomial time optimal algorithms for the case of unit height (cf.
unit power requirement) and unit width (cf. unit duration). Feng et al. [18]

Non-preemptive Scheduling in a Smart Grid Model 3

have claimed that a simple greedy algorithm is 2-competitive for the unit case
and α = 2. However, as to be described below in Lemma 1, there is indeed a
counter example that the greedy algorithm is at least 3-competitive. Hence it
is still an open question to derive online algorithms for the problem. Salinas et
al. [42] considered a multi-objective problem to minimize energy consumption
cost and maximize utility. A closely related problem is to manage the load by
changing the price of electricity over time [7, 15, 36, 38]. Heuristics have also
been developed for demand side management [33]. Other aspects of smart grid
have also been considered, e.g., communication [9,28,29,31], security [31,35].
Reviews of the smart grid can be found in [16,21,22,34,51].

The main combinatorial problem we defined in this paper has an anal-
ogy to the traditional load balancing problem [3] and machine minimization
problem [10–12,41] but the main differences are: 1) the job in our problem is
non-preemptive and 2) the objective being maximum load and jobs are unit
height [10–12,41]. Minimizing maximum load has also been looked at in the
context of smart grid [1, 25, 44, 49, 50], some of which further consider allowing
reshaping of the jobs [1, 25]. As to be discussed in Section 2, our problem
is more difficult than minimizing the maximum load. Our problem also has
resemblance to the dynamic speed scaling problem [2,5, 48] and our algorithm
has employed some techniques there.

As to be discussed, our problem is closely related to the non-preemptive
machine minimization problem [11,12], which was solved optimally in asymptot-
ically sense for the online setting [41]. We provide an alternative asymptotically
best-possible competitive algorithm for the non-preemptive machine minimiza-
tion problem. More precisely, we show that our algorithm for the smart grid
problem can also solve the non-preemptive machine minimization problem with
asymptotically best-possible competitive ratio. A more detailed discussion is
in Section 7.

Our contribution. In this paper, we consider a demand response opti-
mization problem, which we call GRID, minimizing the total electricity cost and
study its relation with other scheduling problems. We propose the first online
algorithm for the general problem with worst case competitive ratio, which
is polylogarithmic in the max-min ratio of the duration of jobs (Theorem 11
in Section 4); and give a lower bound for any online algorithm. Interestingly,
the ratio depends on the max-min width ratio but not the max-min height
ratio. The algorithm is based on an O(1)-competitive online algorithm for jobs
with uniform duration (Section 3). We also propose O(1)-competitive online
algorithms for some special cases (Section 5). In addition, we show that the
problem is fixed parameter tractable by proposing the first fixed parameter
exact algorithms for the problem; and derive lower bounds for the running time
(Section 6). Table 1 gives a summary of our results. Interestingly, our online
algorithm and exact algorithms depend on the variation of the job widths but
not the variation of the job heights.

We further show that our online algorithms and exact algorithms can
be adapted to the objective of minimizing the peak electricity cost, as well
as the related problem of non-preemptive machine minimization. Our online

4 Fu-Hong Liu et al.

Width Height Ratio

Unit Arbitrary
2α · (8(e+ e2)α + 1)-competitive

2α+1-approximate
Uniform Arbitrary 12α · (8(e+ e2)α + 1)-competitive

Arbitrary Arbitrary Θ(logα(wmax
wmin

))-competitive

Unit Uniform min((4α)α/2 + 1, 2α · (8(e+ e2)α + 1))-competitive

Arbitrary Uniform
((8α)α/2 + 2α)-competitive

agreeable deadline

Table 1 Summary of our online results or total electricity cost.

algorithms are asymptotically best-possible for both problems (Subsection 7.1),
with competitive ratio being logarithmic in the max-min ratio of the job
duration. In addition, we show that both problems are fixed-parameter tractable
(Subsection 7.2).

Technically speaking, our online algorithms are based on identifying a
relationship with the dynamic speed (voltage) scaling (DVS) problem [48]. The
main challenge, even when jobs have uniform width or uniform height, is that
in time intervals where the “workload” is low, the optimal DVS schedule may
have much lower cost than the optimal GRID schedule because jobs in DVS
schedules can effectively be stretched as flat as possible while jobs in GRID
schedules have rigid duration and cannot be stretched. In such a case, it is
insufficient to simply compare with the optimal DVS schedule. Therefore, our
analysis is divided into two parts: for high workload intervals, we compare with
the optimal DVS schedule; and for low workload intervals, we directly compare
with the optimal GRID schedule via a lower bound for the total workload over
these intervals (Lemmas 3 and 13). For jobs with arbitrary width, we adopt
the natural approach of classification based on job width. We then align the
“feasible interval” of each job in a more uniform way so that we can use the
results on uniform width (Lemma 8).

In designing exact algorithms we use interval graphs to represent the
jobs and the important notion maximal cliques to partition the time horizon
into disjoint windows. Such partition usually leads to optimal substructures;
nevertheless, non-preemptiveness makes it trickier and requires a smart way to
handle jobs spanning multiple windows. We describe how to handle such jobs
without adding a lot of overhead.

Organization of the paper. We define the problem and provide some
basic observations in Section 2. The online algorithms for uniform time duration
and arbitrary power requirement are developed in Section 3 and are extended
for solving the general case in Section 4. The lower bound for online algorithms
is provided in Section 4.3. Several special cases regarding uniform power require-
ment are discussed in Section 5. We design fixed-parameter exact algorithms
in Section 6 and derive a lower bound for the running time in Subsection 6.3.
In Section 7, we extend our online and exact algorithms to the objective of
maximum load and the related non-preemptive machine minimization problem.
We conclude the paper in Section 8.

Non-preemptive Scheduling in a Smart Grid Model 5

2 Definitions and preliminaries

The input. The time is labeled from 0 to τ and we consider events (release
time, deadlines) occurring at integral time. We call the unit time [t, t + 1)
timeslot t. We denote by J a set of input jobs in which each job J comes with
integer parameters release time r(J) ≥ 0, deadline d(J) > 0, width w(J) > 0
representing the duration required by J and height h(J) > 0 representing the
power required by J . We assume r(J), d(J), w(J) and h(J) are integers. The
feasible interval, denoted by I(J), is defined as the interval [r(J), d(J)) and we
say that J is available during I(J). We denote by |I| the length of an interval
I, i.e., |I| = t2 − t1 where I = [t1, t2). We define the density of J , denoted

by den(J), to be h(J)·w(J)
|I(J)| . The density signifies the average processing work

required by the job over its feasible interval. We then define the “average”
load at any time t as avg(t) =

∑
J:t∈I(J) den(J). In our analysis, we have to

distinguish timeslots with high and low average load. Therefore, for any h > 0,
we define I>h and I≤h to be set of timeslots where the average load avg(t) is
larger than h and at most h, respectively. Note that I>h and I≤h do not need
to be contiguous.

In Section 4, we consider an algorithm that classifies jobs according to
their widths. To ease discussion, we let wmax and wmin be the maximum and
minimum width over all jobs, respectively. We further define the max-min
ratio of width, denoted by K, to be K = wmax

wmin
. Without loss of generality, we

assume that wmin = 1 making K = wmax. We say that a job J is in class Cp if
and only if 2p−1 < w(J) ≤ 2p for any 0 ≤ p ≤ dlogKe.

Feasible schedule. A feasible schedule S has to assign for each job J a
start time st(S, J) ∈ Z meaning that J runs during [st(S, J), et(S, J)), where
the end time et(S, J) = st(S, J) + w(J) and [st(S, J), et(S, J)) ⊆ I(J). Note
that this means preemption is not allowed. The load of S at time t, denoted
by `(S, t) is the sum of the height (power request) of all jobs running at t, i.e.,
`(S, t) =

∑
J:t∈[st(S,J),et(S,J)) h(J). We drop S and use `(t) when the context

is clear. For any algorithm A, we use A(J) to denote the schedule of A on J .
We denote by O the optimal schedule.

The cost of a schedule S is the sum of the α-th power of the load over all time
steps, for a constant α > 1, i.e., cost(S) =

∑
t(`(S, t))

α. For a set of timeslots
I (not necessarily contiguous), we denote by cost(S, I) =

∑
t∈I(`(S, t))α. Our

goal is to find a feasible schedule S such that cost(S) is minimized. We call
this the GRID problem.

Online algorithms. In this paper, we consider online algorithms, where
the job information is only revealed at the time the job is released; the algorithm
has to decide which jobs to run at the current time without future information
and decisions made cannot be changed later. Let A be an online algorithm. We
say that A is c-competitive if for all input job sets J , we have cost(A(J)) ≤
c · cost(O(J)). In particular, we consider non-preemptive algorithms where a
job cannot be preempted to resume/restart later.

6 Fu-Hong Liu et al.

Special input instances. We consider various special input instances. A
job J is said to be unit width (resp. unit height) if w(J) = 1 (resp. h(J) = 1).
A job set is said to be uniform width (resp. uniform height) if the width (resp.
height) of all jobs are the same. A job set is said to have agreeable deadlines if
for any two jobs J1 and J2, r(J1) ≤ r(J2) implies d(J1) ≤ d(J2).

Relating to the speed scaling problem. The GRID problem resembles
the dynamic speed scaling (DVS) problem [48] and we are going to refer to three
algorithms for the DVS problem, namely, the YDS algorithm which is optimal
for the DVS problem, the online algorithms called BKP and AVR. We first
recap the DVS problem and the associated algorithms. In the DVS problem,
jobs come with release time r(J), deadline d(J) and a work requirement p(J).
The processor can run at speed s ∈ [0,∞) and consumes energy in a rate of
sα, for some α > 1. The processor in DVS resembles the grid in GRID. The
objective is to complete all jobs by their deadlines using the minimum total
energy. The main differences of DVS problem to the GRID problem include (i)
jobs in DVS can be preempted while preemption is not allowed in our problem;
(ii) as processor speed in DVS can scale, a job can be executed for varying time
duration as long as the total work is completed while in our problem a job
must be executed for a fixed duration given as input; (iii) the work requirement
p(J) of a job J in DVS can be seen as w(J)× h(J) for the corresponding job
in GRID.

With the resemblance of the two problems, we make an observation about
their optimal solutions. Let OD and OG be the optimal schedule for the DVS
and GRID problem, respectively. Given a job set JG for the GRID problem,
we can convert it into a job set JD for DVS by keeping the release time and
deadline for each job and setting the work requirement of a job in JD to the
product of the width and height of the corresponding job in JG. Then we have
the following observation.

Observation 1 Given any schedule SG for JG, we can convert SG into a
feasible schedule SD for JD such that cost(SD(JD)) ≤ cost(SG(JG)); implying
that cost(OD(JD)) ≤ cost(OG(JG)).

Proof Consider any feasible schedule SG. At timeslot t, suppose there are k
jobs scheduled and their sum of heights is H. The schedule for SD during
timeslot t can be obtained by running the processor at speed H and the jobs
time-share the processor in proportion to their height. This results in a feasible
schedule with the same cost and the observation follows. ut

It is known that the online algorithm AVR for the DVS problem is (2α)α

2 -
competitive [48]. Basically, at any time t, AVR runs the processor at a speed
which is the sum of the densities of jobs that are available at t. By Observation 1,
we have the following corollary. Note that it is not always possible to convert
a feasible schedule for the DVS problem to a feasible schedule for the GRID
problem easily. Therefore, the corollary does not immediately solve the GRID
problem but as to be shown it provides a way to analyze algorithms for GRID.

Non-preemptive Scheduling in a Smart Grid Model 7

Corollary 1 For any input JG and the corresponding input JD, cost(AVR(JD))

≤ (2α)α

2 · cost(OG).

The online algorithm BKP proposed by Bansal et al. [4] for the DVS
problem is 8eα-competitive with respect to total cost. The BKP algorithm can
be seen as an online version of YDS, as it estimates the possible maximum
work load at every time steps. At time t, BKP concentrates on the set of special
intervals [t1, t2) where t1 ≤ t ≤ t2 and (t2 − t1) : (t2 − t) = e : 1. Among these
intervals, BKP choose the one with maximum released average work and treat
the average work as an estimation of the speed required in the offline setting.
The speed at t in the BKP schedule is then chosen as e times of the maximum
released average work. By Observation 1 we have the following corollary:

Corollary 2 For any input JG and the corresponding input JD, cost(BKP(JD))
≤ 8eα · cost(O(JD)) ≤ 8eα · cost(O(JG)).

Remark: One may consider the non-preemptive DVS problem as the refer-
ence of the GRID problem. However, given a job set JG and the corresponding
JD, cost(OD(JD)) may not necessarily lower than cost(OG(JG)), where OD
here is the optimal schedule for non-preemptive DVS. There is an instance
where the optimal cost of GRID is smaller. The instance contains two jobs. One
has release time 0, deadline 3, width 3 and height 1. The other has release
time 1, deadline 2, width 1 and height 1. Both jobs can only schedule at their
release time in GRID since their widths are the same as the lengths of their
feasible intervals. The optimal cost of GRID is 1α + 2α + 1α = 2α + 2, whereas
the optimal cost of non-preemptive DVS is 2α + 2α = 2 · 2α. This is because
the schedule uses speed 2 and runs the longer job with 1.5 time units and the
shorter job with 0.5 time units. The optimal cost of GRID is lower when α > 1.
Therefore, it is unclear how we may use the results on non-preemptive DVS
problem and so we would stick with the preemptive DVS algorithms.

Relating to minimizing maximum cost. The problem of minimizing
maximum cost over time (min-max) has been studied before [49]. We note
that there is a polynomial time reduction of the decision version of the min-
max problem to that of the min-sum problem (the GRID problem we study
in this paper) for a large enough α. In particular, one can show that with
α > (τ − 1)(2

∑
J∈J h(J) + 1), the maximum load would dominate the load in

other timeslots and we would be able to solve the min-max problem if we have
an optimal solution for the min-sum problem on α.

On the other hand, minimizing the maximum cost does not necessarily
minimize the total cost. To minimize the total cost, the optimal solution might
give rise to higher peak cost. For example, consider an input of three jobs J1,
J2 and J3 where I(J1) = [0, 2α), h(J1) = 1, w(J1) = 2α; I(J2) = [2α, 2α + 1),
h(J2) = 3, w(J2) = 1; and I(J3) = [0, 2α+1), h(J3) = 1, w(J3) = 2α. Note that
only J3 has flexibility where it can be scheduled. To minimize the maximum
cost over time, we would schedule J3 to start at time 0 and achieve a maximum
load of 3. This gives a total cost of 2α ·2α+3α = 4α+3α. However, to minimize
the total cost, we would schedule J3 to start at time 2α giving a total cost of
2α + 4α + (2α − 1) = 4α + 2α+1 − 1, which is smaller than 4α + 3α when α > 1.

8 Fu-Hong Liu et al.

Lower bound on Greedy on the online-list model. On the online-list
model, requests with feasible intervals come in arbitrary order. On the other
hand, in the online-time model, requests with feasible intervals come at the
first time they are available. A lower bound in the online-time model is also a
lower bound in the online-list model, while an upper bound in the online-list
model is also an upper bound in the online-time model. The only lower bound
of online algorithms was investigated on online-list model. In [18], the greedy
algorithm that assigns a job to a timeslot with the minimum load is considered.
It is claimed in the paper that the greedy algorithm is 2-competitive on the
online-list model and for the case where the load of a timeslot t is `(t)2, jobs
are of unit length and height and the feasible timeslots of a job is a set of
(non-contiguous) timeslots that the job can be assigned to. We show a counter-
example to this claim by showing that Greedy is at least 3-competitive. This
implies that it is still an open question to derive competitive online algorithms
for the GRID problem.

Lemma 1 Greedy is no better than 3-competitive for the online-list model
when α = 2.

Proof Let k be an arbitrarily large integer. The adversary works in k rounds
and all the jobs released are of width and height 1. In the i-th round, where
1 ≤ i < k, the adversary releases 2k−i jobs; and in the k-th round (the final
one), the adversary releases two jobs. In the first round, the feasible timeslots
of each job released are [1, 2k]. In the i-th round, where 2 ≤ i ≤ k, the feasible
timeslots of each job released are all the timeslots that Greedy has assigned
jobs in the (i− 1)-th round. We claim that the total cost of Greedy is 3 · 2k − 4
and the total cost of the optimal schedule is 2k. Therefore, the competitive
ratio of Greedy is arbitrarily close to 3 with an arbitrarily large integer k.

We first analyze Greedy. Since Greedy always assigns to a timeslot with
the minimum load, in the first round, Greedy assigns jobs to 2k−1 timeslots
with each job to a different timeslot. These 2k−1 timeslots will be the feasible
timeslots for the 2k−2 jobs in the second round. Using a similar argument, we
can see that in each round, the number of feasible timeslots is twice the number
of jobs released in that round. In addition, before the i-th round, the load of
each feasible timeslot is i− 1 and Greedy adds a load of 1 to each timeslot that
it assigns a job, making the load become i. Therefore, the total cost of Greedy
is
∑k−2
i=1 (i2 · 2k−i−1) + k2 · 2 = 3 · 2k − 4. On the other hand, we can assign jobs

released in a round to the timeslots that are not feasible timeslots for later
rounds since in the i-th round, the number of feasible timeslots is 2k−i+1 and
the number of jobs released is 2k−i. Therefore, in the optimal schedule, the
load of each timeslot is exactly 1 and the total cost is 2k. ut

3 Online algorithm for uniform width jobs

To handle jobs of arbitrary width and height, we first study the case when
jobs have uniform width (all jobs have the same width w ≥ 1). The proposed

Non-preemptive Scheduling in a Smart Grid Model 9

algorithm UV (Subsection 3.2) is based on a further restricted case of unit
width, i.e., w = 1 (Subsection 3.1).

3.1 Unit width and arbitrary height

In this section, we consider jobs with unit width and arbitrary height. We
present an online algorithm V which makes reference to an arbitrary feasible
online algorithm for the DVS problem, denoted by R. In particular, we require
that the speed of R remains the same during any integral timeslot, i.e., in
[t, t+ 1) for all integers t. Note that when jobs have integral release times and
deadlines, many known DVS algorithms satisfy this criteria, including YDS
and AVR. After modification, BKP also satisfies the criteria and can be used
as the reference (Lemma 4).

Recall in Section 2 how a job set for the GRID problem is converted to a
job set for the DVS problem. We simulate a copy of R on the converted job set
and denote the speed used by R at t as `(R, t). Our algorithm makes reference
to `(R, t) but not the job run by R at t.

Algorithm V. For each timeslot t, we schedule jobs to start at t such that
`(V, t) is at least `(R, t) or until all available jobs have been scheduled. Jobs
are chosen in an EDF manner.

Analysis. We note that since V makes decision at integral time and jobs
have unit width, each job is completed before any further scheduling decision is
made. In other words, V is non-preemptive. To analyze the performance of V,
we first note that V gives a feasible schedule (Lemma 2) and then analyze its
competitive ratio (Theorem 2).

Lemma 2 V gives a feasible schedule.

Proof Let `(S, I) denote the total work done by schedule S in I. That is,
`(S, I) =

∑
t∈I `(S, t). According to the algorithm, for all It = [0, t), `(V, It) ≥

`(R, It).
Suppose on the contrary that V has a job Jm missing its deadline at t.

That is, d(Jm) = t but Jm is not finished before t. By the algorithm, for all
t′ ∈ [0, t), `(V, t′) ≥ `(R, t′) unless there are less than `(R, t′) available jobs
at t′ for V. Let t0 be the last timeslot in [0, t) such that `(V, t0) < `(R, t0)
(if there is no such timeslot, set t0 as −1), r(Jm) > t0 since all jobs released
at or before t0 have been assigned. For all t′ ∈ [t0 + 1, t), `(V, t′) ≥ `(R, t′).
Also, all jobs J with r(J) ≤ t0 are finished by t0 + 1 and jobs executed in
[t0+1, t) are those released after t0. Consider set Jt of jobs with feasible interval
completely inside I = [t0 + 1, t) (note that Jm ∈ Jt), `(S, I) ≥

∑
J∈Jt h(J)

for any feasible schedule S. Since V assigns jobs in EDF manner and is not
feasible, `(V, I) <

∑
J∈Jt h(J). It follows that

∑
J∈Jt h(J) > `(V, I) ≥ `(R, I).

It contradicts to the fact that R is feasible. Hence, V finishes all jobs before
their deadlines. ut

10 Fu-Hong Liu et al.

Now we analyze the performance of V. Recall that the intervals start
and end at integral points. Let hmax(V, t) be the maximum height of jobs
scheduled at t by V; we set hmax(V, t) = 0 if V assigns no job at t. We
first classify each timeslot t into two types: (i) hmax(V, t) < `(R, t) and (ii)
hmax(V, t) ≥ `(R, t). We denote by I1 and I2 the union of all timeslots of
Type (i) and (ii), respectively. Notice that I1 and I2 can be empty and the
union of I1 and I2 covers the entire time line. The following lemma bounds
the cost of V in each type of timeslots. Recall that cost(S, I) denotes the cost
of the schedule S over the interval I and cost(S) denotes the cost of the entire
schedule.

Lemma 3 The cost of V satisfies the following properties. (i) cost(V, I1) ≤
2α · cost(R); and (ii) cost(V, I2) ≤ 2α · cost(O).

Proof (i) By the algorithm, `(V, t) < `(R, t)+hmax(V, t) ≤ 2 · `(R, t) for t ∈ I1.
It follows that cost(V, I1) ≤ 2α ·

∑
t∈I1 `(R, t)

α = 2α ·cost(R, I1) ≤ 2α ·cost(R).
(ii) By convexity, cost(O) ≥

∑
J h(J)α. And we can see that cost(O) ≥∑

t∈I2 hmax(V, t)α. According to the algorithm, `(V, t) < `(R, t)+hmax(V, t) ≤
2 · hmax(V, t) for t ∈ I2. Hence, we have cost(V, I2) =

∑
t∈I2 `(V, t)

α ≤ 2α ·∑
t∈I2 hmax(V, t)α ≤ 2α · cost(O). ut

Notice that cost(V) = cost(V, I1) + cost(V, I2) since I1 and I2 have no
overlap. Together with Lemma 3 and Observation 1, we obtain the competitive
ratio of V in the following theorem.

Theorem 2 Algorithm V is 2α ·(R+1)-competitive, where R is the competitive
ratio of the reference DVS algorithm R. If R is an offline algorithm with cost
R · cost(O), algorithm V is 2α · (R+ 1)-approximate.

There are a number of DVS algorithms that can be used as the reference
algorithm. The only requirement is that the speed of the reference algorithm
within any integral interval [t, t + 1) for some integer t should be at most
the load of the resulting online algorithm at the corresponding timeslot t.
Otherwise, the feasibility of V cannot be guaranteed. Also, since in our online
algorithm we make decisions at each integral time t, it means if the load of
the reference algorithm at i+∆ is larger than `(R, i) for some 0 < ∆ < 1, our
online algorithm might not be feasible.

The speed of the AVR and YDS algorithm only change at release times or
deadlines of the jobs so it is valid to use AVR or YDS as a reference. Note
that if we use YDS as the reference, the algorithm V is an offline algorithm
since YDS is an offline algorithm. Unlike AVR and YDS, the speed of BKP
within a timeslot might increase. Hence, we need to modify the BKP algorithm
such that it can be used as the reference algorithm. In Lemma 4, we show that
the speed of BKP in [t, t+ 1) is bounded by a constant factor times the speed
at t for any time t.

Lemma 4 For any integral time t and a constant 0 < ∆ < 1, `(BKP, t+∆) ≤
(1 + e) · `(BKP, t) if the release times and deadlines of jobs are integral.

Non-preemptive Scheduling in a Smart Grid Model 11

Proof Let p(t, I) denotes the total work of jobs J with I(J) ⊆ I and r(J) ≤ t.
The speed of BKP at time t, `(BKP, t) = maxI e · p(t,I)|I| where I = [t1, t2)

satisfies the property that (t2 − t1) : (t2 − t) = e : 1. To prove this lemma, we
consider the interval I chosen by BKP at time t+∆. We prove that I can be
transformed into another interval I ′ which is one of the candidates for BKP at
time t. We show that e · p(t,I

′)
|I′| is at least 1

1+e times of the speed of BKP at

t+∆.
Assume that at time t+∆, `(BKP, t+∆) = e · p(t,I)|I| where I = [t1, t2) is

chosen by BKP . We can construct I ′ = [t′1, t2) such that (t2−t′1) : (t2−t) = e : 1
by setting t′1 = t2 − e(t2 − t). It is clear that I ⊂ I ′ since the two intervals
have the same right endpoint and I ′ is longer than I. In fact, |I ′| = e(t2 − t) =
e(t2 − (t+∆)) + e∆ = |I|+ e∆ ≤ |I|+ e. Moreover, for any interval candidate,
the length must be at least 1 if the release times and deadlines of the jobs
are integral. Otherwise, the interval contains no jobs and the speed is 0.

Hence, |I ′| ≤ (1 + e)|I|. By BKP, `(BKP, t) ≥ e · p(t,I
′)

|I′| = e · p(t+∆,I
′)

|I′| . The

later equality holds since there is no job released between t and t+∆. Since

I ⊂ I ′ and |I ′| ≤ (1 + e)|I|, e · p(t+∆,I
′)

|I′| ≥ e · p(t+∆,I)|I′| ≥ e · p(t+∆,I)(1+e)|I| . Hence,

`(BKP, t) ≥ 1
1+e · `(BKP, t+∆). ut

Lemma 4 implies that, although the speeds of BKP change within [t, t+ 1),
the speeds are bounded by (1+e) times of the speed at t. Hence, we can modify
BKP into BKP ′ as follows: at integral time t, the speed of BKP ′, `(BKP ′, t) =
(1 + e)`(BKP, t); at time t′ = t + ∆ where t is integral and 0 < ∆ < 1,
`(BKP ′, t′) = `(BKP ′, t). By the modification, the speed of BKP ′ remains the
same during any integral timeslot and cost(BKP ′) ≤ (1 + e)α · cost(BKP). As
mentioned in Section 2, the BKP algorithm is 8 · eα-competitive. On the other
hand, V can take an offline DVS algorithm, e.g., the optimal YDS algorithm,
as reference and returns an offline schedule. Therefore, we have the following
corollary.

Corollary 3 V is 2α · (8 · (e+e2)α+1)-competitive, 2α · ((2α)
α

2 +1)-competitive
and 2α ·2-approximate when the algorithm BKP ′, AVR and YDS are referenced,
respectively.

3.2 Uniform width and arbitrary height

In this section, we consider jobs with uniform width w and arbitrary height.
The idea of handling uniform width jobs is to treat them as if they were unit
width, however, this would mean that jobs may have release times or deadlines
at non-integral times. To remedy this, we define a procedure AlignFI to align
the feasible intervals (precisely, release times and deadlines) to the new time
unit of duration w.

Let J be a uniform width job set. We first define the notion of “tight” and
“loose” jobs. A job J is said to be tight if |I(J)| < 2w; otherwise, it is loose.
Let JT and JL be the disjoint subsets of tight and loose jobs of J , respectively.

12 Fu-Hong Liu et al.

We design different strategies for tight and loose jobs. As to be shown, tight
jobs can be handled easily by starting them at their release times. For any
loose job, we modify it via Procedure AlignFI such that its release time and
deadline are multiples of w. With this alternation, we can treat the jobs as
unit width and make scheduling decisions at times that are multiples of w.

Procedure AlignFI. Given a loose job set JL in which w(J) = w and
|I(J)| ≥ 2 · w ∀J ∈ JL. We define the procedure AlignFI to transform each
loose job J ∈ JL into a job J ′ with release time and deadline “aligned” as
follows. We denote the resulting job set by J ′.

– r(J ′)← mini∈0∪N{i · w | i · w ≥ r(J)};
– d(J ′)← maxi∈0∪N{i · w | i · w ≤ d(J)}.

Observation 3 For any job J ∈ JL and the corresponding J ′, (i) 1
3 · |I(J)| <

|I(J ′)| ≤ |I(J)|; (ii) |I(J ′)| ≥ w; (iii) I(J ′) ⊆ I(J).

Notice that after running AlignFI, the release time and deadline of each
loose job are aligned to timeslot i1 · w and i2 · w for some integers i1 < i2.
By Observation 3, a feasible schedule of J ′ is also a feasible schedule of J .
Furthermore, after running AlignFI all jobs are released at times which are
multiples of w. Hence, the job set J ′ can be treated as job set with unit width,
where each unit has duration w instead of 1.

As a consequence of altering the feasible intervals, we introduce two addi-
tional procedures that convert associated schedules. Given a schedule S for
job set JL, AlignSch converts it to a schedule S′ for the corresponding job
set J ′. The other procedure FreeSch takes a schedule S′ for a job set J ′ and
converts it to a schedule S for JL.

Transformation AlignSch. AlignSch transforms S into S′ by shifting
the execution interval of every job J ∈ JL.

– st(S′, J ′)← min{d(J ′)− w(J ′),mini≥0{i · w | i · w ≥ st(S, J)}};
– et(S′, J ′)← st(S′, J ′) + w(J ′).

Observation 4 Consider any schedule S for JL and the schedule S′ for J ′
constructed by AlignSch. The following properties hold: (i) For any job J ∈ JL
and the corresponding J ′, st(J ′) > st(J)−w and et(J ′) < et(J) +w; (ii) S′ is
a feasible schedule for J ′; and (iii) At any time t, `(S′, t) ≤ `(S, t) + `(S, t−
(w − 1)) + `(S, t+ (w − 1)).

Proof (ii) By AlignSch, st(S′, J ′) ≤ d(J ′)−w(J ′). Also, |[st(S′, J ′), et(S′, J ′))|
= w(J ′). Hence [st(S′, J ′), et(S′, J ′)) ⊆ I(J ′). That is, S′ is a feasible schedule
for both J ′ and J .

(iii) By (i), st(J ′) > st(J)−w and et(J ′) < et(J)+w for each J . Hence, for
any timeslot t, for each job J with [st(S, J), et(S, J))∩ [t−(w−1), t+(w−1)) =
∅, t /∈ [st(S′, J ′), et(S′, J ′)). On the other hand, consider the jobs J that
[st(J), et(J))∩ [t− (w− 1), t+ (w− 1)) 6= ∅. Since |[st(J), et(J))| = w, at least
one of the timeslots t− (w − 1), t or t+ (w − 1) is in [st(J), et(J)). Hence we
can capture `(S′, t) by `(S, t) + `(S, t− (w − 1)) + `(S, t+ (w − 1)). ut

Non-preemptive Scheduling in a Smart Grid Model 13

Corollary 4 Using AlignSch to generate S′ given S, we have cost(S′) ≤
3α · cost(S).

Proof By Observation 4 (iii), cost(S′) =
∑
t `(S

′, t)α ≤
∑
t(`(S, t) + `(S, t −

(w − 1)) + `(S, t+ (w − 1)))α ≤
∑
t(3 · `(S, t))α = 3α · cost(S). ut

Lemma 5 cost(O(J ′)) ≤ 3α · cost(O(JL)).

Proof Consider set of loose jobs JL with uniform width and the corresponding
J ′. Given O(JL), there exists schedule S(J ′) generated by AlignSch. By
Lemma 4, cost(S(J ′)) ≤ 3α ·cost(O(JL)). Hence, cost(O(J ′)) ≤ cost(S(J ′)) ≤
3α · cost(O(JL)). ut

Transformation FreeSch. FreeSch transforms S′ into S.

– st(S, J)← st(S′, J ′);
– et(S, J)← et(S′, J ′).

The feasibility of S′ can be easily proved by Observation 3 (iii).

Lemma 6 Using FreeSch, we have cost(S) = cost(S′).

Proof Since the execution intervals of J and J ′ are the same, `(S, t) = `(S′, t)
for all t. Hence cost(S) = cost(S′). ut

Online algorithm UV. The algorithm takes a job set J with uniform
width w as input and schedules the jobs in J as follows. Let JT be the set of
tight jobs in J and JL be the set of loose jobs in J .

1. For any tight job J ∈ JT, schedule J to start at r(J).
2. Loose jobs in JL are converted to J ′ by AlignFI. For J ′, we run Algo-

rithm V, which is defined in Subsection 3.1, with BKP as the reference
DVS algorithm. Jobs are chosen in an earliest deadline first (EDF) manner.
By running Transformation FreeSch on the resulting schedule V(J ′), we
get the schedule for JL.

Note that the decisions of UV can be made online.
Analysis of Algorithm UV. We analyze the tight jobs and loose jobs

separately. We first give an observation.

Observation 5 For any two job sets Jx ⊆ Jy, cost(O(Jx)) ≤ cost(O(Jy)).

Proof Assume on the contrary that cost(O(Jy)) < cost(O(Jx)), we can gen-
erate a schedule S(Jx) by removing jobs from O(Jy) which are not in Jx. It
follows that cost(S(Jx)) ≤ cost(O(Jy)) < cost(O(Jx)), contradicting to the
fact that O(Jx) is optimal for Jx. ut

The next lemma proves the competitive ratio separately for JT and JL.

Lemma 7 (i) cost(UV(JT)) ≤ 3α · cost(O(J)); (ii) cost(UV(JL)) ≤ 6α · (8(e+
e2)α + 1) · cost(O(J)).

14 Fu-Hong Liu et al.

Proof (i) We prove that any feasible schedule S for tight jobs is 3α-competitive.
We first extend jobs J ∈ JT to J ′ such that the width of J ′ is the same
as the length of its feasible interval. That is, r(J ′) = r(J), d(J ′) = d(J),
w(J ′) = d(J)− r(J) and h(J ′) = h(J). We denote the resulting job set by J ′.
Since each job in J ′ are not shiftable, there is only one feasible schedule for J ′
and it is optimal. Consider any job J and the corresponding job J ′. In any
feasible schedule S for JT and the optimal schedule O(J ′), the execution
interval of J is covered by the one of J ′. Hence, cost(S(JT)) ≤ cost(O(J ′)).

Next, we prove that the load at any time t of O(J ′) can be bounded by the
loads of constant number of timeslots in S(JT). Consider any job J and its
corresponding extended job J ′. For any timeslot t ∈ [r(J ′), d(J ′)), J ′ is executed
as J ′ is not shiftable. Since J is a tight job, the length of its feasible interval is
at most 2w−1. Hence, the execution interval of J in any feasible schedule must
contain either timeslot t− (w − 1), t or t+ (w − 1) . We can upper bound the
load at any time t in O(J ′): `(O(J ′), t) ≤ `(O(JT), t− (w−1))+`(O(JT), t)+
`(O(JT), t+(w−1)). Therefore, cost(S(JT)) ≤ cost(O(J ′)) ≤ 3α ·cost(O(JT)).

(ii) For JL, we apply AlignFI and get J ′L, which can be viewed as unit
width jobs. We then run V and get V(J ′L) and get UV(JL) by performing
FreeSch on V(J ′L). The cost of UV(JL) is exactly the cost of V(J ′L). According
to Corollary 3, by choosing BKP ′ as reference algorithm, cost(V(J ′L)) ≤ 2α ·
(8 · (e + e2)α + 1) · cost(O(J ′L)). Hence, cost(O(J ′L)) ≤ 3α · cost(O(JL)) ≤
3α · cost(O(J)), where the first inequality is by Lemma 5 and the second is by
Observation 5. Finally, cost(UV(JL)) = cost(V(J ′L)) ≤ 2α · (8 · (e+ e2)α + 1) ·
3α · cost(O(J)) = 6α · (8 · (e+ e2)α + 1) · cost(O(J)). ut

Theorem 6 cost(UV(J)) ≤ 12α · (8(e+ e2)α + 1) · cost(O(J)).

Proof By definition, cost(UV(J)) =
∑
t `(UV(J), t)α =

∑
t(`(UV(JT), t) +

`(UV(JL), t))α. By Jansen’s inequality, since the convexity, the total cost is
at most 2α−1 ·

∑
t(`(UV(JT), t)α + `(UV(JL), t)α) = 2α−1 · (cost(UV(JT)) +

cost(UV(JL))). By Lemma 7, cost(UV(J)) ≤ 2α−1 · (3α + 6α · (8(e + e2)α +
1)) · cost(O(J)) ≤ 2α · 6α · (8(e+ e2)α + 1) · cost(O(J)). ut

4 Online algorithm for the general case

In this section, we present an algorithm G for jobs with arbitrary width and
height. We first transform job set J to a “nice” job set J ∗ (to be defined)
and show that such a transformation only increases the optimal cost modestly.
Furthermore, we show that for any nice job set J ∗, we can bound cost(G(J ∗)) by
cost(O(J ∗)) and in turn by cost(O(J)). Then we can establish the competitive
ratio of G.

Non-preemptive Scheduling in a Smart Grid Model 15

4.1 Nice job set and transformations

A job J is said to be a nice job if w(J) = 2p, for some non-negative integer p
and a job set J ∗ is said to be a nice job set if all its jobs are nice jobs. The
nice job J is in class Cp.

Procedure Convert. Given a job set J , we define the procedure Convert
to transform each job J ∈ J into a nice job J∗ as follows. We denote the
resulting nice job set by J ∗. Suppose J is in class Cp. We modify its width,
release time and deadline:

– w(J∗)← 2p;
– r(J∗)← r(J);
– d(J∗)← r(J∗) + max{d(J)− r(J), 2p}.

The setting for d(J∗) is due to rounding up the width. The observation
below follows directly from the definition.

Observation 7 For any job J and its nice job J∗ transformed by Convert,
(i) I(J) ⊆ I(J∗); (ii) I(J) 6= I(J∗) if and only if |I(J)| < 2p; in this case,
den(J) > 1

2 and den(J∗) = 1.

We then define two procedures that transform schedules related to nice
job sets. RelaxSch takes a schedule S for a job set J and converts it to
a schedule S∗ for the corresponding nice job set J ∗. On the other hand,
ShrinkSch takes a schedule S∗ for a nice job set J ∗ and converts it to a
schedule S for J .

Transformation RelaxSch. RelaxSch transforms S into S∗ by extend-
ing and necessarily shifting the execution interval of every job J .

– st(S∗, J∗) = min{d(J∗)− w(J∗), st(S, J)}
– et(S∗, J∗) = st(S∗, J∗) + w(J∗).

Observation 8 asserts that the resulting schedule S∗ is feasible for J ∗ while
Lemmas 8 and 9 analyze the load and cost of the schedule.

Observation 8 Consider any schedule S for J and the schedule S∗ con-
structed by RelaxSch for the corresponding J ∗. We have [st(S∗, J∗), et(S∗, J∗)]
⊆ [r(J∗), d(J∗)]; in other words, S∗ is a feasible schedule for J ∗.

To analyze the load of the schedule S∗, we consider partial schedule S∗p ⊆ S∗
(resp. Sp ⊆ S) which is for all the jobs of J ∗ (resp. J) in class Cp. We prove
that the load of S∗p at any time can be bounded by the sum of the load of Sp
at the current time and 2p−1 − 1 timeslots before and after the current time.

Lemma 8 At any time t, `(S∗p , t) ≤ `(Sp, t) + `(Sp, t− (2p−1 − 1)) + `(Sp, t+
(2p−1 − 1)).

Proof We prove that for any job J , the corresponding nice job J∗ contributes
to `(S∗p , t) only if J contributes to either `(Sp, t), `(Sp, t − (2p−1 − 1)) or
`(Sp, t+ (2p−1−1)). There are two cases that J contributes to neither `(Sp, t−

16 Fu-Hong Liu et al.

(2p−1−1)) nor `(Sp, t+(2p−1−1)): (i) the execution interval of J is completely
outside the interval [t − (2p−1 − 1), t + (2p−1 − 1)] or (ii) [st(J), et(J)] ⊆
(t− (2p−1 − 1), t+ (2p−1 − 1)).

In the case (i), et(J) < t − (2p−1 − 1) or st(J) > t + (2p−1 − 1). By the
procedures of RelaxSch, since w(J) > 2p−1, et(J∗) ≤ et(J) + (2p−1 − 1) and
st(J∗) ≥ st(J)− (2p−1 − 1). Hence, t /∈ [st(J∗), et(J∗)]. That is, J∗ does not
contribute to `(S∗p , t) if et(J) < t− (2p−1− 1) or st(J) > t+ (2p−1− 1). Notice
that if et(J) = t− (2p−1− 1) or st(J) = t+ (2p−1− 1), J∗ does not necessarily
contribute to `(S∗p , t).

For case (ii), consider job J with [st(J), et(J)] ⊆ (t−(2p−1−1), t+(2p−1−1)).
Since 2p−1 < w(J) ≤ 2p, t ∈ [st(J), et(J)]. That is, J contributes to `(Sp, t) no
matter if J∗ contributes to `(S∗p , t− (2p−1 − 1)) or `(S∗p , t+ (2p−1 − 1)).

By case (i) and (ii), for any job J with [st(J), et(J)] ∩ [t− (2p−1 − 1), t+
(2p−1 − 1)] = ∅, J∗ does not contribute to `(S∗p , t). And for any job J with
[st(J), et(J)] ⊆ (t−(2p−1−1), t+(2p−1−1)), J contributes to `(Sp, t). Hence, by
assuming all jobs at timeslot t−(2p−1−1) or t+(2p−1−1) contribute to `(S∗p , t),
`(S∗p , t) is bounded by `(Sp, t) + `(Sp, t− (2p−1− 1)) + `(Sp, t+ (2p−1− 1)). ut

Lemma 9 Using RelaxSch, we have cost(S∗p) ≤ 3α · cost(Sp).

Proof By Lemma 8, cost(S∗p) =
∑
t `(S

∗
p , t)

α ≤
∑
t(`(Sp, t) + `(Sp, t− (2p−1 −

1)) + `(Sp, t+ (2p−1 − 1)))α ≤
∑
t(3 · `(Sp, t))α = 3α · cost(Sp). ut

Transformation ShrinkSch. On the other hand, ShrinkSch converts
a schedule S∗ for a nice job set J ∗ to a schedule S for the corresponding job
set J . We set

– st(S, J)← st(S∗, J∗);
– et(S, J)← st(S, J) + w(J), therefore, et(S, J) ≤ et(S∗, J∗).

Observation 9 asserts that the resulting schedule S is feasible for J and
Lemma 10 analyzes the cost of the schedule.

Observation 9 Consider any schedule S∗ for J ∗ and schedule S constructed
by ShrinkSch for the corresponding J . For any J∗ and the corresponding J , we
have (i) [st(S, J), et(S, J)] ⊆ [st(S∗, J∗), et(S∗, J∗)]; (ii) [st(S, J), et(S, J)] ⊆
[r(J), d(J)].

By Observation 9, we have the following lemma.

Lemma 10 Using ShrinkSch, we have cost(Sp) ≤ cost(S∗p).

4.2 The online algorithm

Online algorithm G. We are now ready to describe the algorithm G for an
arbitrary job set J . When a job J is released, it is converted to J∗ by Convert
and classified into one of the classes Cp. Jobs in the same class after Convert
(being a uniform-width job set) are scheduled by UV independently of other

Non-preemptive Scheduling in a Smart Grid Model 17

classes. We then modify the execution time of J∗ in UV to the execution time
of J in G by Transformation ShrinkSch. Note that all these procedures can
be done in an online fashion.

Using the results in Section 3 and Subsection 4.1, we can compare the cost
of G(J) with O(J ∗p) for each class Cp (see Theorem 11). It remains to analyze
the cost of O(J ∗p) and O(J) in the next observation.

Observation 10 Consider any job set J , its corresponding job set J ∗ and
the corresponding job sets of each class Jp and J ∗p . (i) cost(O(J ∗p)) ≤ 3α ·
cost(O(Jp)); (ii) cost(O(Jp)) ≤ cost(O(J)).

Proof (i) Given O(Jp), there exists a schedule S(J ∗p) generated by RelaxSch.
By Lemma 9, cost(S(J ∗p)) ≤ 3α · cost(O(Jp)). Hence, we have cost(O(J ∗p)) ≤
cost(S(J ∗p)) ≤ 3α · cost(O(Jp)).

(ii) Assume on the contrary that cost(O(J)) < cost(O(Jp)). We can
generate a schedule S(Jp) by removing jobs from O(J) which are not in Jp.
It follows that cost(S(Jp)) ≤ cost(O(J)) < cost(O(Jp)), contradicting to the
fact that O(Jp) is optimal for Jp. ut

Theorem 11 For any job set J , we have

cost(G(J)) ≤ (36dlogKe)α ·
(
8(e+ e2)α + 1

)
· cost(O(J)) ,

where K = wmax

wmin
.

Proof By definition, cost(G(J)) =
∑
t `(G(J), t)α =

∑
t(
∑dlogKe
p=1 `(G(Jp), t))α.

By Jansen’s inequality and the convexity of the α-power function, the cost

is at most dlogKeα−1
∑dlogKe
p=1

∑
t `(G(Jp), t)α. For each group of jobs Jp, we

Convert it to J ∗p , apply Algorithm UV on it and transform the schedule
into a schedule for Jp by ShrinkSch. Hence, `(G(Jp), t) ≤ `(UV(J ∗p), t) for

each t. We have cost(G(J)) ≤ dlogKeα−1
∑dlogKe
p=1 cost(G(Jp)) ≤ dlogKeα−1 ·∑dlogKe

p=1 cost(UV(J ∗p)). By Theorem 6 and Observations 10 (i) and 10 (ii),

cost(UV(J ∗p)) ≤ 12α · (8(e+ e2)α + 1) · cost(O(J ∗p)) ≤ 12α · (8(e+ e2)α + 1) ·
3α · cost(O(Jp)) ≤ 36α · (8(e + e2)α + 1) · cost(O(J)). Hence cost(G(J)) ≤
36α · dlogKeα−1 · (8(e+ e2)α + 1) ·

∑dlogKe
p=1 cost(O(J)) = (36dlogKe)α · (8(e+

e2)α + 1) · cost(O(J)). ut

Note that the logarithm in the competitive ratio comes from the number
of classes defined in Section 2. Suppose we change the definition of classes
such that class p includes jobs of size in the range ((1 + λ)p−1, (1 + λ)p] for
some λ > 0 and Procedure Convert such that the width of jobs in class Cp
is rounded up to (1 + λ)p. Then, the number of classes becomes dlog1+λKe.
In addition, the competitive ratio depends on Lemma 8 that bounds the load
at any timeslot by the load of three other timeslots. This number of timeslots
is also affected by the definition of classes. In summary, the following lemma
states the competitive ratio for varying λ.

18 Fu-Hong Liu et al.

Lemma 11 For 0 ≤ λ ≤ 0.5, 0.5 < λ ≤ 1 and λ ≥ 2, the competitive
ratio of our algorithm becomes (12 × 2dlog1+λKe)α(8(e + e2)α + 1), (12 ×
3dlog1+λKe)α(8(e+e2)α+1) and (12× (b2λc+1)dlog1+λKe)α(8(e+e2)α+1),
respectively.

Proof When we use 1 + λ as the factor for classifying the jobs by widths, the
number of classes is dlog1+λKe, which replaces dlogKe in Theorem 11. We
note that this number decreases as λ increases.

Next, we observe the change of Lemma 8. In Lemma 8, we show that after
the transformation RelaxSch, the load of any timeslot t in the resulting
schedule S∗p can be bounded by above by sampling a constant number of
timeslots loads in the schedule Sp. When 1 + λ ≥ 2, to bound the load at
timeslot t in S∗p , it should be sampled every λp−1 timeslots in the interval
[t− (λp − 1), t+ (λp − 1)]. That is, `(S∗p , t) ≤ `(Sp, t) + `(Sp, t− (λp−1 − 1)) +
`(Sp, t+ (λp−1− 1)) + `(Sp, t− (2λp−1− 1)) + `(Sp, t+ (2λp−1− 1)) + `(Sp, t−
(3λp−1 − 1)) + `(Sp, t+ (3λp−1 − 1)) + · · · . When 1.5 < 1 + λ < 2, there are
three timeslots loads needed to be sampled: `(Sp, t), `(Sp, t − (λp − 1)) and
`(Sp, t + (λp − 1)). When 1 ≤ 1 + λ ≤ 1.5, it is sufficient to sample at most
two timeslots loads, `(Sp, t − (λp − 1)) and `(Sp, t + (λp − 1)). It is because
the interval [t− (λp − 1), t+ (λp − 1)] has width smaller than 3 · λp−1, which
implies that there can be a job with width slightly greater than λp−1 while the
execution interval inside [t− (λp − 1) + λp−1, t+ (λp − 1)− λp−1]. ut

We note the competitive ratio for λ < 1 is larger than that for λ = 1 and
the best competitive ratio occurs when 1 < λ < 2.

4.3 Lower bound

In this section, we show lower bounds on competitive ratio for GRID problem
with unit height and arbitrary width jobs by designing an adversary for the
problem. The lower bounds are immediately lower bounds for the general case
of GRID problem.

Although the design of the adversary is similar to Saha’s design [41], our
analysis is totally different from theirs. Saha’s paper only consider the peak
of schedule, while our paper analyzes all the loads of timeslots, calculates the
total convex cost of the loads and finds the worst-case instances of competitive
ratio that depends on the electricity cost function. In addition, each job in our
adversary has distinct release time, while Saha’s adversary accepts the identical
release time for different jobs, which is ambiguous for an online algorithm to
know the order of released jobs.

Our adversary constructs a set of jobs with a low cost of offline optimal
schedule but a high cost of any online algorithm A. It generates jobs one by one
and assigns release times, deadlines and widths of jobs based on the previously
generated jobs. The start times of jobs scheduled by A will be used for the job
generations later. This ensures that A has to put a job on top of all existing
jobs and results in a high energy cost. Meanwhile, the adversary will choose an

Non-preemptive Scheduling in a Smart Grid Model 19

appropriate feasible interval for each job such that an optimal offline algorithm
can schedule the job set with low energy cost. The following is the description
of the adversary.

Adversary Λ and job instance J . Given an online algorithm A and a
number α > 1, adversary Λ outputs a set of jobs J consisting of n jobs. Let Ji
be the ith job of J . The adversary first computes a width for each job before
running A. It sets w(Jn−1) = x and w(Jn) = x− 1 for some large number x
and w(Ji) = 3w(Ji+1) + 1 for 1 ≤ i ≤ n − 2. Then Λ releases the jobs from
J1 to Jn accordingly and computes a release time and a deadline for each job
through an interaction with A. For the first job J1, Λ chooses any release time
and deadline such that d(J1) − r(J1) ≥ 3w(J1). For the ith job Ji ∈ J for
2 ≤ i ≤ n accordingly, Λ sets r(Ji) = st(A, Ji−1) + 1 and d(Ji) = et(A, Ji−1).
This limits A to fewer choices of start times for scheduling a new job. A job
can only be scheduled in the execution interval of its previous job by A. On the
other hand, no two jobs have the same release time since the feasible interval
of Ji does not contain the start time of Ji−1. To ensure this, we require that
the widths of neighboring jobs in the release order differ at least 1.

Let wmax and wmin denote by the maximum and minimum width of jobs
respectively and let O be an optimal offline algorithm for GRID problem. We
have the following results.

Lemma 12 cost(O(J)) ≤ x · 3n−1.

Proof By the setting of Λ, we show that O can schedule all the jobs J without
overlapping and the cost of an optimal schedule is just the sum of widths of all
the jobs.

For any job Ji ∈ J and i ≥ 2, the length of its feasible interval is d(Ji)−
r(Ji) = et(A, Ji−1) − (st(A, Ji−1) + 1) = w(Ji−1) − 1 = 3w(Ji) and d(J1) −
r(J1) ≥ 3w(J1). This means no matter where we schedule a job, at least
one of the intervals [r(Ji), st(Ji)) and [et(Ji), d(Ji)) has length at least w(Ji).
Algorithm O can schedule the subsequent jobs in the interval with length
at least w(Ji) such that the subsequent jobs do not overlap with Ji. This is
because the sum of widths of all the subsequent jobs does not exceed w(Ji).
Since this argument can be applied on all the jobs, this implies that all the
jobs do not overlap with each other in an optimal schedule. Thus the cost of
an optimal schedule is the sum of widths of all the jobs. More precisely,

cost(O(J)) = (x− 1) + x+ (3x+ 1) + (3(3x+ 1) + 1) + . . .+ wmax

≤ 2x+ 2 · 3x+ 2 · 9x+ . . .+ 2 · 3n−2x

= 2x · 3n−1 − 1

2
≤ x · 3n−1 . ut

Theorem 12 For any deterministic online algorithm A for GRID problem
with unit height and arbitrary width jobs, Adversary Λ constructs an instance

20 Fu-Hong Liu et al.

J such that (i) for constant α,

cost(A(J))

cost(O(J))
≥
(
bαc+ 1

3

)α
;

and (ii) for arbitrary α,

cost(A(J))

cost(O(J))
≥ logα3

wmax

wmin
.

Proof We first give a lower bound on cost(A(J)) and then give the lower
bounds on the competitive ratio by combining cost(A(J)) with Lemma 12.

(i) In this case, we consider that Λ only releases bαc + 1 jobs, i.e., n =
bαc + 1. By the setting of Λ, all the jobs scheduled by A overlap with each
other. For ease of the computation for the cost of A, we only consider the
timeslots contained by the execution interval of the last job Jbαc+1. Thus
cost(A(J)) ≥ (x− 1) · (bαc+ 1)α and

cost(A(J))

cost(O(J))
≥ (x− 1) · (bαc+ 1)α

x · 3bαc
≥
(
bαc+ 1

3

)α
if x is large enough.

(ii) Assume α can be arbitrarily large, say α = (y + 1)n for some large
number y. We use wmax and wmin to bound n. According to Lemma 12, we
have wmax ≤ cost(O(J)) ≤ x · 3n−1 and thus

n ≥ log3

wmax

x
+ 1 ≥ log3

wmax

3(x− 1)
+ 1 = log3

wmax

wmin
.

The second inequality is due to x ≤ 3(x − 1) when x ≥ 2. Recall that A
stacks all the jobs together and thus cost(A(J)) ≥ (x − 1) · nα. Combining
with Lemma 12, we have the lower bound on the competitive ratio

cost(A(J))

cost(O(J))
≥ (x− 1) · nα

x · 3n−1
≥ (x− 1) · nα

x · 3n

=
nα

3n
if x is large enough

=
n(y+1)n

3n
= nyn ·

(n
3

)n
≥ nyn when n ≥ 3 .

Since α = (y + 1)n, we have yn = αy/(y + 1). Therefore, the lower bound is

cost(A(J))

cost(O(J))
≥ nyn = n

y
y+1 ·α

= nα if y is large enough

≥
(

log3

wmax

wmin

)α
.

ut

Non-preemptive Scheduling in a Smart Grid Model 21

Corollary 5 For any deterministic online algorithm for GRID problem, the

competitive ratio is at least (i) (bαc+1
3)α for constant α; and (ii) logα3

wmax

wmin
for

arbitrary α.

5 Online algorithm for uniform height jobs

In this section we focus on uniform height jobs of height h and consider two
special cases of the width. We first consider jobs with uniform height and unit
width (Subsection 5.2) and secondly consider jobs with agreeable deadlines
(Subsection 5.3).

To ease the discussion, we refine a notation we defined before. For any
algorithm A for a job set J and a time interval I, we denote by A(J , I) the
schedule of A on J over the time interval I.

5.1 Main ideas

The main idea is to make reference to the online algorithm AVR and consider
two types of intervals, I>h, where the average load is higher than h and I≤h,
where the average load is at most h. For the former, we show that we can base
on the competitive ratio of AVR directly; for the latter, our load could be
much higher than that of AVR and in such a case, we compare directly to the
optimal solution. Combining the two cases, we have Lemma 13, which holds
for any job set. In Subsections 5.2 and 5.3, we show how we can use Lemma 13

to obtain algorithms for the special cases. Notice that the number d avg(t)h e is
the minimum number of jobs needed to make the load at t at least avg(t).

Lemma 13 Suppose we have an algorithm A for a any job set J such that for

some c and c′ (i) `(A, t) ≤ c · h · davg(t)h e for all t ∈ I>h and (ii) `(A, t) ≤ c′ · h
for all t ∈ I≤h. Then we have cost(A(J)) ≤ ((4cα)α

2 + c′α) · cost(O(J)).

Proof Let `(AVR, t) denote the speed of AVR at t. We are going to prove

that (a) cost(A(J , I>h)) ≤ (4cα)α

2 · cost(O(J)) and (b) cost(A(J , I≤h)) ≤
c′α · cost(O(J)). Hence, the total cost cost(A(J)) ≤ ((4cα)

α

2 + c′α) · cost(O(J))
since I>h and I≤h partition the entire time horizon during which jobs are
available.

(a) We compare `(A, t) to `(AVR, t) for each timeslot t in I>h. By the

assumption of A, `(A, t) ≤ c ·h · d avg(t)h e < c ·h · (avg(t)h + 1) = c · (avg(t) +h) ≤
2c · avg(t) since avg(t) > h. Hence, cost(A(J , I>h)) =

∑
t∈I>h `(A, t)

α ≤∑
t∈I>h(2c ·avg(t))α. Recall that `(AVR, t) = avg(t) for each t. By Corollary 1,

cost(A(J , I>h)) ≤ (2c)α · cost(AVR(J , I>h)) ≤ (2c)α · cost(AVR(J)) ≤
(4cα)α

2 · cost(O(J)).
(b) By the assumption of A, cost(A(J , I≤h)) ≤ |I≤h| · (c′h)α. The length

of I≤h can be upper bounded by the sum of width of all jobs. Hence, we

22 Fu-Hong Liu et al.

have cost(A(J , I≤h)) ≤
∑
J∈J w(J) · (c′h)α. By convexity, cost(O(J)) ≥∑

J∈J w(J)·h(J)
α

=
∑
J∈J w(J)·hα. Hence, cost(A(J , I≤h))≤ c′α·cost(O(J)).

The totol cost cost(A(J)) is the sum of cost(A(J , I>h)) and cost(A(J , I≤h)),

which in total is at most ((4cα)
α

2 +c′α) ·cost(O(J)) and the theorem follows. ut

5.2 Uniform height and unit width

In this section we consider job sets where all jobs have uniform height and
unit width, i.e., w(J) = 1 and h(J) = h for all jobs J . Note that such a
case is a subcase discussed in Subsection 3.1. Here we illustrate a different
approach using the ideas above and describe the algorithm UU for this case. The
competitive ratio of UU is better than that of Algorithm V in Subsection 3.1
when α < 3.22.

Algorithm UU . At any time t, choose d avg(t)h e jobs according to the EDF
rule and schedule them to start at t. If there are fewer jobs available, schedule
all available jobs.

The next theorem asserts that the algorithm gives a feasible schedule and
states its competitive ratio.

Theorem 13 (i) The schedule constructed by Algorithm UU is feasible. (ii)

Algorithm UU is ((4α)α

2 + 1)-competitive.

Proof (i) Assume on the contrary that t is the first time at which a job Jm
misses its deadline in the schedule UU . That is, d(Jm) = t and there is no
space for executing Jm at t. Let t0 denote the latest timeslot where the load

of UU is lower than d avg(t)h e (if there is no such timeslot, t0 = 0). Since UU
applies the EDF principle, the jobs executed at timeslots t0 + 1, t0 + 2, · · · , t
have their feasible intervals lying completely in inside the interval [t0 + 1, t].

For any timeslot ti ∈ [t0 + 1, t], the work executed by AVR in interval
[t0 + 1, ti] is

∑ti
t′=t0+1 avg(t′). On the other hand, the total work done by UU

in the same interval is
∑ti
t′=t0+1 h · d

avg(t′)
h e ≥

∑ti
t′=t0+1 avg(t). The work done

by UU within interval [t0 + 1, t] is at least the work done by AVR in both cases.
Hence, AVR is not feasible since UU is not feasible, which is a contradiction.

(ii) We note that `(UU , t) ≤ h · d avg(t)h e. To use Lemma 13, we can set
c′ = 1 for t ∈ I≤h by the definition of I≤h. Furthermore, we can set c = 1 for
t ∈ I>h. ut

5.3 Uniform-height, arbitrary width and agreeable deadlines

In this section we consider jobs with agreeable deadlines. We first note that

even for jobs with common feasible intervals, simply scheduling d avg(t)h e number
of jobs may not return a feasible schedule.

Non-preemptive Scheduling in a Smart Grid Model 23

Example 1 Consider four jobs each job J with r(J) = 0, d(J) = 5, h(J) = h,

w(J) = 3. Note that avg(t) = 2.4 ·h for all t. If we schedule at most d avg(t)h e = 3
jobs at any time, we can complete three jobs but the remaining job cannot be
completed. To schedule all jobs feasibly, we need at least one timeslot where
all jobs are being executed.

To schedule these jobs, we first observe in Lemma 14 that for a set of jobs
with total densities at most h, it is feasible to schedule them such that the load
at any time is at most h. For jobs with agreeable deadlines, a greedy schedule
in EDF manner is feasible if the total density of the jobs is at most h. Roughly
speaking, we keep the current ending time of all available jobs. As a new job is
released, if its release time is earlier than the current ending time, we set its
start time to the current ending time (and increase the current ending time
by the width of the new job); otherwise, we set its start time to be its release
time. Lemma 14 asserts that such a scheduling is feasible and maintains the
load at any time to be at most h.

Our algorithm AD for jobs with uniform-height, arbitrary width and agree-
able deadlines is based on this observation. We first partition the jobs into
“queues” each of which has sum of densities at most h (InsertQueue). Each
queue Qi is scheduled independently and the resulting schedule is to “stack
up” all these schedules (SetStartTime). The queues are formed in a Next-Fit
manner: (i) the current queue Qq is kept “open” and a newly arrived job is
added to the current queue if including it makes the total density stay at most
h; (ii) otherwise, the current queue is “closed” and a new queue Qq+1 is created
as open.

Lemma 14 Given any set of jobs of uniform-height h, arbitrary-width and
agreeable deadlines. If the sum of densities of all these jobs is at most h, then
it is feasible to schedule all of them using a maximum load h at any time. That
is, the jobs can be scheduled feasibly without overlapping execution intervals.

Proof Suppose there are k jobs J1, J2, · · · , Jk such that
∑

1≤i≤k den(Ji) ≤ h.
Without loss of generality, we assume that d(Ji) ≤ d(Jj) and r(Ji) ≤ r(Jj)
for 1 ≤ i < j ≤ k. We show that it is a feasible schedule to execute the jobs
one by one, in the EDF manner. More specifically, we set [st(Ji), et(Ji)) to
[max{r(Ji), et(Ji−1)}, st(Ji) + w(Ji)) for all 1 < i ≤ k and [st(J1), et(J1)) =
[r(J1), r(J1) + w(J1))

We observe that den(J1) ≤ h since
∑
i den(Ji) ≤ h. It is feasible to set

[st(J1), et(J1)) to [r(J1), r(J1)+w(J1)) since the input is feasible. Next, we prove
that for all i ≥ 2, [st(Ji), et(Ji)) = [max{r(Ji), et(Ji−1)}, st(Ji) + w(Ji)) ⊆
[r(Ji), d(Ji)). Since st(Ji) = max{r(Ji), et(Ji−1)}, we have st(Ji) ≥ r(Ji).
Assume that ∪g≤iI(Jg) is a contiguous interval. Since

∑
g≤i den(Jg) ≤ h,∑

g≤i
w(Jg)

d(Jg)−r(Jg) ≤ 1. Since the jobs have agreeable deadlines and jobs with

earlier deadlines are released earlier, 1 ≥
∑
g≤i

w(Jg)
d(Jg)−r(Jg) ≥

∑
g≤i

w(Jg)
d(Ji)−r(J1) .

Hence,
∑
g≤i w(Jg) ≤ d(Ji)− r(J1). Therefore Ji can be finished before d(Ji).

On the other hand, if ∪g≤iI(Jg) is not contiguous. The proof above shows

24 Fu-Hong Liu et al.

that for each contiguous, each of the involving jobs can be finished by its
deadline. ut

Algorithm AD. The algorithm consists of the following components:
InsertQueue, SetStartTime and ScheduleQueue.
InsertQueue: We keep a counter q for the number of queues created. When
a job J arrives, if den(J) +

∑
J′∈Qq den(J ′) ≤ h, then job J is added to Qq;

otherwise, job J is added to a new queue Qq+1 and we set q ← q + 1.
SetStartTime: For the current queue, we keep a current ending time E,
initially set to 0. When a new job J is added to the queue, if r(J) ≤ E, we set
st(J)← E; otherwise, we set st(J)← r(J). We then update E to st(J) +w(J).
ScheduleQueue: At any time t, schedule all jobs in all queues with start time
set at t.

By Lemma 14, the schedule returned by AD is feasible. We then analyze
its load and hence, derive its competitive ratio. Recall the definition of I>h
and I≤h

Lemma 15 Using AD, we have (i) `(AD, t) ≤ 2 · h · davg(t)h e for t ∈ I>h; (ii)
`(AD, t) ≤ 2h for t ∈ I≤h.

Proof We first prove the following claim: given r > bn−12 c where n is a natural
number and r is a real number, n ≤ 2dre. If n is odd, dre ≥ r > bn−12 c = n−1

2 .
Since n is an natural number, n ≤ 2dre. If n is even, dn−12 e >

n−1
2 > bn−12 c.

Since dre ≥ r > bn−12 c, dre ≥ d
n−1
2 e >

n−1
2 . Therefore, n ≤ 2dre since n is a

natural number.
For timeslot t, suppose there are k queues (Qs1 ,Qs2 , · · · ,Qsk) which contain

jobs available at t, where s1 < s2 < · · · < sk. According to our algorithm,
`(AD, t) ≤ k · h.

Let Di be the sum of densities of jobs in Qsi . Consider t ∈ I>h. By the
InsertQueue procedure, Di +Di+1 > h for 1 ≤ i < k − 1. Therefore, if k ≥ 3,

avg(t) =
∑

1≤i≤kDi >
∑

1≤i≤k−1Di ≥ bk−12 c ·h. By our claim, k ≤ 2 · d avg(t)h e.
Therefore, `(AD, t) = k · h ≤ 2 · h · d avg(t)h e for t ∈ I>h. On the other hand, if

k < 3, `(AD, t) ≤ 2h < 2 · avg(t) ≤ 2 · h · d avg(t)h e.
For t ∈ I≤h, avg(t) ≤ h by definition. That is, the sum of densities of all

available jobs at t is no more than h. By the InsertQueue procedure all jobs
will be in at most two adjacent queues. Hence, `(AD, t) ≤ 2h for t ∈ I≤h. ut

By Lemma 15 and Lemma 13, we have Theorem 14 by setting c = 2 and
c′ = 2.

Theorem 14 For jobs with uniform height, arbitrary width and agreeable

deadlines, AD is ((8α)α

2 + 2α)-competitive.

6 Exact Algorithms

In this section, we propose exact algorithms and derive lower bounds on the
running time of exact algorithms. Table 2 gives a summary of our results.

Non-preemptive Scheduling in a Smart Grid Model 25

Width Height Time complexity

Arbitrary Arbitrary wmax
2m · (Dmax + 1)4m ·O(n2)

Arbitrary Arbitrary (4m · wmax
2)2m ·O(n2)

Unit Arbitrary 2O(N)

Table 2 Summary of our exact algorithms.

6.1 Fixed parameter algorithms

In parameterized complexity theory, the complexity of a problem is not only
measured in terms of the input size, but also in terms of parameters. The theory
focuses on situations where the parameters can be assumed to be small and
the time complexity depends mainly on these small parameters. The problems
having such small parameters are captured by the concept “fixed-parameter
tractability”. An algorithm with parameters p1, p2, . . . is said to be an fixed
parameter algorithm if it runs in f(p1, p2, . . .) ·O(g(N)) time for any function f
and any polynomial function g, where N is the size of input. A parameterized
problem is fixed-parameter tractable if it can be solved by a fixed parameter
algorithm. In this subsection, we show that the general case of GRID problem,
jobs with arbitrary release times, deadlines, width and height, is fixed-parameter
tractable with respect to a few small parameters.

The number of timeslots τ in the horizon is usually very large. Unlike
the brute force algorithm that needs O(τn) time to find an optimal schedule
where n is the number of jobs, our algorithm designs remove the dependency
on τ in the time complexities. Instead, we use the width of jobs, which is
much smaller than τ , to bound the running time. We exploit the concept of
“window” and design a fixed parameter algorithm of which the running time
depends on the length of windows and the width of jobs. Later, in the second
fixed parameter algorithm, we further remove the dependency on the length of
windows and leave the width of jobs as the main parameter.

6.1.1 Key notions

We design two fixed parameter algorithms that are based on a dynamic program.
Roughly speaking, we divide the timeline into k contiguous windows in a specific
way, where each window Di represents a time interval [bi, bi+1) for 1 ≤ i ≤ k.
The algorithm visits all windows accordingly from the left to the right and
maintains a candidate set of schedules for the visited windows in such a way
that no optimal solution is deleted from the set. In the first fixed parameter
algorithm, the parameters of the algorithm are the maximum width of jobs,
the maximum number of overlapping feasible intervals and the maximum size
of windows, where the latter two can be observed on the interval graph. We
will drop out the last parameter in the second algorithm. All parameters do
not increase necessarily as the number of jobs grows and can be assumed to
be small in practice. For example, a width of a job is a requested amount of

26 Fu-Hong Liu et al.

time to run an appliance and the running time is usually a few hours, which
is small when we make a timeslot to be an hour. The number of overlapping
feasible intervals is at most the number of appliances, which is also small with
respect to one house.

Interval graph. A graph G = (V,E) is an interval graph if it is the
intersection graph of a set of intervals on the real line. Formally, for each v ∈ V ,
we can associate v to an interval Iv on the real line such that (u, v) is in E if
and only if Iu ∩ Iv 6= ∅. It has been shown in [19,20] that an interval graph has
a “consecutive clique arrangement”, i.e., its maximal cliques can be linearly
ordered in a way that for every vertex v in the graph, the maximal cliques
containing v occur consecutively in the linear order. For any instance of the
GRID problem, we can transform it into an interval graph G = (V,E): For each
job J with feasible interval I(J), we create a vertex v(J) ∈ V and there is an
edge between v(J) and v(J ′) if and only if I(J) intersects I(J ′). The release
times and deadlines of the jobs divide the real line into O(|V |2) intervals. By
considering these O(|V |2) intervals, we can obtain a set of maximal cliques
in linear order C1, C2, · · · and Ck, where k denotes the number of maximal
cliques. The parameter of our algorithm, the maximum number of overlapping
feasible intervals, is the maximum size of these maximal cliques.

Boundaries and windows. Based on the maximal cliques described
above, we define some “windows” D1, D2, · · · , Dk with “boundaries” b1, b2,
· · · , bk+1. We first give the definition of boundaries for the first algorithm. This
definition will be generalized in Subsubsection 6.1.4 for the second algorithm.
For 1 ≤ i ≤ k, the i-th boundary bi is defined as the earliest release time
of jobs in clique Ci but not in cliques before Ci, precisely, bi = min{t | t =
r(J) and J ∈ Ci \ (∪i−1s=1Cs)}. The rightmost boundary bk+1 is defined as the
latest deadline among all jobs. With the boundaries, we partition the timeslots
into contiguous intervals called windows. The i-th window Di is defined as
[bi, bi+1).

Example. Figure 1 is an example of a set of jobs, its corresponding interval
graph and the corresponding maximal cliques. The cliques are put in such a
way that any vertex appears consecutively if there is two or more of it. The
boundaries of windows are determined by the leftmost vertex of the maximal
cliques.

6.1.2 Framework of the algorithms

We propose two exact algorithms, both of which run in k stages corresponding
to each of the k windows. We maintain a table Tleft that stores all “valid”
configurations of jobs in all the windows that have been considered so far. A
configuration of a job corresponds to a segment (sub-interval) of its execution
interval. A row in the table consists of the configurations of all the jobs. In
addition, for each window Di, we compute a table Trighti to store all possible
configurations of jobs available in Di by keeping their start and end times. The
configurations in Trighti would then be “concatenated” to some configurations
in Tleft that are “compatible” with each other. These merged configurations

Non-preemptive Scheduling in a Smart Grid Model 27

b

a

c

d

e

f

g

h

i

j

k

b

d e

g f

h

k

i

j

c

a

a b b c d b d e f g b e h b e i j b j k

Fig. 1 The figure on the left is a set of jobs, where the horizontal line segments are the
feasible time intervals of jobs and the vertical lines are boundaries of windows. The figure on
the right is an interval graph of the corresponding job set. The figure at the bottom is a set
of all the maximal cliques in the interval graph.

will be filtered to remove the non-optimal ones. The remaining configurations
will become the new Tleft for the next window. To describe the details of the
algorithm, we explain several notions below. We denote by Dleft the union of the
windows corresponding to Tleft. More formally, in the i-th stage, Dleft = ∪j<iDj .
We use Tright to denote Trighti when the context is clear.

Configurations. A configuration Fi(J) of job J in window Di is an execu-
tion segment, denoted by [sti(J), eti(J)) contained completely in Di. That is,
sti(J) ∈ {bi, bi+1, · · · , bi+1−1} and eti(J) ∈ {bi+1, bi+2, · · · , bi+1}. We also
deal with the special cases where jobs are finished before Di or started after Di

by setting the execution segment [bi−1, bi) or [bi+1, bi+1+1), respectively. Also,
setting the execution segment as [bi − 1, bi+1 + 1) means J starts execution
before Di, crosses the whole window Di and ends execution after Di. We say
that the job J is executed in Di if sti(J) ∈ [bi, bi+1) and eti(J) ∈ (bi, bi+1]. For
a collection C of jobs, we use Fi(C) to denote the set of configurations of all
jobs in C and Fleft(J) and Fleft(C) for the counterparts corresponding to Tleft.
The cost of Fi(C) is the cost corresponding to the execution segments in Fi(C).
That is, cost(Fi(C)) =

∑
t∈Di(

∑
J∈C:t∈Fi(J) h(J))α.

Validity. A configuration Fi(J) is invalid if one of the following condi-
tions holds: (i) sti(J) ≥ eti(J); (ii) eti(J) > sti(J) + w(J) meaning that
the length of execution segment of J is larger than the width of J ; (iii)
((eti(J)− sti(J)) < min{w(J), bi+1 − bi}) ∧ (sti(J) ≥ bi) ∧ (eti(J) ≤ bi+1)
meaning that the length of execution segment of J is strictly shorter than the
width of J and the width of the window, which is not acceptable since preemp-
tion is not allowed; (iv) (sti(J) < r(J))∧(sti(J) < bi+1) meaning that the start
time of J is earlier than the release time of J ; (v) (eti(J) > d(J))∧(eti(J) > bi)
meaning that the end time of J exceeds the deadline of J . For Fleft(J), the
validity is defined on the boundaries b1 (instead of bi) and bi+1. For Tleft,

28 Fu-Hong Liu et al.

Fleft(J) is also invalid if stleft(J) = b1 − 1 since there is no window on the left
of Dleft. Similarly, Fk(J) is invalid if etk(J) = bk+1 + 1. A configuration Fi(C)
is invalid if there exists J ∈ C such that Fi(J) is invalid.

Compatibility. For job J , the two configurations Fleft(J) and Fi(J) are
compatible if (i) J is executed in Dleft according to Fleft(J) and J is executed
before Di according to Fi(J); (ii) J starts execution in Dleft and ends execution
after Dleft according to Fleft(J) and J starts execution before Di and ends
execution either in Di or after Di according to Fi(J); (iii) J is executed
completely after Dleft according to Fleft(J) and J does not start before Di

according to Fi(J).
Concatenating configurations. To concatenate two configurations Fleft(J)

and Fi(J), we create a new Fleft(J) by the following setting based on the three
types of compatible configurations described in the previous paragraph: for
type (i), stleft(J) and etleft(J) stay unchanged; for type (ii), stleft(J) leaves
unchanged and set etleft(J)← eti(J); and for type (iii), set stleft(J)← sti(J)
and etleft(J)← eti(J). Concatenating Fleft(C) and Fi(C) is to concatenate the
configurations of each job in C. The corresponding cost is simply adding the
cost of the two configurations.

Uncertainty and equivalence. A configuration Fi(J) is uncertain if
eti(J) = bi+1 + 1 meaning that the end time of J is not determined yet and we
are not sure at the i-th stage whether Fi(J) will be valid after concatenating
Fi(J) and Fi+1(J). Two configurations Fi(C) and F ′i (C) are equivalent with
respect to uncertain jobs if (i) Fi(J) is uncertain if and only if F ′i (J) is uncertain
for all jobs J ∈ C; and (ii) the start time of Fi(J) is equal to the start time
of F ′i (J) for all uncertain configuration Fi(J) and J ∈ C. That is, we only
consider the differences among the start times of those jobs with uncertain
configurations when we distinguish two configurations of a set of jobs.

6.1.3 An algorithm with three parameters

Algorithm E. The algorithm consists of three components: ListConfigurations,
ConcatenateTables and FilterTable. In the algorithm, we first transform the
input job set J to an interval graph and obtain the maximal cliques Ci for
1 ≤ i ≤ k and the corresponding windows Di. We start with Tleft containing
the only configurations which sets st0(J) = b1 and et0(J) = b1 +1 for all jobs J .
That is, the configuration treats all the jobs to be not yet executed. Then we
visit the windows from the left to the right.
ListConfigurations: For window Di and jobs in Ci, we construct Tright
storing all configurations of J ∈ Ci. We enumerate all sti(J) ∈ [bi, bi+1) and
eti(J) ∈ (bi, bi+1] for each job J ∈ Ci, list all the combinations of all the jobs J
with all of its start times and end times and store the results in Tright in the
way that one row is for one configuration Fi(Ci). In other words, Tright stores
all the combinations of execution segments in Di for all jobs J ∈ Ci. We also
list the configurations indicating the job being executed before or after Di.
For each configuration Fi(Ci), we also store its cost contribution cost(Fi(Ci))
together. We also check each of the configurations and delete the invalid ones.

Non-preemptive Scheduling in a Smart Grid Model 29

ConcatenateTables: We then concatenate compatible configurations in Tleft
and Tright. The resulting table is the new Tleft. More specifically, for each
configuration Fleft(C) in Tleft and each configuration Fright(C) in Tright, we
concatenate Fleft(C) and Fright(C) if they are compatible and store the result
to a new row in Tleft. We also check each of the configurations in the new Tleft
and delete those invalid ones.
FilterTable: After concatenation, we filter non-optimal configurations. We
select only one representative for the configurations in Tleft with equivalence
relation. More precisely, we only leave the configuration with the lowest cost
(choosing anyone to break tie if any) among equivalent configurations. In the
current Tleft, no two configurations are equivalent with respect to uncertain
jobs.

After processing all windows, the only configuration in the final Tleft is
returned as the solution. Algorithm 1 is the pseudocode of this algorithm.

Algorithm 1 The fixed parameter algorithm E
Input: a set of job J
Output: an optimal configuration of J
G← the interval graph transformed from J
{Ci}ki=1 ← the maximal cliques obtained from the consecutive clique arrangement of G

{bi}k+1
i=1 ← the boundaries where

bi = min{t | t = r(J) and J ∈ Ci \ (∪i−1
s=1Cs)} and

bk+1 = max{d(J) | J ∈ J}
{Di}ki=1 ← the windows where Di is bounded by bi (inclusively) and bi+1 (exclusively)
Tleft ← a configuration that labels all jobs J ∈ J to be not yet executed
for i from 1 to k do

Tright ← ListConfigurations(Di, Ci)
Tleft ← ConcatenateTables(Tleft, Tright)
Tleft ← FilterTable(Tleft)

return any configuration in Tleft

Lemma 16 Algorithm E outputs an optimal solution.

Proof In each stage, we list all possible configurations. A configuration is
deleted only when it is invalid or it is equivalent with respect to uncertain jobs
to another configuration with lower cost. An invalid configuration cannot be
optimal since either it is not executed within its feasible interval (invalidity
condition (i), (iv) and (v)), it has an execution interval longer than its width
(invalidity condition (iii)) or it is preempted (invalidity condition (iii)).

In the rest of the proof we focus on the other case, where a configuration is
equivalent with respect to uncertain jobs to another configuration with lower
cost. Given two equivalent with respect to uncertain jobs configurations Fleft(C)
and F ′left(C) with cost(Fleft(C)) < cost(F ′left(C)), we show that F ′left(C) cannot
be optimal. Suppose there is an optimal solution F ∗ containing F ′left(C), which
means each execution segment F ′left(J) in F ′left(C) is completely contained by
the corresponding execution interval of J in F ∗. Since Fleft(C) and F ′left(C)
are equivalent with respect to uncertain jobs, the start times of J are the same

30 Fu-Hong Liu et al.

in the two configurations for all uncertain jobs J . In Dleft, this means the
uncertain jobs do not make the costs of the two configurations to be different
and the jobs Jc that are not uncertain do. Note that Jc consists of the jobs with
their end times being determined. This means we can replace the configurations
of Jc in F ′left(C) by the configurations of Jc in Fleft(C) and this action will
not affect the procedures in the algorithm thereafter. However, this also results
in a solution of lower cost and contradicts the assumption that F ∗ is optimal.
Thus F ′left(C) cannot be optimal. Therefore, none of the deleted configuration
can be part of an optimal schedule. That is, no optimal schedule would be
removed through out the whole process. ut

Let n be the number of jobs, wmax be the maximum width of jobs, m be
the maximum size of cliques, Dmax be the maximum length of windows and k
be the number of windows. We analyze in the following the time complexity of
Algorithm E . We first compute the time complexities for the three components
of the algorithm and then compute the total time complexity.

Lemma 17 The running time of ListConfigurations in Algorithm E is O((Dmax+
1)2m+1 · n).

Proof For ListConfigurations, there are O((Dmax + 1)2m) configurations in the
output table Tright, since there are at most Dmax + 1 possible start times and
end times respectively and at most m jobs that should be considered in the
current window. For each configuration, it takes O(n) time for construction and
validity checking. It also takes O(nDmax) to compute the cost of a configuration.
So, the time complexity for ListConfigurations is

O((Dmax + 1)2m · nDmax) = O((Dmax + 1)2m+1 · n) . ut

Before computing the time complexities of the other components, we focus
on the number of configurations of Tleft at the end of each iteration in the
algorithm.

Lemma 18 There are O(wmax
m) configurations of Tleft at the end of each

iteration in Algorithm E.

Proof Since Tleft is filtered to have no equivalent with respect to uncertain jobs
configurations, the number of configurations can be upper bounded. For the
jobs with determined end times, their configurations are filtered to have at
most 1 configuration for each of the jobs. For the uncertain jobs, the number
of configurations depends on the number of different start times. There are
at most m uncertain jobs and for each of such the jobs, the number of start
times is at most wmax, otherwise the difference between the job’s start time
and end time is larger than its width, which is invalid. Note that the end times
of these jobs are all set to be later than the current window and will not affect
the number of configurations. So the number of configurations of Tleft at the
end of each iteration is O(wmax

m), which is the combination of configurations
of all the jobs. ut

Non-preemptive Scheduling in a Smart Grid Model 31

Lemma 19 The running time of ConcatenateTables in Algorithm E is O(wmax
m·

(Dmax + 1)2m · n).

Proof For ConcatenateTables, there are O(wmax
m ·(Dmax+1)2m) configurations

in the output table Tleft. This is because for each configuration in the input
Tleft (with O(wmax

m) configurations in total), we need to compare it with all
the configurations in Tright (with O((Dmax + 1)2m) configurations in total)
for compatibility checking. For each configuration, it takes O(n) time for
compatibility checking, concatenation and validity checking. Thus the time
complexity for ConcatenateTables is O(wmax

m · (Dmax + 1)2m · n). ut

Lemma 20 The running time of FilterTable in Algorithm E is O(wmax
2m ·

(Dmax + 1)4m · n).

Proof For FilterTable, the number of configurations in the output table Tleft is
at most the number of configurations output by ConcatenateTables. Also, the
number of equivalence groups is at most its number of configurations. Thus it
takes

O([wmax
m · (Dmax + 1)2m]2 · n) = O(wmax

2m · (Dmax + 1)4m · n)

time for classification, which is quadratic time in terms of the size of the
table and O(n) time for each configuration. In addition, it takes O(wmax

m ·
(Dmax + 1)2m) time for deletion. So the time complexity for FilterTable is
O(wmax

2m · (Dmax + 1)4m · n). ut

Since there are k iterations, the total time complexity is O(k · wmax
2m ·

(Dmax + 1)4m · n). Thus we obtain the following theorem.

Theorem 15 Algorithm E computes an optimal solution in O(k · wmax
2m ·

(Dmax + 1)4m · n) time, where n is the number of jobs, wmax is the maximum
width of jobs, m is the maximum size of cliques, Dmax is the maximum length
of windows and k is the number of windows.

There are O(n) windows. So Algorithm E also runs in f(wmax,m,Dmax) ·
O(n2) time where f(wmax,m,Dmax) = wmax

2m · (Dmax + 1)4m.

Corollary 6 GRID problem is fixed parameter tractable with respect to the
maximum width of jobs, the maximum number of overlapping feasible intervals
and the maximum length of windows.

6.1.4 An algorithm with two parameters

This subsubsection describes how to drop out the parameter Dmax in the
previous algorithm by generalizing the definitions of windows and boundaries.

At the beginning of Algorithm E , we transform a set of jobs to its cor-
responding interval graph and obtain a sequence of windows by the set of
maximal cliques in the interval graph. We require in the algorithm that all the

32 Fu-Hong Liu et al.

cliques should be maximal. However, the algorithm is still optimal and has
parameterized bound of time complexity if we divide a maximal clique into
multiple non-maximal cliques in a specific way. Given a maximal clique Ci and
its corresponding window Di, we divide Di into a set of contiguous windows
Di1 , Di2 , . . . such that Di = ∪jDij . Note that the set of jobs Cij corresponding
to Dij is a clique in the interval graph since Ci is a clique and Cij ⊆ Ci. In
this way, the number of jobs in the window Dij is still at most m. Furthermore,
since this window division does not affect the proof of Lemma 16, the algorithm
is still optimal. Thus we have the following observation.

Observation 16 If the windows {Di}ki=1 in Algorithm E cover all the jobs
and is contiguous and the jobs in each Di represents a clique (not necessarily
maximal) in the interval graph of the input jobs, then (1) the algorithm outputs
an optimal solution; (2) the number of jobs in each Di is at most the maximum
number of overlapping feasible intervals.

To drop out the parameter Dmax in the previous algorithm, we divide
windows into smaller ones such that the number of configurations in a window
can be bounded by wmax and m. In the new algorithm, we set the locations of
boundaries to the release times and deadlines of all the jobs and construct the
windows based on these boundaries. In this way, there is no job being released
or having its deadline in the middle of a window. In the worst case, all jobs
in a window are scheduled such that no job overlaps another and these jobs
consume at most m · wmax timeslots. Thus, the number of used timeslots is at
most m · wmax + 2(wmax − 1). In addition, we need to consider the cases that
a job’s start time is earlier than the window or its deadline is later than the
window. Both cases consume at most wmax−1 timeslots respectively. Note that
this new window division results in a set of windows whose sizes are smaller
than their original counterparts and thus Observation 16 can be applied. Based
on this new window division, we have the following algorithm.

Algorithm E+. This algorithm is similar to Algorithm E except the
definitions of boundaries and the component ListConfigurations. Given a set of
jobs J , the algorithm uses the set of boundaries {r(J) | J ∈ J }∪{d(J) | J ∈ J }
to construct the windows and obtain the corresponding cliques. Let k denote
the number of windows. There are k stages for the algorithm. At the i-th stage,
the algorithm runs ListConfigurations, ConcatenateTables and FilterTable
accordingly as Algorithm E does. It finally outputs the only configuration in
Tleft. For the component ListConfigurations, we only consider to schedule jobs
on the timeslots used instead of enumerating all possibilities of start times and
end times. The algorithm tries all m ·wmax timeslots (the worst case described
in the previous paragraph) as the start time of a job and also the 2(wmax − 1)
schedules that a job is partially executed in the window. In addition, the
component shall include the cases that either a job is completely executed
before the window, it is completely executed after the window or it crosses the
window.

Non-preemptive Scheduling in a Smart Grid Model 33

Algorithm 2 The fixed parameter algorithm E+
Input: a set of job J
Output: an optimal configuration of J
(bi)

k+1
i=1 ← the non-decreasing boundaries consisting of {r(J) | J ∈ J} ∪ {d(J) | J ∈ J}

{Di}ki=1 ← the windows where Di is bounded by bi (inclusively) and bi+1 (exclusively)

{Ci}ki=1 ← the collection of job sets where Ci is the set of jobs in Di
Tleft ← a configuration that labels all jobs J ∈ J to be not yet executed
for i from 1 to k do

Tright ← ListConfigurations(Di, Ci)
Tleft ← ConcatenateTables(Tleft, Tright)
Tleft ← FilterTable(Tleft)

return any configuration in Tleft

Theorem 17 Algorithm E+ computes an optimal solution in f(wmax,m) ·
O(n2) time, where n is the number of jobs, wmax is the maximum width of
jobs, m is the maximum size of cliques and f(wmax,m) = (4m · wmax

2)2m.

Proof As in the proof of Theorem 15, we compute the running time of the
three components and then the total time complexity. For the component
ListConfigurations, there are at most (m · wmax + 2(wmax − 1) + 3)m output
configurations, since there are at most m · wmax + 2(wmax − 1) + 3 schedules
for a job (see the description in the previous paragraph) and at most m jobs
in a window. It takes O(n(m · wmax + 2(wmax − 1))) ≤ O(n ·m · wmax) time
to compute the cost for each configuration. Thus the time complexity for
ListConfigurations is at most

O((m · wmax + 2(wmax − 1) + 3)m · (n ·m · wmax)) ≤ O((4m · wmax)m+1 · n) .

The time complexities of ConcatenateTables and FilterTable are similar to
that in the proof of Theorem 15 except the number of output configurations. For
ConcatenateTables and FilterTable, both the number of output configurations
are at most wmax

m·(4m·wmax)m. Thus their running time is at most O(wmax
2m·

(4m·wmax)2m ·n). Since there are k = O(n) iterations, the total time complexity
of the algorithm is at most

O((4m · wmax
2)2m · n2) = f(wmax,m) ·O(n2) . ut

Corollary 7 GRID problem is fixed parameter tractable with respect to the
maximum width of jobs and the maximum number of overlapping feasible
intervals.

6.2 An exact algorithm without parameter

For the case with unit width and arbitrary height jobs of GRID problem, we
can use Algorithm E to design an exact algorithm whose time complexity is
only measured in the size of the input.

Algorithm EV . In Algorithm E , we maintain two tables Tleft and Tright
for each stage. At each stage, the core operations are to construct Tright, merge

34 Fu-Hong Liu et al.

Tleft and Tright and filter the resulting table. In the case with unit width and
arbitrary height jobs, one may observe that the functionalities of these core
operations are not affected by the length of the windows representing Tleft
and Tright. For example, we can restrict the window length to be a constant
but not be related to the cliques in the interval graph and the algorithm still
works correctly. By fixing the lengths of all windows, a new exact algorithm is
obtained. Without loss of generality, we assume that the number of timeslots τ
is even. We enforce all windows to have length 2, i.e., we have τ/2 windows
in total. By this setting, the new algorithm runs in O((τ/2) · 42n · n) time
where n is the number of jobs. This is because the numbers of configurations
for ListConfigurations, ConcatenateTables and FilterTable are at most 4n, 42n

and 4n respectively. Consider a window with length 2, there are 4 possible
configurations for each job. We can schedule a job either at the first timeslot,
at the second timeslot, consider the job to be executed before the window or
be executed after the window. Note that the input size N of the problem is
3n log τ + n log hmax where hmax is the maximum height over all jobs. Since
log τ = O(N), the running time becomes 2O(N). Thus we have the following
theorem.

Algorithm 3 The fixed parameter algorithm EV
Input: a set of job J
Output: an optimal configuration of J
{bi}

τ/2+1
i=1 ← the boundaries {0, 2, 4, 6, . . . , τ}

{Di}
τ/2
i=1 ← the windows where Di is bounded by bi (inclusively) and bi+1 (exclusively)

{Ci}
τ/2
i=1 ← the collection of job sets where Ci is the set of jobs in Di

Tleft ← a configuration that labels all jobs J ∈ J to be not yet executed
for i from 1 to τ/2 do

Tright ← ListConfigurations(Di, Ci)
Tleft ← ConcatenateTables(Tleft, Tright)
Tleft ← FilterTable(Tleft)

return any configuration in Tleft

Theorem 18 There is an exact algorithm running in 2O(N) time for the GRID
problem with unit width and arbitrary height jobs where N is the length of the
input encoding.

Our algorithm is highly more efficient than a brute force search. Such a
naive method would enumerate all possible schedules and check if they are
feasible and optimal, which requires O(τnn) time. The running time can be
rewritten as 2O(Nn) or more clearly, (2O(N))n. The exact algorithm modified
from our fixed parameter algorithm indeed crosses out an ‘n’ in the exponent.

6.3 Lower bound on the running time

This subsection provides two lower bounds on the running time of the GRID
problem under a certain condition.

Non-preemptive Scheduling in a Smart Grid Model 35

Jansen et al. [23] derived several lower bounds for scheduling and packing
problems which can be used to develop lower bounds for our problem. Their
lower bounds assume Exponential Time Hypothesis (ETH) holds, which con-
jectures that there is a positive real ε such that 3-Sat cannot be decided in
time 2εnNO(1) where n is the number of variables in the formula and N is
the length of the input. A lower bound for other problems can be shown by
making use of strong reductions, i.e., reductions that increase the parameter at
most linearly. Through a sequence of strong reductions, they obtain two lower

bounds for Partition, 2o(n)NO(1) and 2o(
√
N) where n is the cardinality of

the given set and N is the length of the input. By a reduction from Partition,
we obtain the following theorem.

Theorem 19 There is a lower bound of 2o(
√
N) and a lower bound of 2o(n)NO(1)

on the running time for the GRID problem unless ETH fails, where n is the
number of jobs and N is the length of the input.

Proof We design a strong reduction from Partition to the decision version of
GRID problem with unit width and arbitrary height jobs. Recall that Partition
is a decision problem that is to decide if a given set S of integers can be
partitioned into two disjoint subsets such that the two subsets have equal sum.
The reduction works as follows. For each integer s ∈ S, we convert it to a job
J with r(J) = 0, d(J) = 2, w(J) = 1 and h(J) = 2s. We claim that S is a
partition if and only if the set of jobs J can be scheduled with cost at most
2(
∑
s∈S s)

α. Note that the specified cost appears when jobs can be put into two
timeslots with equal loads. By setting the length of the input as the parameter,
we observe that the parameter increases at most linearly from Partition to
our problem. (Note that a strong reduction from Partition to the case with
unit height and arbitrary width jobs can be done similarly and the results
also apply to that case.) Furthermore, we can choose the number of jobs as a
parameter of the problem. Note that the reduction above does not increase this
parameter with respect to the parameter of Partition, which is the number
of input integers. ut

7 Minimizing peak and non-preemptive machine minimization

In this section, we investigate extension of our solutions to other objectives and
other problems. In particular, we consider the objective of minimizing peak
electricity cost in the GRID model and we name it the GRIDpeak problem. This
objective is equivalent to a limit case of the GRID model where α approaches
to infinity. We also consider the classical non-preemptive machine minimization
problem denoted as MACHINE.

The GRIDpeak problem. The input is the same as the GRID problem. The
goal is to find a feasible non-preemptive schedule such that the maximum
load over the time horizon is minimized. GRIDpeak has been proven to be
NP-hard [44] and approximation algorithms are known for requests having

36 Fu-Hong Liu et al.

common feasible interval with approximation ratio 4 [50] and for requests
having agreeable deadlines with approximation ratio O(log wmax

wmin
) [50].

The MACHINE problem. The input is a set of jobs each with a processing
time p(J), release time r(J) and deadline d(J). Each job has to be scheduled
non-preemptively on one of the (infinite number of) machines. For each machine,
at most one job can be executed at any time. The goal is to minimize the
number of machines used.

The MACHINE problem can be seen as a special case of the GRIDpeak problem
where jobs have unit height. A lower bound of log3

wmax

wmin
on the competitive ratio

of any online algorithm has been shown in [41]. As a result, this lower bound
also applies to GRIDpeak. The author also provided an O(log pmax

pmin
)-competitive

algorithm for the MACHINE problem. Our results are similar to theirs. However,
for the case of tight jobs, their algorithm blows up 10 times the optimal cost,
whereas our algorithm blows up only 3 times the optimal cost.

In this section, we show that our online algorithm solves the GRIDpeak

problem with a best-possible competitive ratio in an asymptotical sense and
provide an alternative asymptotically best-possible competitive algorithm for
the MACHINE problem.

7.1 Online algorithms

In this section, we prove that the online algorithm G proposed in Section 4
is asymptotically best-optimal for the GRIDpeak problem. We first state two
properties, one for BKP ′ that G is based on and the other for the optimal
solution w.r.t. the peak objective. Let function peak(S) denote the maximum
load (cf. speed) of any schedule S, i.e., peak(S) = maxt `(S, t). Combining
Lemma 4 and the fact that BKP is e-competitive w.r.t. maximum speed [4],
we have the following observation.

Observation 20 The BKP ′ algorithm is e(1 + e)-competitive with respect to
maximum speed.

Proof By Lemma 4, for any integral t and 0 < ∆ < 1, `(BKP, t+∆) ≤ (1+e) ·
`(BKP, t). Also, by our modification for BKP ′, `(BKP ′, t)= (1 + e)`(BKP, t).
Hence, peak(BKP ′) ≤ (1 + e) · peak(BKP). ut

On the other hand, YDS guarantees that the maximum speed is mini-
mized [4]. Similar to Observation 1, YDS gives a lower bound for the GRIDpeak

problem.

Observation 21 Let OD and OG be the optimal schedule for the DVS and
GRIDpeak problem, respectively. Suppose a job set JG for the GRIDpeak problem
is given. Let JD denote the job set after converting JG into a job set for the
DVS problem. Then, peak(OD(JD)) ≤ peak(OG(JG)).

Non-preemptive Scheduling in a Smart Grid Model 37

Proof Since the DVS problem allows preemption while the GRIDpeak problem
does not, any feasible schedule of the GRIDpeak problem with input job set JG
can be transform to a feasible schedule SD of the DVS problem with the corre-
sponding job set JD. Hence, peak(OG(JG)) = peak(SD) ≥ peak(OD(JD)).

Recall that in Sections 3 and 4, we have presented three algorithms V,
UV and G for unit width jobs, uniform width jobs and arbitrary width jobs,
respectively. Here, we analyze their performance w.r.t. GRIDpeak. In summary,
we show that for GRIDpeak, we have

– V is 2(e+ e2)-competitive for uniform width job sets (Theorem 22);
– UV is (6(e+ e2) + 3)-competitive for unit width job sets (Theorem 23); and
– G is (18(e+ e2) + 9) · dlog wmax

wmin
e-competitive for arbitrary width job sets

(Theorem 24).

7.1.1 Unit width jobs.

Recall that for each timeslot t, V schedules jobs to start at t such that `(V, t)
is at least `(BKP ′, t) = (1 + e) · `(BKP, t) or until all available jobs have been
scheduled. We prove that although `(V, t) might be higher than `(BKP ′, t),
the peak of V is no more than 2(e+ e2) times of the peak of the optimal.

Theorem 22 For any job set J where each job has unit width, peak(V(J)) ≤
2(e+ e2) · peak(O(J)).

Proof Let hmax(V, t) be the maximum height of jobs scheduled at t by V; we
set hmax(V, t) = 0 if V assigns no job at t. We classify each timeslot t into two
types: (i) hmax(V, t) < `(BKP ′, t) and (ii) hmax(V, t) ≥ `(BKP ′, t). We denote
by I1 and I2 the union of all timeslots of Type (i) and (ii), respectively. (Notice
that I1 and I2 can be empty and the union of I1 and I2 covers the entire time
line.)

We first prove that for any job set J where for each job J ∈ J, w(J) = 1,
peak(V(J), I1) ≤ 2(e+ e2) · peak(O(J)) and peak(V(J), I2) ≤ 2 · peak(O(J)).
For every timeslot t ∈ I1, `(V, t) < `(BKP ′, t) + hmax(V, t) ≤ 2 · `(BKP ′, t) ≤
2(1 + e) · `(BKP, t). Hence, for any t ∈ I1, `(V, t) ≤ 2(1 + e) · `(BKP, t) ≤
2e(1 + e) · peak(O) by Observations 21 and 20.

For every timeslot t ∈ I2, `(V, t) < `(BKP ′, t) + hmax(V, t) ≤ 2 · hmax(V, t).
In the optimal schedule, the job with height hmax(V, t) has to be scheduled
somewhere or the schedule is not feasible, so peak(O) ≥ hmax(V, t). Hence,
`(V, t) ≤ 2hmax(V, t) ≤ 2 · peak(O) for any t ∈ I2.

Since I1 and I2 are disjoiont, peak(V) = max{peak(V, I1),peak(V, I2)}.
Therefore, we have peak(V) = max{2(e+ e2) · peak(O), 2 · peak(O)} = 2(e+
e2) · peak(O). ut

7.1.2 Uniform-width jobs.

In this subsubsection, we consider the jobs with uniform width w. Recall that
in the algorithm for GRID for handling uniform-width jobs, we classify jobs

38 Fu-Hong Liu et al.

into tight and loose jobs. Let J ∗ denote the input set with uniform width jobs,
J ∗T and J ∗L denote the set of tight jobs and loose jobs in J ∗, respectively. We
first prove that any feasible schedule for tight jobs is 3-competitive due to the
“inflexibility” (Lemma 21). Then, we prove that UV is O(1)-competitive for
loose jobs (Lemma 22).

Lemma 21 For any feasible schedule S, peak(S(J ∗T)) ≤ 3 · peak(O(J ∗)).

Proof We prove it by showing that even if the execution intervals of jobs are
considered as the whole feasible interval, the peak is not too much larger than
the peak in the optimal schedule.

We first extend jobs J ∈ J ∗T to J+ as follows: r(J+) = r(J), d(J+) = d(J),
w(J+) = d(J) − r(J) and h(J+) = h(J). That is, every job has its width as
the length of its feasible interval. We denote the resulting job set by J +. Since
each job in J + are not shiftable, there is only one feasible schedule for J +

and it is optimal. It is clear that peak(S(J ∗T)) ≤ peak(O(J +)).
Similar to Lemma 7 (i), we bound the load at time t of O(J +) by the

total load of a constant number of timeslots in S(J ∗T). Consider the job J
corresponding to J+, the execution interval of J in any feasible schedule must
contain either timeslot t− (w− 1), t+ (w− 1) or t. Hence, we can upper bound
the load at time t in O(J +) as follows: `(O(J +), t) ≤ `(O(J ∗T), t− (w − 1)) +
`(O(J ∗T), t+ (w − 1)) + `(O(J ∗T), t). Hence, peak(S(J ∗T)) ≤ peak(O(J +)) ≤
3 · peak(O(J ∗L)). ut

Lemma 22 For sets of loose jobs J ∗L where jobs have uniform width, peak(UV(J ∗L))
≤ 6(e+ e2) · peak(O(J ∗)).

Proof According to UV, the job set J ∗L is transformed into a job set J ′
by AlignFI and V is run on J ′. Then, the schedule V(J ′) is transformed
to a schedule of J ∗L by Transformation FreeSch. Hence, by Theorem 22,
peak(UV(J ∗L)) ≤ peak(V(J ′)) ≤ 2(e+ e2) · peak(O(J ′)).

Given an optimal schedule of J ∗L , O(J ∗L), let S′ be the resulting schedule by
running Transformation AlignSch on J ∗L . By Observation 4 (iii), the load at
any time in the schedule S′ is at most the sum of the load of the schedule O(J ∗L)
at three timeslots. Therefore, peak(O(J ′)) ≤ peak(S′) ≤ 3 · peak(O(J ∗L)).

In summary, peak(UV(J ∗L)) ≤ 2(e + e2) · peak(O(J ′)) ≤ 6(e + e2) ·
peak(O(J ∗L)). ut

Theorem 23 For any jobs set J ∗ where jobs have uniform width, peak(UV(J ∗))
≤ (6(e+ e2) + 3) · peak(O(J ∗)).

Proof By definition, peak(UV(J ∗)) ≤ peak(UV(J ∗T)) + peak(UV(J ∗L)). By
Lemma 21 and 22, peak(UV(J ∗)) ≤ 3·peak(O(J ∗))+6(e+e2)·peak(O(J ∗)) =
(6(e+ e2) + 3) · peak(O(J ∗)). ut

7.1.3 Arbitrary width jobs.

Finally, we bound the competitive ratio of G.

Non-preemptive Scheduling in a Smart Grid Model 39

Theorem 24 For any job set J, peak(G(J)) ≤ (18(e+ e2) + 9) · dlog wmax

wmin
e ·

peak(O(J)).

Proof Recall that G(J) partitions jobs into subsets Jp such that in each Jp
jobs have bounded widths. For each Jp, it is transformed into J ∗p by Convert
and UV is applied independently on each class. Then, UV(J ∗p) is trans-
formed into a schedule for Jp by Transformation ShrinkSch. By Obser-
vation 9, `(G(Jp), t) ≤ `(UV(J ∗p), t). Hence, `(G(J), t) =

∑
p `(G(Jp), t) ≤∑

p `(UV(J ∗p), t) for all t.
For any timeslot t, `(G(J), t) ≤

∑
p `(UV(J ∗p), t) ≤

∑
p peak(UV(J ∗p)). By

Theorem 23, we have peak(G(J)) ≤
∑
p (6(e+ e2) + 3) · peak(O(J ∗p)).

Now we prove that peak(O(J ∗p)) ≤ 3 · peak(O(J)). Consider the optimal
schedule O(Jp), there exists schedule S(J ∗p) generated by Transformation
RelaxSch where J ∗p is the job set corresponding to Jp generated by Convert.
By Lemma 8, the load of any timeslot in S(J ∗p) is no more than the sum of
loads of three timeslots in O(Jp) and hence no more than three times the
peak in O(Jp). Therefore, peak(O(J ∗p)) ≤ peak(S(J ∗p)) ≤ 3 · peak(O(Jp)) ≤
3 · peak(O(J)).

In summary, we have peak(G(J)) ≤
∑
p (6(e+ e2) + 3) · peak(O(J ∗p)) ≤∑

p (6(e+ e2) + 3)·3·peak(O(J)) ≤ (18(e+ e2) + 9)·dlog wmax

wmin
e·peak(O(J)).ut

Since the MACHINE problem is a special case of the GRIDpeak problem
where jobs have uniform height, we have the following corollary:

Corollary 8 The algorithm G is (18(e+e2)+9)-competitive for the MACHINE
problem.

7.2 The interval graph approach on the GRIDpeak problem

In Subsection 6.1, we introduced an exact algorithm E using the linear clique
arrangement property of the interval graphs. The linear property of the con-
secutive clique arrangement of interval graphs gives a direction to design a
dynamic programming algorithm, which breaks down a problem into overlapped
subproblems until the subproblems are simple enough to be solved. In the
following of this section, we show that there is an exact algorithm Epeak for
solving the GRIDpeak problem by adapting E . In fact, Epeak is almost the same
as E except the cost entries in the DP table: in Epeak, each configuration is
associated with the highest load in the corresponding window. The following is
a formal description of Epeak, where the parts different from E are emphasized.

Algorithm Epeak for the GRIDpeak problem (also see Subsection 6.1).
The jobs are considered as time intervals and the time horizon is chopped into
“windows”. The algorithm visits all windows accordingly from the left to the
right. In Stage i, the i-th window is visited and the algorithm maintains a
candidate set of schedules for the visited windows that no optimal solution is
deleted from the set. In each Stage i, the algorithm consists of three procedures:
ListConfigurations, ConcatenateTables and FilterTable.

40 Fu-Hong Liu et al.

The ListConfigurations procedure lists all possible configurations (i.e.,
execution segments) of the jobs in Ci within Di. The invalid configurations
will be deleted. The valid configurations together with the peak load within Di

will be stored in a table.

The ConcatenateTables procedure concatenates the configurations in the
current window Di and the configurations in the windows which have been seen
so far. If the execution interval after concatenation is not valid, it is deleted
from the table. The peak load of the new configuration is simply the maximum
among the peaks of the two concatenated configurations.

The FilterTable procedure filters non-optimal configurations. The idea is,
given a configuration of the jobs in Ci, there must be a best decision of the jobs
in
⋃i−1
k=1 Ck \ Ci which has minimum peak load within the intervals [0, bi+1),

where bi+1 is the right boundary of the window Di. For each configuration, we
only keep the (partial) schedule with the minimum peak load.

After processing all the windows, the schedule with minimum peak load can
be found in the final table.

It can be seen that we list all possible configurations. A configuration is
deleted only when it is invalid or it is identical to another configuration with
lower peak. Hence in the end we get an optimal schedule. It also shows that the
GRIDpeak problem is fixed parameter tractable with respect to the maximum
width of jobs and the maximum number of overlapped feasible intervals and
the maximum length of windows.

Corollary 9 The GRIDpeak problem is fixed parameter tractable with respect
to the maximum width of jobs and the maximum number of overlapped feasible
intervals.

8 Conclusion

We develop the first online algorithm with polylog-competitive ratio and the
first FPT algorithms for non-preemptive smart grid scheduling problem in
general case. We also derive a matching lower bound for the competitive ratio.
Constant competitive online algorithms are presented for several special input
instances. We remark that recently another work [8] has studied the problem
with constant α and the authors show an O(αα)-competitive algorithm for
this case, matching our lower bound for constant α. In this case this algorithm
has better competitive ratio than our algorithm yet our algorithm is more
efficient as the scheduling decision of each job takes constant time whereas the
algorithm in [8] needs to enumerate all its possible start times and the latter
can be large for loose job with long feasible interval.

There are quite a few directions for extending the problem setting: different
cost functions perhaps to capture varying electricity cost over the time of day;
jobs with varying power requests during its execution (it is a constant value in
this paper); other objectives like response time.

Non-preemptive Scheduling in a Smart Grid Model 41

Acknowledgements The work is partially supported by Networks Sciences and Technolo-
gies, University of Liverpool. Hsiang-Hsuan Liu is partially supported by a studentship from
the University of Liverpool-National Tsing-Hua University Dual PhD programme.

References

1. Alamdari, S., Biedl, T., Chan, T.M., Grant, E., Jampani, K.R., Keshav, S., Lubiw, A.,
Pathak, V.: Smart-grid electricity allocation via strip packing with slicing. In: WADS,
pp. 25–36. Springer (2013)

2. Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)
3. Azar, Y.: On-line load balancing. In: Online Algorithms, pp. 178–195. Springer (1998)
4. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temperature. J.

ACM 54(1) (2007)
5. Bell, P.C., Wong, P.W.H.: Multiprocessor speed scaling for jobs with arbitrary sizes and

deadlines. J. Comb. Optim. 29(4), 739–749 (2015)
6. Burcea, M., Hon, W., Liu, H., Wong, P.W.H., Yau, D.K.Y.: Scheduling for electricity

cost in a smart grid. J. Scheduling 19(6), 687–699 (2016)
7. Caron, S., Kesidis, G.: Incentive-based energy consumption scheduling algorithms for

the smart grid. In: SmartGridComm, pp. 391–396. IEEE (2010)
8. Chau, V., Feng, S., Thang, N.K.: Competitive algorithms for demand response man-

agement in smart grid. In: M.A. Bender, M. Farach-Colton, M.A. Mosteiro (eds.)
LATIN 2018: Theoretical Informatics - 13th Latin American Symposium, Buenos
Aires, Argentina, April 16-19, 2018, Proceedings, Lecture Notes in Computer Science,
vol. 10807, pp. 303–316. Springer (2018). DOI 10.1007/978-3-319-77404-6\ 23. URL
https://doi.org/10.1007/978-3-319-77404-6_23

9. Chen, C., Nagananda, K.G., Xiong, G., Kishore, S., Snyder, L.V.: A communication-
based appliance scheduling scheme for consumer-premise energy management systems.
IEEE Trans. Smart Grid 4(1), 56–65 (2013)

10. Chen, L., Megow, N., Schewior, K.: An O(logm)-competitive algorithm for online
machine minimization. In: SODA, pp. 155–163. ACM (2016)

11. Chuzhoy, J., Guha, S., Khanna, S., Naor, J.S.: Machine minimization for scheduling jobs
with interval constraints. In: FOCS, pp. 81–90. IEEE (2004)

12. Cieliebak, M., Erlebach, T., Hennecke, F., Weber, B., Widmayer, P.: Scheduling with
release times and deadlines on a minimum number of machines. In: IFIP TCS, pp.
209–222. Springer (2004)

13. Djurović, M.Ž., Milačić, A., Kršulja, M.: A simplified model of quadratic cost function
for thermal generators. In: DAAAM, pp. 25–28. DA (2012)

14. European Commission: Europen smartgrids technology platform. ftp://ftp.cordis.

europa.eu/pub/fp7/energy/docs/smartgrids_en.pdf (2006)
15. Fang, K., Uhan, N.A., Zhao, F., Sutherland, J.W.: Scheduling on a single machine under

time-of-use electricity tariffs. Annals OR 238(1-2), 199–227 (2016)
16. Fang, X., Misra, S., Xue, G., Yang, D.: Smart grid – the new and improved power grid:

A survey. IEEE Communications Surveys and Tutorials 14(4), 944–980 (2012)
17. Farhangi, H.: The path of the smart grid. IEEE Power and Energy Mag. 8(1), 18–28

(2010)
18. Feng, X., Xu, Y., Zheng, F.: Online scheduling for electricity cost in smart grid. In:

COCOA, pp. 783–793. Springer (2015)
19. Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pacific Journal of

Mathematics 15(3), 835–855 (1965)
20. Halin, R.: Some remarks on interval graphs. Combinatorica 2(3), 297–304 (1982)
21. Hamilton, K., Gulhar, N.: Taking demand response to the next level. IEEE Power and

Energy Mag. 8(3), 60–65 (2010)
22. Ipakchi, A., Albuyeh, F.: Grid of the future. IEEE Power & Energy Mag. 7(2), 52–62

(2009)
23. Jansen, K., Land, F., Land, K.: Bounding the running time of algorithms for scheduling

and packing problems. SIAM J. Discrete Math. 30(1), 343–366 (2016)

42 Fu-Hong Liu et al.

24. Kannberg, L., Chassin, D., DeSteese, J., Hauser, S., Kintner-Meyer, M., (U.S.), P.N.N.L.,
of Energy, U.S.D.: GridWise: The Benefits of a Transformed Energy System. Pacific
Northwest National Laboratory (2003)

25. Karbasioun, M.M., Shaikhet, G., Kranakis, E., Lambadaris, I.: Power strip packing of
malleable demands in smart grid. In: ICC, pp. 4261–4265. IEEE (2013)

26. Koutsopoulos, I., Tassiulas, L.: Control and optimization meet the smart power grid:
Scheduling of power demands for optimal energy management. In: e-Energy, pp. 41–50.
ACM (2011)

27. Krishnan, R.: Meters of tomorrow [in my view]. IEEE Power and Energy Mag. 6(2),
96–94 (2008)

28. Li, H., Qiu, R.C.: Need-based communication for smart grid: When to inquire power
price? In: GLOBECOM, pp. 1–5. IEEE (2010)

29. Li, Z., Liang, Q.: Performance analysis of multiuser selection scheme in dynamic home
area networks for smart grid communications. IEEE Trans. Smart Grid 4(1), 13–20
(2013)

30. Liu, F., Liu, H., Wong, P.W.H.: Optimal nonpreemptive scheduling in a smart grid
model. In: ISAAC, pp. 53:1–53:13. LIPIcs (2016)

31. Llaria, A., Jiménez, J., Curea, O.: Study on communication technologies for the optimal
operation of smart grids. Trans. Emerging Telecommunications Technologies 25(10),
1009–1019 (2014)

32. Lockheed Martin: SEELoadTM Solution. http://www.lockheedmartin.co.uk/us/

products/energy-solutions/seesuite/seeload.html
33. Logenthiran, T., Srinivasan, D., Shun, T.Z.: Demand side management in smart grid

using heuristic optimization. IEEE Trans. Smart Grid 3(3), 1244–1252 (2012)
34. Lui, T., Stirling, W., Marcy, H.: Get smart. IEEE Power & Energy Mag. 8(3), 66–78

(2010)
35. Ma, C.Y.T., Yau, D.K.Y., Rao, N.S.V.: Scalable solutions of markov games for smart-grid

infrastructure protection. IEEE Trans. Smart Grid 4(1), 47–55 (2013)
36. Maharjan, S., Zhu, Q., Zhang, Y., Gjessing, S., Basar, T.: Dependable demand response

management in the smart grid: A stackelberg game approach. IEEE Trans. Smart Grid
4(1), 120–132 (2013)

37. Masters, G.M.: Renewable and efficient electric power systems. John Wiley & Sons
(2013)

38. Mohsenian-Rad, A.H., Wong, V., Jatskevich, J., Schober, R.: Optimal and autonomous
incentive-based energy consumption scheduling algorithm for smart grid. In: ISGT, pp.
1–6. IEEE (2010)

39. Mohsenian-Rad, A.H., Wong, V.W., Jatskevich, J., Schober, R., Leon-Garcia, A.: Au-
tonomous demand-side management based on game-theoretic energy consumption
scheduling for the future smart grid. IEEE Trans. Smart Grid 1(3), 320–331 (2010)

40. REGEN Energy Inc: ENVIROGRIDTM SMART GRID BUNDLE. http://www.

regenenergy.com/press/announcing-the-envirogrid-smart-grid-bundle/
41. Saha, B.: Renting a cloud. In: FSTTCS, pp. 437–448. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik (2013)
42. Salinas, S., Li, M., Li, P.: Multi-objective optimal energy consumption scheduling in

smart grids. IEEE Trans. Smart Grid 4(1), 341–348 (2013)
43. Samadi, P., Mohsenian-Rad, A.H., Schober, R., Wong, V.W., Jatskevich, J.: Optimal real-

time pricing algorithm based on utility maximization for smart grid. In: SmartGridComm,
pp. 415–420. IEEE (2010)

44. Tang, S., Huang, Q., Li, X.Y., Wu, D.: Smoothing the energy consumption: Peak demand
reduction in smart grid. In: INFOCOM, pp. 1133–1141. IEEE (2013)

45. Toronto Hydro Corporation: Peaksaver Program. http://www.peaksaver.com/

peaksaver_THESL.html
46. UK Department of Energy & Climate Change: Smart grid: A more

energy-efficient electricity supply for the UK. https://www.gov.uk/

smart-grid-a-more-energy-efficient-electricity-supply-for-the-uk (2013)
47. US Department of Energy: The Smart Grid: An Introduction. http://www.oe.energy.

gov/SmartGridIntroduction.htm (2009)
48. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In: FOCS,

pp. 374–382. IEEE (1995)

Non-preemptive Scheduling in a Smart Grid Model 43

49. Yaw, S., Mumey, B.: An exact algorithm for non-preemptive peak demand job scheduling.
In: COCOA, pp. 3–12. Springer (2014)

50. Yaw, S., Mumey, B., McDonald, E., Lemke, J.: Peak demand scheduling in the smart
grid. In: SmartGridComm, pp. 770–775. IEEE (2014)

51. Zpryme Research & Consulting: Power systems of the future: The case for energy storage,
distributed generation, and microgrids. http://smartgrid.ieee.org/images/features/
smart_grid_survey.pdf (2012)

