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Abstract. We study an offline scheduling problem arising in demand
response management in smart grid. Consumers send in power requests
with a flexible set of timeslots during which their requests can be served.
For example, a consumer may request the dishwasher to operate for one
hour during the periods 8am to 11am or 2pm to 4pm. The grid controller,
upon receiving power requests, schedules each request within the spec-
ified duration. The electricity cost is measured by a convex function of
the load in each timeslot. The objective of the problem is to schedule all
requests with the minimum total electricity cost. As a first attempt, we
consider a special case in which the power requirement and the duration
a request needs service are both unit-size. For this problem, we present
a polynomial time offline algorithm that gives an optimal solution and
show that the time complexity can be further improved if the given set
of timeslots is a contiguous interval.

1 Introduction

We study an offline scheduling problem arising in “demand response manage-
ment” in smart grid [7, 9, 18]. The electrical smart grid is one of the major
challenges in the 21st century [6, 28, 29]. The smart grid uses information and
communication technologies in an automated fashion to improve the efficiency
and reliability of production and distribution of electricity. Peak demand hours
happen only for a short duration, yet makes existing electrical grid less efficient.
It has been noted in [4] that in the US power grid, 10% of all generation assets and
25% of distribution infrastructure are required for less than 400 hours per year,
roughly 5% of the time [29]. Demand response management attempts to over-
come this problem by shifting users’ demand to off-peak hours in order to reduce
peak load [3, 12, 17, 20, 23, 25]. This is enabled technologically by the advances
in smart meters [13] and integrated communication. Research initiatives in the
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area include GridWise [10], the SeeLoadTM system [16], EnviroGridTM [24], peak
demand [27], etc.

The smart grid operator and consumers communicate through smart meter-
ing devices. We assume that time is divided into integral timeslots. A consumer
sends in a power request with the power requirement, required duration of ser-
vice, and the time intervals that this request can be served (giving some flex-
ibility). For example, a consumer may want the dishwasher to operate for one
hour during the periods from 8am to 11am or 2pm to 4pm. The grid operator
upon receiving all requests has to schedule them in their respective time inter-
vals using the minimum energy cost. The load of the grid at each timeslot is the
sum of the power requirements of all requests allocated to that timeslot. The
energy cost is modeled by a convex function on the load. As a first attempt to
the problem, we consider in this paper the case that the power requirement and
the duration of service requested are both unit-size, a request can specify several
intervals during which the request can be served, and the power cost function is
any convex function.

Previous work. Koutsopoulos and Tassiulas [12] has formulated a simi-
lar problem to our problem where the cost function is piecewise linear. They
show that the problem is NP-hard, and their proof can be adapted to show the
NP-hardness of the general problem studied in this paper for which jobs have ar-
bitrary duration or arbitrary power requirement (see elaboration in Section 6).
They also presented a fractional solution and some online algorithms. Salinas
et al. [25] considered a multi-objective problem to minimize energy consump-
tion cost and maximize some utility. A closely related problem is to manage the
load by changing the price of electricity over time, which has been considered
in a game theoretic manner [3, 20, 23]. Heuristics have also been developed for
demand side management [17]. Other aspects of smart grid have also been con-
sidered, e.g., communication [4, 14, 15], security [19]. Reviews of smart grid can
be found in [7, 9, 18].

The combinatorial problem we defined in this paper has analogy to the tra-
ditional load balancing problem [2] in which the machines are like our timeslots
and the jobs are like our power requests. The main difference is that the aim of
load balancing is usually to minimize the maximum load of the machines. An-
other related problem is deadline scheduling with speed scaling [1, 31] in which
the cost function is also a convex function, nevertheless a job can be served us-
ing varying speed of the processor. Two problems that are more closely related
are the minimum cost maximum flow problem [5] with convex functions [21, 26]
when we have unit power requirement and unit duration for each job; and the
maximum-cardinality minimum-weight matching on a bipartite graph. Yet, ex-
isting algorithms for the problem cater for more general input [8, 11, 22, 30]. They
are more powerful and have higher time complexity than necessary to solve our
problem.

Our contributions. In this paper we study an optimization problem in
demand response management in which requests have unit power requirement,
unit duration, arbitrary timeslots that the jobs can be served, and the cost
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function is a general convex function. We propose a polynomial time offline
algorithm that gives an optimal solution. We show that the time complexity of
the algorithm is O(n2τ), where n is the number of jobs and τ is the number of
timeslots. We further show that if the feasible timeslots for each job to be served
forms a contiguous interval, we can improve the time complexity to O(nτ log n).

Technically speaking, we use a notion of “feasible graph” to represent al-
ternative assignments. After scheduling a job, we can look for improvement via
this feasible graph. We show that we can maintain optimality each time a job is
scheduled. For the analysis, we compare our schedule with an optimal schedule
via the notion of “agreement graph”, which captures the difference of our sched-
ule and an optimal schedule. We then show that we can transform our schedule
stepwise to improve the agreement with the optimal schedule, without increasing
the cost, thus proving the optimality of our algorithm.

Organization of the paper. Section 2 gives the definition of the problem
and notions required. Section 3 describes our algorithm and its properties. In
Section 4, we prove that our algorithm gives an optimal solution, while in Section
5 we prove its time complexity. We give some concluding remarks in Section 6.

2 Preliminaries

We consider an offline scheduling problem where the input consists of a set of
unit-sized jobs J = {J1, J2, . . . , Jn}. The time is divided into integral timeslots
T = {1, 2, 3, . . . , τ} and each job Ji ∈ J is associated with a set of feasible
timeslots Ii ⊆ T , in which it can be scheduled. In this model, each job Ji must
be assigned to exactly one feasible timeslot from Ii. The load `(t) of a timeslot
t represents the total number of jobs assigned to the timeslot. We consider a
general convex cost function f that measures the cost used in each timeslot t
based on the load at t. The total cost used is the sum of cost over time. Over all
timeslots this is

∑
t∈T f(`(t)). The objective is to find an assignment of all jobs

in J to feasible timeslots such that the total cost is minimized. We first describe
the notions required for discussion.

Feasible graph. Given a particular job assignment A, we define a feasible
graph G which is a directed multi-graph that shows the potential allocation of
each job in alternative assignments. In G each timeslot is represented by a vertex.
If job Ji is assigned to timeslot r in A, then for all w ∈ Ii\{r} we add a directed
edge (r, w) with Ji as its label.

Legal-path in a feasible graph. A path (t, t′) in a feasible graph G is a
legal-path if and only if the load of the starting point t is at least 2 more than the
load of the ending point t′, i.e., `(t)− `(t′) ≥ 2. Note that if there is a legal-path
in the feasible graph G, the corresponding job assignment is not optimal.

Agreement graph. We define an agreement graph Ga(A,A∗) which is a di-
rected multi-graph that measures the difference between a job assignment solu-
tion A and an optimal assignment A∗. In Ga(A,A∗) each timeslot is represented
by a vertex. For each job Ji such that Ji is assigned to different timeslots in
A and A∗, we add an arc from t to t′, where t and t′ are the timeslots that Ji
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(a) The feasible graph G
after adding job J1 to t1.
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(b) The feasible graph G
after adding job J2 to t2.
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(c) Left: The feasible graph immediately after J3 is added to slot t1. The path (t1, t3)
is a legal-path and we shift by moving J1 to t2 and J2 to t3. Right: The feasible graph
after the shift, with no more legal-paths.

Fig. 1: Let J = {J1, J2, J3}, T = {t1, t2, t3}, I1 = {t1, t2}, I2 = {t1, t2, t3}, and
I3 = {t1}. The number inside the vertices denotes their load. Suppose the algorithm
schedules the jobs in order of their indices. (a) and (b) Jobs J1 and J2 are arbitrarily
assigned their feasible minimum load slots. (c) A legal-path and the corresponding shift
after assigning J3.

is assigned to by A and A∗, respectively. The arc (t, t′) is labelled by the tuple
(Ji, +/−/=). The second value in the tuple is “+” or “−” if moving job Ji
from timeslot t to timeslot t′ causes the total cost of assignment A to increase
or decrease, respectively. The value is “=” if moving the job does not cause any
change in the total cost of assignment A.

Observation 1. By moving Ji from t1 to t2 the overall energy cost (i) decreases
if `(t1) > `(t2) + 1, (ii) remains the same if `(t1) = `(t2) + 1, and (iii) increases
if `(t1) < `(t2) + 1.

Shifting. By Observation 1, existence of a legal-path implies that the as-
signment is not optimal and we can execute a shift and decrease the total cost
of the assignment. Given a legal-path P , a shift moves each job corresponding to
an arc e along P from the original assigned timeslot to the timeslot determined
by e. More precisely, if the path contains an arc (r, w) with J as its label, then
job J is moved from r to w. It is easy to see from Observation 1 that such a
shift decreases the cost, implying that the original assignment is not optimal.

On the other hand, when there is no legal-path, it is not as straightforward
to show that the assignment is optimal. Nevertheless, we will prove this is the
case in Lemma 6.

3 Our Algorithm

The algorithm. We propose a polynomial time offline algorithm that minimizes
the total cost (Figure 1 shows an illustration). The algorithm arranges the jobs
in J in arbitrary order, and runs in stages. At any Stage i, we have three steps:
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(1) Assign Ji to a feasible timeslot with minimum load, breaking ties arbitrarily;
(2) Suppose Ji is assigned to timeslot t. We update the feasible graph G to
reflect this assignment in the following way. If applicable, we add arcs from t
labelled by Ji to any other feasible timeslots (vertices) of Ji;
(3) If there exists any legal-path in G from t to any other vertex t′, the algorithm
executes a shift along the legal-path (see Section 2). At the end, the algorithm
updates the feasible graph G to reflect this shift.

Invariants. In the next section, we show that the algorithm maintains the
following two invariants. At the end of each stage:
(I1) There is no legal-path in the resulting feasible graph;
(I2) The assignment is optimal for the jobs considered so far.

Additional notations. To ease the discussion, in the remainder of the pa-
per, we use `′i(t) to represent the load of timeslot t after adding Ji (but before
the shift), `i(t) to represent the load of timeslot t at the end of Stage i, and
`′i(s, t) and `i(s, t) to represent `′i(s)− `′i(t) and `i(s)− `i(t), respectively.

4 Correctness

Theorem 1. Our algorithm finds an optimal assignment.

Framework. Consider any stage. After Step (2), there may be a legal-path
in the resulting feasible graph G. In Lemma 1, we show that if a legal-path exists
in G after adding Ji to timeslot r, there is at least one legal-path starting from r.
Suppose the algorithm chooses the legal-path (r, t) and executes the shift along
this path in Step (3). In Lemma 3, we show that if there is no legal-path in the
feasible graph G before adding a job, then after adding a job and executing the
corresponding shift by the algorithm, the resulting feasible graph has no legal-
paths. Therefore, Step (3) of the algorithm needs to be applied only once and
there will be no legal-path left, implying that Invariant (I1) holds. In Lemma 6,
we show that if there is no legal-path in a feasible graph G, the corresponding
assignment is optimal and hence Invariant (I2) holds.

Proof of Invariant (I1)

Lemma 1. Suppose that before adding job Ji to timeslot r the feasible graph G
has no legal-path. If there is any legal-path after adding Ji, there is at least one
legal-path starting from r.

Proof. Assume that there is a legal-path (s, t) after assigning Ji to timeslot r,
so that `′i(s, t) ≥ 2. If r = s, we have obtained a desired legal-path. Otherwise,
r 6= s, there are two cases:
Case 1. G contains an (s, t) path before adding Ji. Since r 6= s, `i−1(s) = `′i(s)
and `i−1(t) ≤ `′i(t) (the latter inequality comes from the fact that r may be equal
to t). This implies `i−1(s, t) ≥ `′i(s, t) ≥ 2, which contradicts the precondition
that there is no legal-path before adding Ji. Thus, Case 1 cannot occur.
Case 2. G does not contain any (s, t) path before adding Ji. Since (s, t) becomes
a legal-path after adding Ji, it must be the case that assigning Ji to timeslot
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r adds some new edge (r, w) (with Ji as its label) to G, which connects an
existing (s, r) path and an existing (w, t) path. We know that `i−1(s)−`i−1(r) ≤
1 because there is no legal-path before adding Ji. Also, `′i(s) = `i−1(s) and
`′i(r) = `i−1(r) + 1 because the new job Ji is assigned to r, with r 6= s. Hence,
`′i(r, t) ≥ `′i(s, t), so that the (r, t) subpath is also a legal-path. ut

Lemma 2. If before adding a job the feasible graph G does not have a legal-path,
then after adding one more job there will be no legal-paths where the load of the
starting point is at least 3 more than the load of the ending point. In other words,
the load difference corresponding to any new legal-path, if it exists, is exactly 2.

Lemma 2 will be proved in the full paper and we proceed with Invariant (I1).

Lemma 3. Suppose that G is a feasible graph with no legal-paths. Then after
adding a job and executing the corresponding shift by the algorithm, the resulting
feasible graph has no legal-paths.

Proof. Suppose that there were no legal-paths in G after Stage i−1, but there is a
new legal-path in G after assigning Ji. By Lemma 1, there must be one such legal-
path (s, t) where s is the timeslot assigned to Ji, and without loss of generality,
let it be the one that is selected by our algorithm to perform the corresponding
shift. Let the ordering of the vertices in the path be [s, v1, v2, . . . , vk, t], and P
denote the set of these vertices.

We define In(r) to be the set of vertices w such that a (w, r) path exists
before adding Ji, and Out(r) to be the set of vertices w such that an (r, w) path
exists before adding Ji. We assume that r ∈ In(r) and r ∈ Out(r) for the ease of
later discussion. Similarly, we define In ′′(r) to be the set of vertices w such that
a (w, r) path exists after shifting, and we define Out ′′(r) analogously. Given a
set R of vertices, let IN (R) =

⋃
r∈R In(r) and OUT (R) =

⋃
r∈R Out(r). The

notation IN ′′(R) and OUT ′′(R) are defined analogously.
Briefly speaking, we upper bound the load of a vertex in IN ′′(P ), and lower

bound the load of a vertex in OUT ′′(P ), as any legal-path that may exist after
the shift must start from a vertex in IN ′′(P ) and end at a vertex in OUT ′′(P ).
Based on the bounds, we shall argue that there are no legal-paths as the load
difference of any path after the shift will be at most 1. Note that after the shift,
only the load of t is increased by one, whereas the load of any other vertex
remains unchanged. Now, concerning the legal-path (s, t), there are two cases:
Case 1. There was an arc from s to v1 in the feasible graph G before adding
Ji. In this case, it is easy to check that IN ′′(P ) ⊆ IN (P ),§ and OUT ′′(P ) ⊆
OUT (P ) ∪OUT (Ii).

‡

§ Otherwise, let z be a vertex in IN ′′(P ) but not in IN (P ). Take the shortest path
from z to some vertex in P after the shift. Then all the intermediate vertices of such
a path are not from P . However, the jobs assigned to those intermediate vertices are
unchanged, so that such a path also exists before the shift, and z is in IN(P ). A
contradiction occurs.
‡ Otherwise, let z be a vertex in OUT ′′(P ) but not in OUT (P ) ∪ OUT (Ii). Take the

shortest path that goes to z starting from some vertex in P after the shift. Then
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Suppose that `i−1(s) = x. Then, `i−1(t) = x−1 because there is no legal-path
before adding Ji but there is one after adding Ji. This implies `i−1(vh) ≤ x for
any h ∈ [1, k], or there was a legal-path (vh, t) before adding Ji. The load of any
vertex in IN (P ) is at most x or there was a legal-path entering t before adding
Ji. The load of any vertex in OUT (P ) is at least x− 1 or there was a legal-path
leaving s before adding Ji. For any vertex r in Ii, `i−1(r) ≥ x, since s ∈ Ii has
the minimum load. This implies that the load for any vertex in OUT (Ii) is at
least x − 1, or there was a legal-path leaving a vertex in Ii before adding Ji.
Thus, after the shift, the load of any vertex in IN ′′(P ) is at most x, and the load
of any vertex in OUT ′′(P ) is at least x− 1, so no legal-paths will exist.
Case 2. There were no arcs from s to v1 in the feasible graph G before adding Ji.
In this case, Ji must be involved in the shift, so that the jobs assigned to s after
the shift will be the same as if Ji was not added. Consequently, if there is still a
legal-path after the shift, the starting vertex must be from IN ′′(P\{s}), while the
ending vertex must be from OUT ′′(P\{s}). Similar to Case 1, it is easy to check
that IN ′′(P\{s}) ⊆ IN (P\{s}) and OUT ′′(P\{s}) ⊆ OUT (P\{s})∪OUT (Ii).
Suppose that `i−1(s) = x, so that `′i(s) = x + 1. Because adding Ji creates a
new legal-path (s, t), by Lemma 2, `′i(t) = `i−1(t) = x − 1. Thus, the load of
any vertex in IN (P\{s}) is at most x, since there was no legal-path entering t
before adding Ji. On the other hand, `i−1(v1) ≥ x otherwise job Ji would be
assigned to v1. However, `i−1(v1) ≤ x or there is a legal-path (v1, t). Hence,
`i−1(v1) = x. This implies that the load of any vertex in OUT (P\{s}) is at
least x − 1, since there was no legal-path leaving v1 before adding Ji. As for
the vertices in OUT (Ii), we can use a similar argument as in Case 1 to show
that their load is at least x − 1. Thus, after the shift, the load of any vertex in
IN ′′(P\{s}) is at most x, and the load of any vertex in OUT ′′(P\{s}) is at least
x− 1, so no legal-path will exist. ut

Proof of Invariant (I2)
We now prove in Lemma 6 (the other key lemma for the correctness) that

non-existence of legal-paths implies the assignment is optimal. The rough ideas
are as follows. Consider an optimal assignment A∗ (satisfying some constraints
as to be defined). In Lemma 5, we show that there is a sequence of agreement
graphs Ga(A1, A

∗), Ga(A2, A
∗), . . . , Ga(Ak, A

∗) where the cost is non-increasing
every step, A1 is the original assignment of jobs given by our algorithm, and Ak

is an optimal assignment. We prove Lemma 6 by contradiction, assuming there
is no legal-path in the feasible graph G but the assignment A is not optimal.
We then consider the sequence of agreement graphs given in Lemma 5 and show
that either there is no agreement graph in the sequence involving strict decrease
of overall cost (which means A is already optimal) or that there is a legal-path
in the feasible graph G, leading to a contradiction.

Note that Lemma 5 considers an optimal assignment A∗ such that Ga(A,A∗)
is acyclic. The existence of such A∗ is stated here and proved in the full paper.

all the intermediate vertices of such a path are not from P . If such a path does not
involve vertices from Ii, then this path must exist before the shift, so that z is in
OUT (P ). Else, z is in OUT (Ii). A contradiction occurs.
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Lemma 4. There exists an optimal assignment A∗ such that Ga(A,A∗) is acyclic.

Lemma 5. Suppose A is not optimal and A∗ is an optimal assignment such
that Ga(A,A∗) is acyclic. Then we can have a sequence of agreement graphs
Ga(A1, A

∗), Ga(A2, A
∗), . . . , Ga(Ak, A

∗) such that A1 = A, Ak = A∗, and the
cost is non-increasing every step.

Proof. Consider the agreement graph Ga(Ai, A
∗), for i ≥ 1, starting from A1 =

A. In each step, from Ga(Ai, A
∗) to Ga(Ai+1, A

∗), one arc is removed. For i ≥ 1,
we consider in Ga(Ai, A

∗) any arc labelled with either a “−” or an “=” and we
execute the move corresponding to this arc. Through this move, we remove one
arc, and thus we do not introduce any new arcs. However, the +/−/= label of
other arcs may change. If the resulting graph Ga(Ai+1, A

∗) does not contain any
more “−” or “=” arcs, we stop. Otherwise, we repeat the process.

Note that the cost is non-increasing in every step. By the time we stop, if
the resulting graph, say, Ga(Ah, A

∗), does not contain any more arcs, we have
obtained the desired sequence of agreement graphs. Otherwise, we are left only
with “+” labelled arcs in Ga(Ah, A

∗); however, in the following, we shall show
that such a case cannot happen, thus completing the proof of the lemma.

Firstly, cost(Ah) ≥ cost(A∗) since A∗ is an optimal assignment. Next, by
Lemma 4, Ga(A1, A

∗) is acyclic and the resulting graph Ga(Ah, A
∗) by removing

all “−” and“=” labelled arcs is also acyclic. Thus, in Ga(Ah, A
∗), there must

exist at least one vertex with in-degree 0 and one vertex with out-degree 0. We
look at all such (v1, vi) paths in Ga(Ah, A

∗), where v1 has in-degree 0 and vi has
out-degree 0. For any such (v1, vi) path, we show that by executing all moves
of the path (i) the overall cost is increasing, and (ii) the labels of all arcs not
contained in the (v1, vi) path remain “+”. After executing all moves of the path,
all arcs of the (v1, vi) path are removed.

(i) Suppose the vertices of the path are [v1, v2, . . . , vi] and `(v1) = x. As all
arcs in (v1, vi) are labelled with “+” (i.e., the cost is increasing), `(vj) ≥ x, for
j > 1. By executing all moves in the path, `(v1) = x− 1, `(vj) is unchanged, for
1 < j < i, and `(vi) is increased by one. Thus, the overall cost is increasing.

(ii) We show that the labels of all arcs not contained in the (v1, vi) path
remain “+”. There may be out-going arcs from v1 to other vertices not in the
(v1, vi) path initially labelled by “+”. Before executing all the moves in the
(v1, vi) path, the load of all other vertices is at least x as we assume `(v1) = x.
After the move, `(v1) = x− 1 and out-going arcs from v1 point to vertices with
load at least x. Thus, an arc from v1 to any other vertex denotes a further
increase in the cost and the labels of the arcs do not change. For vertices vj ,
for 1 < j < i, the load of vj remains unchanged and thus the labels of the arcs
incoming to or outgoing from vj remain the same. For vi, there may be incoming
arcs. Suppose `(vi) = y before executing all the moves in the (v1, vi) path. Then
the load of all other vertices pointing to vi is at most y and the arcs are labelled
by “+”. After executing all the moves in the (v1, vi) path, `(vi) = y + 1, and
thus any subsequent moves from vertices pointing to vi cause further increases
in the cost, i.e., the labels do not change.
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Thus, the overall cost is increasing. We repeat this process until there are no
more such (v1, vi) paths. We end up with cost(Ak) > cost(A∗), which contradicts
the fact that cost(Ak) = cost(A∗) as Ak = A∗. Thus, the case where we are
left only with “+” labelled arcs in Ga(Ah, A

∗) cannot happen, and the lemma
follows. ut
Lemma 6. If there is no legal-path in the feasible graph G, the corresponding
assignment is optimal.

Proof. Suppose by contradiction there is no legal-path in the feasible graph G,
but the corresponding assignmentA is not optimal. LetA∗,A1 = A,A2, . . . , Ak =
A∗ be the assignments as defined in Lemma 5. Note that each arc in the agree-
ment graph Ga(A1, A

∗) corresponds to an arc in the feasible graph G (since
G captures all possible moves). Because the sequence of agreement graphs in
Lemma 5 only involves removing arcs, each arc in all of Ga(Ai, A

∗) corresponds
to an arc in G.

Suppose Ga(Aj , A
∗) is the first agreement graph in which a “−” labelled arc

is considered between some timeslots ta and tb. If there is no such arc, then A is
already an optimal solution (since the sequence will be both non-increasing by
Lemma 5 and non-decreasing as no “−” labelled arc is involved). Otherwise, if
there is such an arc in Ga(Aj , A

∗), we show that there must have existed a legal-
path in the feasible graph G, leading to a contradiction. We denote by `(Ai, t) the
load of timeslot t in the agreement graph Ga(Ai, A

∗). Suppose `(Aj , ta) = x, then
`(Aj , tb) ≤ x− 2 as the overall energy cost would be decreasing by moving a job
from ta to tb. If `(A1, ta) = x and `(A1, tb) ≤ x−2 in the original assignment, then
there is a legal-path inG, which is a contradiction. Otherwise, we claim that there
are some timeslots uiy and vkz such that `(A1, uiy ) ≥ x and `(A1, vkz ) ≤ x− 2,
and there is a path from uiy to vkz in G. This forms a legal-path in G, leading
to a contradiction.

To prove the claim, we first consider finding uiy . We first set i0 = j and ui0 =
ta. If `(A1, ui0) ≥ x, we are done. Else, since `(Aj , ui0) = x and `(A1, ui0) < x,
there must be some job that is moved to ui0 before Aj . Let i1 < i0 be the
latest step such that a job is added to ui0 and the job is moved from ui1 . Note
that since this move corresponds to an arc with label “=”, `(Ai1 , ui1) = x and
`(Ai1 , ui0) = x − 1. If `(A1, ui1) ≥ x, we are done. Otherwise, we can repeat
the above argument to find ui2 and so on. The process must stop at some step
iy < i0 where `(A1, uiy ) ≥ x. Similarly, we set k0 = j and vk0 = tb, so that we
can find a step kz < k0 such that `(A1, vkz ) ≤ x−2. Recall that since each arc in
Ga(A1, A

∗) corresponds to an arc in the feasible graph G and in all subsequent
agreement graphs we only remove arcs, there is a path from uiy and vkz

in G.
Therefore, we have found a legal-path from uiy to vkz

in G. ut

5 Time Complexity

We prove the time complexity of our algorithm in Theorem 2 and show that this
can be improved for the case where the feasible timeslots associated with each
job are contiguous.
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Theorem 2. We can find the optimal schedule in O(n2τ) time.

Proof. We add jobs one by one. Each round when we assign the job Ji to timeslot
t, we add arcs (t, w) labelled by Ji for all vertices w that w ∈ Ii in the feasible
graph. By Lemma 1, there is a legal-path starting from t if there is a legal-path
after assigning Ji to timeslot t. When Ji is assigned to t, we start breadth-first
search (BFS) at t. By Lemma 2, if there is a node w which can be reached by
the search and the number of jobs assigned to w is two less than the number
of jobs assigned to t, it means that there is a legal-path (t, w). Then we shift
the jobs according to the (t, w) legal-path. After shifting there will be no legal-
paths anymore by Lemma 3. Finally we update the edges of the vertices on the
legal-path in the feasible graph.

Adding Ji to the feasible graph needs O(|Ii|) time. Because |Ii| is at most the
total number of timeslots in T , |Ii| = O(τ) where τ is the number of timeslots.
The BFS takes O(τ+nτ) time because there are at most nτ edges in the feasible
graph. If a legal-path exists after adding Ji and its length is l, the shifting needs
O(l) time, which is O(τ) because there are at most τ vertices in the legal-path.
After the shift, at most nτ edges are updated in the feasible graph, taking O(nτ)
time. The total time for adding n jobs is thus bounded by O(n2τ). ut

We now consider the special case where each job Ji ∈ J is associated with
an interval of contiguous timeslots Ii = [ρi, δi], for positive integers ρi ≤ δi, and
each job Ji must be assigned to exactly one feasible timeslot si, for ρi ≤ si ≤ δi.
We give a sketch here, while the full proof can be found in the full paper.

Theorem 3. We can find the optimal schedule in O(nτ log n) time for the case
where the feasible timeslots associated with each job are contiguous.

Proof (Sketch). For the special case, we use data structure techniques for the
speed up. For each timeslot ti ∈ T , we use two balanced binary search trees
that contain the feasible intervals for all jobs assigned to ti. For each job Jj
with Ij = [ρj , δj ] assigned to ti, the first binary tree keeps the value of ρj ,
while the second binary tree keeps the value of δj . The binary trees are updated
whenever a job is moved to and from ti accordingly, and each such update takes
O(log n) time. We can query a minimum and a maximum value of the two trees,
respectively, in order to establish the directly reachable interval of timeslot ti, i.e.,
the other timeslots that jobs from ti can be moved to. Because of the contiguous
property of the feasible intervals, the set of timeslots is contiguous. We denote
this interval of timeslots by [αi, βi] and we have that αi ≤ ti ≤ βi.

We further find the set of the ending vertices of all the paths of length at
most τ − 1 that start from ti, which we call reachable interval. Note that the
ending vertices of paths of length 2 from ti can be found by checking the binary
search trees of each timeslot in [αi, βi], which can then be used to find vertices
at distance 3 from ti and so on. Finding the reachable interval requires O(τ)
time. We can then identify any legal path in O(τ) time.

In summary, adding a job to the feasible graph takes O(log n) time. Finding
the reachable interval and legal path takes O(τ) time. Shifting of jobs along the
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legal path found takes O(τ log n) time. Thus the time taken to add one job is
bounded by O(τ log n). The overall time for adding all n jobs is thus bounded
by O(nτ log n). ut

6 Conclusion

In this paper we study an offline scheduling problem arising in demand response
management in smart grid. We focus on the particular case where requests have
unit power requirement and unit duration. We give a polynomial time offline
algorithm that gives an optimal solution. Natural generalization extends to ar-
bitrary power requirement and arbitrary duration. The problem where requests
have unit power requirement and arbitrary duration has been shown to be NP-
hard [12] by a reduction from the bin packing problem. Using a similar idea, it
can be shown that the problem where requests have arbitrary power requirement
and unit duration is also NP-hard. An obvious research direction is to develop
approximation algorithms for the general problem. It would be also interesting
to consider online algorithms for the problem.

Acknowledgement: We would like to thank the reviewers for very helpful
comments leading to improvement in the time complexities of our algorithms.
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