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Abstract—We consider the following fundamental scheduling
problem in which the input consists of n jobs to be scheduled on
a set of identical machines of bounded capacity g (which is the
maximal number of jobs that can be processed simultaneously
by a single machine). Each job is associated with a start time
and a completion time; it is supposed to be processed from the
start time to the completion time (and in one of our extensions
it has to be scheduled also in a continuous number of days;
this corresponds to a two-dimensional version of the problem).
We consider two versions of the problem. In the scheduling
minimization version the goal is to minimize the total busy time
of machines used to schedule all jobs. In the resource allocation
maximization version the goal is to maximize the number of jobs
that are scheduled for processing under a budget constraint given
in terms of busy time. This is the first study of the maximization
version of the problem. The minimization problem is known to be
NP-Hard, thus the maximization problem is also NP-Hard. We
consider various special cases, identify cases where an optimal
solution can be computed in polynomial time, and mainly provide
constant factor approximation algorithms for both minimization
and maximization problems. Some of our results improve upon
the best known results for this job scheduling problem. Our
study has applications in power consumption, cloud computing
and optimizing switching cost of optical networks.
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I. INTRODUCTION

Problem Statement Job scheduling on parallel machines has
been widely studied (see, e.g., the surveys in [4], [28]).
In particular, much attention was given to interval schedul-
ing [19], where jobs are given as intervals on the real line,
each representing the time interval during which a job should
be processed; each job has to be processed on some machine,
and it is commonly assumed that a machine can process a
single job at any given time.

In this paper we consider interval scheduling with bounded
parallelism. Formally, the input is a set of n jobs J =
{J1, . . . , Jn}. Each job, Jj , is associated with an interval
[sj , cj ] during which it should be processed. Also, given is the
parallelism parameter g ≥ 1, which is the maximal number of
jobs that can be processed simultaneously by a single machine.
At any given point t in time a machine Mi is said to be
busy if there is at least one job Jj scheduled to it such that
t ∈ [sj , cj ], otherwise Mi is said to be idle at time t. We call
the time period in which a machine Mi is busy its busy period,
and denote its length by busyi. In this work we study two
optimization problems MINBUSY and MAXTHROUGHPUT. In
MINBUSY we focus on minimizing the total busy times over
all machines, denoted by

∑
i busyi. Note that the number

of machines used is part of the output. A solution that
minimizes the total busy time may not be optimal in terms
of the number of machines used. In MAXTHROUGHPUT, the
resource allocation version of the problem, we are given the
total machine busy time T and the objective is to maximize
the number of scheduled jobs subject to T .

The input to our scheduling problems can be viewed as
an interval graph, which is the intersection graph of a set
of intervals on the real line. It has one vertex for each
interval in the set, and an edge between every pair of vertices
corresponding to intersecting intervals. In our setting, each
vertex corresponds to a job, and there is an edge between two
jobs whose processing times overlap.
Applications Our scheduling problems can be directly in-
terpreted as power-aware scheduling problems in cluster
systems. These problems focus on minimizing the power
consumption of a set of machines (see, e.g., [26] and the
references therein) which can be measured by the amount
of time the machines are switched on and processing, i.e.
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busy time. It is common that a machine has a capacity on
the number of jobs that can be processed at any given time,
like in our problems.

Another application of the studied problems comes from
cloud computing (see, e.g., [22], [25]). Commercial cloud
computing provides computing resources with specified com-
puting units. Clients with computation tasks require certain
computing units of computing resources over a period of
time. Clients are charged in proportion to the total amount
of computing time of the computing resource. The clients
would like to make the most of their money, so they would
minimize the charges they have to pay (i.e. minimize the
amount of computing time used) or maximize the amount of
tasks they can compute with a budget on the charge. This is
in analogy to our minimization and maximization problems,
respectively. The simple scenario where each client requires
the same amount of computing resources corresponds to our
setting where the machines are identical and each job requires
the same proportion of their capacity.

Our study is also motivated by problems in optical network
design (see, e.g., [8], [10], [11]). Optical wavelength-division
multiplexing (WDM) is the leading technology that enables
us to deal with the enormous growth of traffic in commu-
nication networks, like the Internet. In an optical network,
communications between nodes are realized by lightpaths,
which are assigned a certain color. As the energy of the
signal along a lightpath decreases, regenerators are needed
and the hardware cost is proportional to the length of the
lightpaths. Furthermore, connections can be “groomed” so
that a regenerator can be shared by at most g connections,
i.e. at any node, at most g connections can have the same
color sharing the regenerator there. This is known as traffic
grooming. The regenerator optimization problem on the path
topology is in analogy to our scheduling problem in the
sense that the regenerator cost measured in terms of length
of lightpaths corresponds to the busy time while grooming
corresponds to the machine capacity.

Related Work Some of the earlier work on interval scheduling
considers the problem of scheduling a feasible subset of jobs
whose total weight is maximized, i.e., a maximum weight
independent set (see, e.g., [2] and the comprehensive surveys
in [17], [18]). There is wide literature on real-time scheduling,
where each job has to be processed on some machine during a
time interval between its release time and due date. There are
also studies on real-time scheduling, where each machine has
some capacity and each job has a demand of a certain machine
capacity; however, to the best of our knowledge, all of this
prior work refers to different flavor of the model than the one
presented here (see, e.g., [2], [5], [7], [23]). It is also common
to consider both minimization and maximization versions of
the same scheduling problem, see e.g., [3] but in that model
the machines have unit capacity.

Our study also relates to batch scheduling of conflicting
jobs, where the conflicts are given as an interval graph. In
p-batch scheduling model (see, e.g., Chapter 8 in [4])) a set
of jobs can be processed jointly. All the jobs in the batch
start simultaneously, and the completion time of a batch is

the last completion time of any job in the batch. (For known
results on batch scheduling, see, e.g., [4].) Our scheduling
problem differs from batch scheduling in several aspects. In
our problems, each machine can process g jobs simultaneously,
for some g ≥ 1, the jobs need not be partitioned to batches,
i.e., each job can start at different time. Also, while in known
batch scheduling problems the set of machines is given, we
assume that any number of machines can be used for the
solution. Finally, while common measures in batch scheduling
refer to the maximum completion time of a batch, or a function
of the completion times of the jobs, we consider the total busy
times of the machines.

The complexity of MINBUSY was studied in [27], showing
that the problem is NP-Hard already for g = 2. The work
[12] considered the problem where jobs are given as intervals
on the line with unit demand. For this version of the problem
it gives a 4-approximation algorithm for general inputs, and
better bounds for some subclasses of inputs. In particular, 2-
approximation algorithms were given for instances where no
job interval is properly contained in another, and instances
where any two job intervals intersect, i.e., the input forms a
clique (see same approximation but different algorithm and
analysis in [13]). The work [16] extends the results of [12],
considering the case where each job has a different demand
on machine capacity.

The minimization problem MINBUSY studied in this paper
is related to the problems studied in [12], [16]. As will be
discussed in Section V, some of our results directly improve
upon existing results for these scheduling problems. As for the
maximization problem, we are not aware of works that present
and study this problem.
Our Contribution As mentioned above MINBUSY is NP-
Hard already for g = 2. We consider two special cases
(clique instances, where all jobs share a common time, and
proper instances, where no job interval is properly contained in
another one). We also consider a two-dimensional version that
each job is to be processed during given continuous hours over
some given continuous days. We show the following results:
• A polynomial-time algorithm for clique instances when
g = 2.

• A g·Hg
Hg+g−1 -approximation algorithm for clique instances,

where Hg is the g-th harmonic number, for any fixed
value of g.

• A (2−1/g)-approximation algorithm for proper instances.
• A polynomial time algorithm for proper clique instances,

based on an interesting combinatorial property of optimal
solutions.

• For the scheduling of 2-dimensional intervals, we define
γk, k ∈ {1, 2} to be the ratio between the longest
and the shortest interval on dimension k. We present
min(g, 6.31 logmin(γ1, γ2))-approximation algorithm.

We show that MAXTHROUGHPUT is NP-Hard whenever
MINBUSY is NP-Hard. For MAXTHROUGHPUT we show the
following:
• A 6-approximation algorithm for clique instances for

any g.
• A polynomial time algorithm for proper clique instances.
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It turns out the algorithms and analysis of the results for MAX-
THROUGHPUT are more involved than those for MINBUSY,
apparently due to an inherent hardness of the former.
Organization of the paper In Section II we present some
preliminaries. MINBUSY is studied in Section III, and
MAXTHROUGHPUT in Section IV. In Section V we first
summarize our results, then we discuss extensions and further
research directions. Some proofs are only sketched in this
Extended Abstract.

II. NOTATIONS AND PRELIMINARIES

Definitions Unless otherwise specified, we use lower case
letters for indices and specific times, and upper case letters
for jobs, time intervals and machines. Moreover, we use
calligraphic characters for sets of jobs, intervals and machines.

Definition 2.1: Given a time interval I = [sI , cI ] with start
time sI and completion time cI , the length of I is len(I) =
cI−sI . This extends to a set I of intervals; namely, the length
of I is len(I) =∑I∈I len(I).

Definition 2.2: For a set I of intervals we define
SPAN(I) def= ∪I and span(I) def= len(SPAN(I)) and we refer
to both of them as the span of a set of interval, when the
intention is clear from the context. Two intervals are said to
be overlapping if their intersection contains more than one
point.

Note that span(I) ≤ len(I) and equality holds if and only
if I is a set of pairwise non-overlapping intervals.

A job J is given by a time interval during which it is
supposed to be processed. We use jobs and time intervals
interchangeably throughout the paper.

As we do not aim at optimizing the number of machines,
we assume that the given setM = {M1,M2, . . .} of machines
is infinite.

A (partial) schedule, is a (partial) function from the set
J of jobs to the set M of machines. Given a parallelism
parameter g, a schedule is valid if every machine processes at
most g jobs at any given time. In this definition a job [sJ , cJ ]
is considered as not being processed at time cJ . For instance,
a machine processing jobs [1, 2], [2, 3], [1, 3] is considered to
be processing 2 jobs at time 2. Note that this is consistent
with the definition of the term overlapping, and equivalent to
saying that the intervals do not contain their completion time,
i.e. are half-open intervals.

Given a schedule s : J 7→ M, we denote by J si the
set of jobs assigned to machine Mi by schedule s, i.e.
J si

def
= s−1(Mi). The cost of machine Mi in this schedule

is the length of its busy interval, i.e. busysi
def
= span(J si ).

Given a partial schedule s, we denote the set of jobs
scheduled by it as J s def= ∪iJ si . Its cost is costs

def
=
∑
i busysi ,

and its throughput is tputs
def
= |J s|. When there is no

ambiguity for the schedule under consideration, we omit the
superscripts (e.g. we use Ji for J si , etc.).

We consider two problem variants: MINBUSY is the prob-
lem of minimizing the total cost of scheduling all the jobs,
and MAXTHROUGHPUT is the problem of maximizing the
throughput of the schedule subject to a budget given in terms
of total busy time. These two problems are defined as follows:

MINBUSY
Input: (J , g), where J is a set of jobs (i.e. time intervals),
and g is the parallelism parameter.
Output: A valid schedule s : J 7→M.
Objective: Minimize costs.

MAXTHROUGHPUT
Input: (J , g, T ) where J is a set of jobs, g is the parallelism
parameter and T is a budget given in terms of total busy time.
Output: A valid partial schedule s : J 7→ M such that
costs ≤ T .
Objective: Maximize tputs.

W.l.o.g. we assume that each machine is busy along a
contiguous time interval, because otherwise we can replace
the machine with several machines that satisfy the assumption,
changing neither the feasibility nor the total busy time of the
schedule.

For MINBUSY we assume that the interval graph induced
by the jobs is connected; otherwise, the problem can be solved
by considering each connected component separately.
Special cases A set of jobs J is a clique set if there is a time t
common to all the jobs in J . It is well known that this happens
if and only if the corresponding interval graph is a clique.
When J is a clique set we term the corresponding instance
((J , g) or (J , g, T )) a clique instance. A clique instance in
which all jobs have the same start time or the same completion
time is termed a one-sided edge instance.

A set of jobs J is proper if no job in the set properly
includes another. Note that in this case for two jobs J, J ′ ∈ J
sJ ≤ sJ′ if and only if cJ ≤ cJ′ . We denote this fact as
J ≤ J ′ and w.l.o.g. we assume J1 ≤ J2 ≤ . . . ≤ Jn.
Approximation algorithms We consider polynomial-time exact
and approximation algorithms and analyze their worst case
performance. We denote by s∗ an optimal schedule (for
MINBUSY or MAXTHROUGHPUT). The cost of s∗ is denoted
by cost∗ and its throughput by tput∗. An algorithm A for
MINBUSY is a ρ-approximation for ρ ≥ 1, if the cost
of any schedule returned by it is at most ρ · cost∗. For
MAXTHROUGHPUT, A is a ρ-approximation for ρ ≥ 1 if
the throughput of any schedule returned by it is at least
(1/ρ) · tput∗.
Basic observations The next observation gives two immediate
lower bounds for the cost of any solution of MINBUSY.

Observation 2.1: For any instance (J , g) of MINBUSY and
a valid schedule s for it the following bounds hold:
• The parallelism bound: costs ≥ len(J )

g .
• The span bound: costs ≥ span(J ).
• The length bound: costs ≤ len(J ).

The parallelism bound holds since g is the maximum paral-
lelism that can be achieved in any solution. The span bound
holds since at any time t ∈ ∪J at least one machine is
working. The length bound holds because at any time that
some machine is busy at least one job is being processed.
By the parallelism bound and length bound we conclude

Proposition 2.1: Any schedule (algorithm) is a g-
approximation for MINBUSY.
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We also observe that MAXTHROUGHPUT is NP-Hard when-
ever MINBUSY is NP-Hard.

Proposition 2.2: There is a polynomial-time reduction from
MINBUSY to MAXTHROUGHPUT.

Proof: Given an instance (J , g) of MINBUSY we can
perform binary search between len(J )/g and len(J ) for the
value of T by solving each time the instance (J , g, T ) of
MAXTHROUGHPUT to find the smallest value T such that
tput∗(J , g, T ) ≥ tput(J ), i.e. to find the value cost∗.

We note that the hardness of MAXTHROUGHPUT stems
from the fact that one has to decide which subset of the jobs
to schedule.

Proposition 2.3: If there is a polynomial-time computable
set 1 X ⊆ 2J containing at least one set J s for some optimal
schedule s, and also MINBUSY can be solved optimally, then
MAXTHROUGHPUT can be solved optimally.

Proof: Given an instance (J , g, T ) of
MAXTHROUGHPUT, for each set J ′ ∈ X solve the
instance (J ′, g) of MINBUSY. Among all sets J ′ with
cost∗(J ′) ≤ T choose one with maximum throughput and
return the schedule s returned for this instance. Leave the
jobs J \ J ′ unscheduled.

For any schedule s we define the saving savs (in cost,
relative to the worst schedule) achieved by s as savs

def
=

len(J ) − costs. As far as optimal schedules are concerned
MINBUSY can equivalently be reformulated as the problem
of maximizing savs. However when sub-optimal schedules are
considered, the two definitions differ in terms of approxima-
tion ratio of a schedule. The following Lemma relates these
ratios.

Lemma 2.1: If a schedule is a ρ-approximation to the
saving maximization problem for some ρ ≥ 1, then it is a
(1/ρ+ (1− 1/ρ) g)-approximation to MINBUSY.

Proof: Let ρ′ = 1/ρ, and let s be a schedule satisfying
our assumption, i.e. savs ≥ ρ′ · sav∗. We have

costs − cost∗ = sav∗ − savs ≤ (1− ρ′)sav∗

= (1− ρ′)(len(J )− cost∗)

= (1− ρ′)len(J ) + (ρ′ − 1)cost∗

thus

costs ≤ (1− ρ′)len(J ) + ρ′ · cost∗

≤ (1− ρ′)g · cost∗ + ρ′ · cost∗

= (ρ′ + (1− ρ′)g) cost∗

where the second inequality follows from the parallelism
bound.

III. COST MINIMIZATION

In this section we study special cases, namely clique in-
stances, proper instances and proper clique instances (in Sec-
tions III-A, III-B and III-C, respectively). We also investigate
a generalization of the problem to the two dimensional case,
i.e. where the jobs are given with rectangular intervals (Section
III-D).

1Also of polynomial size. This assumption holds whenever the set is
represented by an explicit list of its elements.

A. Clique Instances

In this section we consider clique instances. We show (in
Lemma 3.1) a polynomial-time algorithm for the case g = 2
and (in Lemma 3.2) an algorithm with a better ratio for small
values of g (improving upon the 2-approximation algorithm
of [12] for these cases). We first observe the following for
one-sided clique instances.

Proposition 3.1: For one-sided clique instances of
MINBUSY an optimal solution can be obtained by sorting the
jobs in non-increasing order of their lengths and grouping
them in groups of g in this order (where the last group
possibly contains less than g jobs).

Consider the edge weighted graph Gm = (J , Em) where
eij = {Ji, Jj} ∈ Em if the jobs Ji and Jj overlap. The
weight of eij is the size of the overlap. When the parallelism
parameter is g = 2, in any valid schedule at most two jobs
can share a machine. In other words, a schedule corresponds
to a matching in the graph Gm and costs is equal to len(J )
minus the weight of the matching. Therefore minimizing costs

is equivalent to maximizing the weight of the matching, which
is well known to be solvable in polynomial-time. We conclude

Lemma 3.1: There exists a polynomial-time algorithm for
clique instances of MINBUSY when g = 2.
Using a similar argument as in Lemma 3.1, the MINBUSY
problem is equivalent to g-dimensional matching, which ad-
mits a (g/2 + ε)-approximation [14]. By Lemma 2.1 this
implies a (g−2+2/g)-approximation for MINBUSY. However
using a direct approach we improve this result in the lemma
below.

Lemma 3.2: For any fixed value of g, there is a g·Hg
Hg+g−1 -

approximation algorithm for clique instances of MINBUSY,
where Hg is the g-th harmonic number.

Proof: As we consider clique instances, a schedule s is
valid if and only if for any machine Mi, |J si | ≤ g. If we
associate with each Q ⊆ J such that |Q| ≤ g a weight of
span(Q), the problem is equivalent to the problem of finding
a minimum weight set cover of J with subsets of size at
most g. As g is fixed we can calculate the weights of all
possible subsets and run the well-known Hg-approximation
algorithm for set cover.

We can improve the result using the parallelism bound of
PB = len(J )/g. We modify the costs of the sets, so that
they reflect the excess cost from this lower bound. Formally,
for each Q ⊆ J we assign weight(Q) = span(Q)− len(Q)/g.
The weight corresponding to a schedule s is weight(s) =∑
i (span(J si )− len(J si )/g) =

∑
i span(J si ) − len(J )/g =

costs −PB. For the schedule s returned by the algorithm we
have

weight(s) ≤ Hg · weight(s∗)

costs − PB ≤ Hgcost∗ −Hg · PB
costs ≤ Hgcost∗ − (Hg − 1) · PB

and by the length bound, we have

costs ≤ len(J ) = g · PB .

We choose 0 ≤ ρ ≤ 1, satisfying ρ(Hg − 1) = (1− ρ)g, and
multiply the last two inequalities by ρ and 1− ρ respectively
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to get

costs ≤ ρ ·Hg · cost∗

Since ρ = g
Hg+g−1 , the algorithm is a g·Hg

Hg+g−1 -approximation.

As can be easily verified, the function g·Hg
Hg+g−1 is monoton-

ically increasing, and it gets values smaller than 2 for g ≤ 6.
Note also that the set cover technique used in the last lemma

can be used to derive an exact algorithm for g = 2; however for
this case it seems that the algorithm mentioned in Lemma 3.1,
using the matching technique, is better extendable to other
contexts.

B. Proper Instances

In this section we present the algorithm BESTCUT and show
that it is a (2− 1/g)-approximation for proper instances, thus
improving upon the 2-approximation algorithm presented in
[12]. Recall that we assume without loss of generality that a)
the instance is connected, and b) J1 ≤ J2 ≤ ... ≤ Jn, i.e. the
start time of the jobs is non-decreasing.

Algorithm 1 BESTCUT(J , g)
1: for i = 1 to g do
2: si0 = {J1, . . . , Ji};
3: for j = 1 to b(|J | − 1)/gc do
4: sij =

{
Ji+g(j−1)+1, . . . , Ji+g·j

}
5: end for
6: si =

{
si0, s

i
1, . . .

}
7: end for
8: Return as s one of s1, s2, . . . , sg such that costs is

minimized.

Theorem 3.1: Algorithm BESTCUT is a (2 − 1/g)-
approximation for proper instances of MINBUSY.

Proof: For every i and j,
∣∣sij∣∣ ≤ g, therefore the schedule

s returned by the algorithm is feasible. We first give an upper
bound to sav∗: by the span bound we have cost∗ ≥ span(J ).
On the other hand span(J ) = len(J )−∑|J |−1k=1 |Ik|, where Ik
is the overlap between jobs Jk and Jk+1. Therefore cost∗ ≥
len(J )−∑|J |−1k=1 |Ik|, or equivalently

sav∗ ≤
|J |−1∑
k=1

|Ik|. (1)

We proceed by calculating costs. For every 1 ≤
i ≤ g, costs

i

= span(si0) +
∑
j>0 span(sij). More-

over span(si0) = len(si0) −
∑i−1
k=1 |Ik| and span(sij) =

len(sij) −
∑i+g·j−1
k=i+g(j−1)+1 |Ik|. Therefore costs

i

= len(J ) −∑|J |−1
k=1 |Ik| +

∑
j≥0 |Ii+g·j |, or equivalently savs

i

=∑|J |−1
k=1 |Ik| −

∑
j≥0 |Ii+g·j | .

Then
g∑
i=1

savs
i

= g

|J |−1∑
k=1

|Ik| −
g∑
i=1

∑
j≥0

|Ii+g·j |

= (g − 1)

|J |−1∑
k=1

|Ik|

savs = max
1≤i≤g

savs
i ≥ g − 1

g

|J |−1∑
k=1

|Ik| (2)

Combining (1) and (2) we conclude that BESTCUT is a g
g−1 -

approximation for the saving maximization problem. Substi-
tuting this for ρ in Lemma 2.1 we get the 2− 1

g approximation
ratio for MINBUSY.

C. Proper Clique Instances

In this section we consider instances that are clique in-
stances and also proper instances. We say that a subset
Q ⊆ J of jobs is consecutive in J (or simply consecutive)
if Q = {Ji, Ji+1, · · · , Jj} for some 1 ≤ i ≤ j ≤ n. The
following lemma leads to a polynomial-time algorithm for
these instances of MINBUSY.

Lemma 3.3: Given a proper clique instance of MINBUSY,
there is an optimal schedule such that for every machine Mi,
the subset Ji is consecutive in J .

Proof: We first give an informal outline of the proof.
Suppose that for any optimal schedule s∗, there is at least one
machine Mi, such that the subset Ji is not consecutive. Then
there exists at least one triple of distinct jobs Ja ≤ Jb ≤ Jc
such that s∗(Ja) = s∗(Jc) = Mi and s∗(Jb) = Mi′ 6= Mi.
We call such a set of jobs a conflicting triple 〈a, b, c〉 of s∗. We
consider an optimal schedule s∗, in which the largest possible
value of b, such that 〈a, b, c〉 is a conflicting triple of s∗, is
as small as possible. That is, every optimal schedule s′ has a
conflicting triple 〈a′, b′, c′〉, where b′ ≥ b. Then, we construct
another optimal schedule s∗∗ from s∗ by rescheduling appro-
priately the subset of jobs that are scheduled to Mi or Mi′ in
s∗. We prove that, by this construction, for every conflicting
triple 〈a∗∗, b∗∗, c∗∗〉 of the new optimal schedule s∗∗, we have
b∗∗ < b. This contradicts the way that the optimal schedule
s∗ has been chosen.

We proceed with the formal proof of the lemma. Suppose
that for any optimal schedule s∗, there is at least one machine
Mi, such that the subset Ji is not consecutive. Then there
exist three distinct jobs Ja ≤ Jb ≤ Jc such that s∗(Ja) =
s∗(Jc) = Mi and s∗(Jb) = Mi′ 6= Mi which we call a
conflicting triple 〈a, b, c〉 of s∗. Given an optimal schedule s∗,
a conflicting triple 〈a, b, c〉 of s∗ is called rightmost if there
exists no conflicting triple 〈a′, b′, c′〉 of s∗, such that b′ > b.

Among all optimal schedules, let s∗ be one, in which the
value b of a rightmost conflicting triple 〈a, b, c〉 is the smallest
possible. That is, for a rightmost conflicting triple 〈a′, b′, c′〉
of an arbitrary optimal schedule s′, we have b ≥ b′. Let
now 〈a, b, c〉 be a rightmost conflicting triple of w∗, and let
s∗(Ja) = s∗(Jc) = Mi and s∗(Jb) = Mi′ . Without loss of
generality, we assume a (resp. c) is the smallest (resp. largest)
index in s∗, for which s∗(Ja) =Mi (resp. s∗(Pc) =Mi).
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Fig. 1. The subset of jobs scheduled to Mi,Mi′ (denoted by solid and dashed
lines, respectively) in an optimal schedule s∗ of a proper clique instance,
where (a) k < a and (b) a < k.

Note that all jobs between Jb and Jc are scheduled to Mi in
s∗. Indeed, otherwise there exists an index d ∈ {b+1, . . . , c−
1} with s∗(Pd) =Mi′′ 6=Mi, and thus 〈a, d, c〉 is a conflicting
triple in s∗, for which d > b. This is a contradiction, since
〈a, b, c〉 is assumed to be a rightmost conflicting triple of s∗.

We will now construct another optimal schedule s∗∗ that
has a rightmost conflicting triple 〈a′, b′, c′〉 with b′ < b, which
is a contradiction to the way that s∗ has been chosen. The
schedule s∗∗ will be obtained from s∗ by rescheduling some
of the jobs scheduled to Mi and Mi′ . That is, for every index
x, s∗(Jx) ∈ {Mi,Mi′} if and only if s∗∗(Jx) ∈ {Mi,Mi′}.
Since the instance is an clique instance, a schedule s is feasible
if and only if |J si | ≤ g for each machine Mi. This property
will be preserved when obtaining s∗∗ from s∗.

Let k be the smallest index, for which s∗(Jk) = Mi′ ;
clearly k 6= a. We distinguish between the following two cases
regarding k and a.

• k < a. This case is illustrated in Figure 1(a). In this
case, we construct the schedule s∗∗ by exchanging the
machine assignments of Ja and Jb. That is, s∗∗(Ja) =
Mi′ , s∗∗(Jb) = Mi, and s∗∗(Jx) = s∗(Jx) for every
x /∈ {a, b}. Then, since Ja is the leftmost job scheduled
to Mi and Jb is the rightmost job scheduled to Mi′

in s∗, it follows that span(J s∗∗i ) ≤ span(J s∗∗i ) and
span(J s∗∗i′ ) ≤ span(J s∗∗i′ ), i.e. s∗∗ is optimal.

• a < k. This case is illustrated in Figure 1(b). Note that the
set of jobs scheduled to either Mi or Mi′ in s∗ contains
t ≤ 2g elements, since

∣∣J s∗∗i

∣∣ ≤ g and
∣∣J s∗∗i′

∣∣ ≤ g.
Furthermore, since a < k, the leftmost and the rightmost
jobs of this set are scheduled to Mi in s∗. Suppose that
in this set of jobs, there are t1 ≥ 1 jobs to the left of Jk
and t2 ≥ 1 jobs to the right of Jb. That is, the leftmost t1
jobs and the rightmost t2 jobs of this set are scheduled to
Mi in s∗, and thus t1 + t2 ≤ t ≤ g. Let t0 = min{g, t−
t2 − 1}.
We construct s∗∗ by scheduling the leftmost t0 ≤ g

jobs to Mi, and the remaining t − t0 ≤ g jobs to
machine Mi′ , and thus that s∗∗ is feasible. Let Jx be the
rightmost job scheduled to Mi and Jy be the leftmost
job scheduled to Mi′ in s∗∗. Note that, if k = b, then
y = k = b. Otherwise, if k 6= b, then k ≤ y < b. In
the schedule s∗, the cost of the jobs scheduled to Mi

and Mi′ is span({Ja, Jc}) + span({Jk, Jb}). Similarly,
in s∗∗, the cost of the jobs scheduled to Mi and Mi′

is span({Ja, Jx}) + span({Jy, Jc}). Note that, since we
assumed an clique instance, the completion time of any
job is greater than or equal to the start time of any job.
Therefore, in both cases where k = b and k 6= b, it
is easy to verify that span({Ja, Jx})+ span({Jy, Jc}) ≤
span({Ja, Jc})+span({Jk, Jb}), and thus s∗∗ is optimal.

It remains to show now that, in both cases where k < a
and a < k, the constructed optimal schedule s∗∗ has a
rightmost conflicting triple 〈a∗∗, b∗∗, c∗∗〉 with b∗∗ < b. Let
〈a∗∗, b∗∗, c∗∗〉 be a maximal conflicting triple of s∗∗. If the
machines assigned to Jb∗∗ and Jc∗∗ in s∗∗ are in {Mi,Mi′},
then k < a (indeed, according to the above construction of
s∗∗, in the case where a < k, there is no conflicting triple in
s∗∗ with machines in {Mi,Mi′}). In this case, b∗∗ < b by the
construction of s∗∗.

Consider now the case where at least one of the jobs
Jb∗∗ , Jc∗∗ is scheduled to Mi′′ /∈ {Mi,Mi′} by s∗∗ (in both
cases k < a and a < k). Suppose that b∗∗ ≥ b. Let first
b∗∗ > c, i.e. b∗∗ > c > b. Then, since c is assumed to be the
the largest index in s∗, for which s∗(Jc) =Mi, it follows that
all jobs Ja∗∗ , Jb∗∗ , Jc∗∗ are scheduled to machines different
than Mi,Mi′ in both s∗ and s∗∗. Therefore 〈a∗∗, b∗∗, c∗∗〉
is also a conflicting triple in s∗, where b∗∗ > b, which is
a contradiction, since 〈a, b, c〉 is assumed to be a rightmost
conflicting triple of s∗. Let now b ≤ b∗∗ ≤ c. Then, as
we proved above, all jobs between Jb and Jc are scheduled
to Mi in s∗, and thus in particular s∗(Jb∗∗) ∈ {Mi,Mi′}.
Furthermore, by the above construction of the new optimal
schedule s∗∗ (in both cases where k < a and a < k), it
follows that s∗∗(Jb∗∗) =Mi′ . Therefore s∗∗(Jc∗∗) =Mi′′ by
assumption, where i′′ /∈ {i, i′}, and thus also s∗(Jc∗∗) =Mi′′ .
Furthermore, since all jobs between Jb and Jc are scheduled to
Mi in s∗, it follows that c∗∗ > c. Therefore, 〈a∗∗, c, c∗∗〉 is a
conflicting triple of s∗, where c > b, which is a contradiction,
since 〈a, b, c〉 is a rightmost conflicting triple of s∗. Therefore,
again b∗∗ < b.

Summarizing, we constructed an optimal schedule s∗∗, hav-
ing a rightmost conflicting triple 〈a∗∗, b∗∗, c∗∗〉 with b∗∗ < b.
This is a contradiction to our assumption on s∗. Therefore,
there exists an optimal schedule s∗, such that for every
machine Mi, the subset Ji is consecutive. This completes the
proof of the lemma.

Using Lemma 3.3 we design a polynomial-time dynamic
programming algorithm to find an optimal schedule. Let us
consider a proper clique instance consisting of n jobs J1 ≤
J2 ≤ . . . ≤ Jn. We denote by cost∗(i) the cost of an optimal
schedule of the sub-instance consisting of the leftmost i jobs,
and by cost∗(i, j) the minimum cost of those schedules of
the same sub-instance that assign the same machine to the
last (exactly) j jobs. Clearly j ≤ min(g, i), and cost∗(i) =
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min1≤j≤min(i,g) cost∗(i, j). Let Ik be the overlap between jobs
Jk and Jk+1.

Algorithm 2 FINDBESTCONSECUTIVE

1: cost∗(1)← cost∗(1, 1)← span(J1)
2: for i = 2 to n do
3: cost∗(i, 1)← |Ji|+ cost∗(i− 1)
4: for j = 2 to min(g, i) do
5: cost∗(i, j)← cost∗(i− 1, j − 1) + |Ji| − |Ii−1|
6: end for
7: end for

Note that the assignments in lines 3 and 5 are correct by
Lemma 3.3.

As for the time complexity, if n < g all the jobs are
scheduled to the same machine. Otherwise we run the dynamic
programming algorithm FINDBESTCONSECUTIVE. For each
job Ji, for i = 1, . . . , n, we have to compute cost∗(i, j) for
i = 1, . . . , g. Thus, the total running time of the algorithm is
O(n · g), implying the following theorem.

Theorem 3.2: Given a proper clique instance of MINBUSY,
FINDBESTCONSECUTIVE computes an optimal schedule in
polynomial time.

D. Rectangular Intervals

In this section we consider a generalization of the problem
to 2 dimensions. In graph theoretic terms we are now dealing
with rectangle graphs instead of interval graphs. The problem
can be relevant in contexts where rectangle graphs are relevant.
For instance we can consider periodic jobs that are run in a
specific time interval every day, between two given dates. In
this generalization all the times, in particular the start and
completion times are pairs of real numbers and jobs are given
with rectangular intervals.

Definition 3.1: Given a rectangular interval I = [s, c],
where s = (s1, s2), c = (c1, c2) ∈ R × R and s < c, we
define lenk(I)

def
= ck − sk for k ∈ {1, 2}. The length of I is

len(I) = len1(I)len2(I).
Definition 3.2: For a set I of rectangular intervals we define

SPAN(I) def
= ∪I and span(I) is defined as the area of

SPAN(I).
Given the above definition of len and span, all the defini-

tions given for the one dimension case in Section II extend
to this case. Moreover the bounds mentioned therein hold for
this case too.

We also define γk = maxJ∈J lenk(J)
minJ∈J lenk(J)

for k ∈ {1, 2}. In the
sequel we assume without loss of generality γ1 ≤ γ2 and
present an O(log γ1)-approximation algorithm.

The following algorithm FIRSTFIT is actually presented in
[12] for the one dimensional case. We present it here for
completeness and also adapt it to our case.

The following lemma generalizes Theorem 2.5 in [12] that
proves that Algorithm FIRSTFIT is a 4-approximation.

Lemma 3.4: Algorithm FIRSTFIT is a (3γ1 + 1)-
approximation for MINBUSY on rectangular intervals.

Proof: By Lemma 2.3 of [12] we have len2(Ji) ≥
g
3 span2(Ji+1). Let ` = minJ∈J len1(J). Then for every

Algorithm 3 FIRSTFIT(J , g)
1: Sort the jobs in non-increasing order of their lengths in

the second dimension, i.e., len2(J1) ≥ len2(J2) ≥ . . . ≥
len2(Jn).

2: Consider the jobs in the above order: assign the next job,
Jj , the first machine that is available for it, i.e., find the
minimum value of i ≥ 1 such that, at any time t ∈ Jj ,
Mi is processing at most g − 1 jobs. If no such machine
exists, then use a new machine for Jj .

job J ∈ J , ` ≤ len1(J) ≤ ` · γ1, thus ` · len2(J) ≤
len(J) ≤ ` · γ1 · len2(J). Therefore for any subset J ′ ⊆ J
of jobs ` · len2(J ′) ≤ len(J ′) ≤ ` · γ1 · len2(J ′) and
span(J ′) ≤ ` · γ1 · span2(J ′). By definition, all the jobs
in Ji+1 are assigned to one machine, i.e. Mi+1. For such
a set the cost of the assignment is exactly its span. Thus,
FIRSTFIT(Ji+1) = busyi+1 = span(Ji+1) ≤ ` · γ1 ·
span2(Ji+1) ≤ ` · γ1 · 3g len2(Ji) ≤ γ1 · 3g len(Ji). Let m ≥ 1
be the number of machines used by FIRSTFIT. Then

m∑
i=2

FIRSTFIT(Ji) =
m−1∑
i=1

FIRSTFIT(Ji+1)

≤ γ1
3

g

m−1∑
i=1

len(Ji) < γ1
3

g

m∑
i=1

len(Ji)

= γ1
3

g
len(J ) ≤ 3γ1 · cost∗(J ) (3)

where the last inequality follows from the parallelism bound.

Now, using the span bound, we have that FIRSTFIT(J1) =
busy1 = span(J1) ≤ span(J ) ≤ cost∗(J ). Combining with
(3) we get FIRSTFIT(J ) ≤ (3γ1 + 1) · cost∗(J ) .

Algorithm 4 BUCKETFIRSTFIT(G,J , g, β)
1: Let ` = minJ∈J len1(J).
2: Let γ1 = (maxJ∈J len1(J))/`.
3: for b = 1 to

⌈
logβ γ1

⌉
do

4: Let J (b) =
{
J ∈ J | ` · βb−1 ≤ len1(J) ≤ ` · βb

}
.

5: Schedule the jobs in J (b) to a set of unused machines
using algorithm FIRSTFIT.

6: end for

Consider algorithm BUCKETFIRSTFIT that gets an addi-
tional parameter β ∈ R and invokes FIRSTFIT as a subroutine,
such that in each invocation the sub-instance J (b) satisfies
γ1 ≤ β. FIRSTFIT is a (3β + 1)-approximation on each sub-
instance, i.e. costs(J (b)) ≤ (3β + 1)cost∗(J (b)), and clearly
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cost∗(J ) ≥ cost∗(J (b)). Therefore

costs(J ) =

dlogβ γ1e∑
b=1

costs(J (b))

≤
dlogβ γ1e∑
b=1

(3β + 1)cost∗(J (b))

≤
dlogβ γ1e∑
b=1

(3β + 1)cost∗(J )

=

(
3β + 1

log β
log γ1 +O(β)

)
· cost∗(J ).

Substituting β = 3 and recalling our assumption γ1 ≤ γ2 we
get

Theorem 3.3: BUCKETFIRSTFIT(G,J , g, 3) constitutes a
min(g, 6.31 logmin(γ1, γ2)+O(1))-approximation algorithm
for MINBUSY on rectangular intervals.

IV. THROUGHPUT MAXIMIZATION

Although MAXTHROUGHPUT is at least as hard as MIN-
BUSY, it turns out that in some cases we can achieve similar
results as for MINBUSY.

A. Clique Instances

For one-sided clique instances we note that if a schedule s
with costs ≤ T schedules tputs jobs, then there is a schedule
s′ with costs

′ ≤ costs ≤ T that schedules the shortest tputs

jobs. In particular there is an optimal schedule that schedules
the shortest j jobs for some 0 ≤ j ≤ |J |. By Propositions 2.3
and 3.1 we conclude

Proposition 4.1: One-sided clique instances of
MAXTHROUGHPUT can be solved optimally in polynomial
time.

We now present a constant approximation algorithm for
clique instances of MAXTHROUGHPUT. We start with some
terminology. Let t be the time that is common to all the jobs.
For a job J = [s, c] we term the sub-interval [s, t] (resp. [t, c])
as the left part (resp. right part) of J . The longer (resp. shorter)
among these parts is termed the head (resp. tail) of J , and
whenever they are equal the left part is the head. A job J is
left-heavy (resp. right-heavy) if its left (resp. right) part is the
head.

We denote by J (L) (resp. J (R)) the subset of left-heavy
(resp. right-heavy) jobs of J . For X ∈ {L,R}, a subset
containing the j jobs of J (X) with shortest head lengths is
termed a prefix of size j and denoted by J (X,j).

The reduced cost of a schedule s of J is the cost of s
where each job is replaced by its head, and we denote it by
costs(J ). In other words, in the reduced cost model the tails
of the jobs do not consume machine time. Clearly costs(J ) ≤
costs(J ). Moreover costs(J ) ≤ 2·costs(J ) because for each
machine Mi, span(Ji) is at most twice the longest head of Ji.
A schedule minimizing costs(J ) is termed reduced-optimal,
and the corresponding reduced cost is denoted by cost∗. Note
that for J (L), J (R) and their subsets the calculation of cost∗

is equivalent to solving a one-sided clique instance under the
normal cost model and this can be done in polynomial time
by Proposition 3.1.

We proceed with the performance analysis of Algorithm
ALG1 below that chooses the maximal number j + k of jobs
with shortest heads in J (L) and J (R) (j jobs of J (L,j) and
k jobs of J (R,k)), with total machine busy time at most T/2.
Then it schedules the jobs in each of these sets in a reduced-
optimal manner. Consider an optimal schedule s∗ and the set
J ∗ of jobs scheduled by it. We split this set into sets of left-
heavy and right-heavy jobs, namely Q(L) = J ∗ ∩ J (L) and
Q(R) = J ∗ ∩ J (R). Then tput∗ = |J ∗| =

∣∣Q(L)
∣∣ + ∣∣Q(R)

∣∣
and also T ≥ cost∗(J ∗) ≥ cost∗(J ∗) = cost∗(Q(L)) +
cost∗(Q(R)). The last equality holds because in the reduced
cost model each one of the sets Q(L) and Q(R) incurs cost
either before or after time t, but not both. Let

∣∣Q(L)
∣∣ =

Algorithm 5 ALG1

1: Among all the O
(∣∣J (L)

∣∣ · ∣∣J (R)
∣∣) possible prefix pairs

J (L,j),J (R,k)

2: Choose a pair with cost∗(J (L,j))+cost
∗J (R,k) ≤ T/2

maximizing j + k.
3: Schedule the jobs of J (L,j) in a reduced-optimal manner.
4: Schedule the jobs of J (R,k) in a reduced-optimal manner.

2 ·g · qL+ rL where qL and rL are the quotient and remainder
in the division of

∣∣Q(L)
∣∣ by 2g, i.e. qL ≥ 0, 0 ≤ rL < 2g,

and define qR and rR in a similar way.
Claim 4.1: The approximation ratio of ALG1 is at most

2 + 4
qL+qR

.

Proof: Let Q(L) = {J0, J1, . . .} where the jobs are
indexed in non-increasing order of their head lengths. In a
one sided clique instance the minimum cost is obtained by
scheduling the longest g jobs on one machine, the next g
jobs on another machine and so on. Therefore cost∗(Q(L)) ≥∑2qL−1
i=0 len(Ji·g). As the sequence is non-increasing the odd

indexed elements of the sequence sum up to at most half
of the sum, namely

∑qL−1
j=0 len(J(2j+1)g) ≤ cost∗(Q(L))/2.

This sum is the reduced cost of the schedule s that schedules
the g jobs J(2i+1)g, J(2i+1)g+1, . . . , J(2i+1)g+g−1 on machine
i for 0 ≤ i < qL. Thus costs ≤ cost∗(Q(L))/2 and
tputs = g · qL. Now we observe that the reduced cost of a
schedule s′ that schedules the g · qL jobs with shortest heads
in Q(L) is at most costs because jobs are only replaced with
jobs with shorter heads. The same holds for the schedule s′′

that schedules J (L,g·qL) by a similar argument. Therefore
costs

′′
(J (L,g·qL)) ≤ costs

′
≤ costs ≤ cost∗(Q(L))/2, or

costs
′′
(J (L,g·qL)) ≤ cost∗(Q(L)) ≤ cost∗(Q(L)). We schedule

jobs from Q(R) in a similar manner and get costs
′′
(J (L,g·qL)∪

J (R,g·qR)) ≤ cost∗(Q(L)∪Q(R)) ≤ T . Therefore s′′ is within
budget, i.e. the total machine busy time it uses is at most T .
Observe that ALG1 considers this prefix pair in one of its
iterations, thus it will return a schedule with throughput no
less than the throughput of s′′, i.e. (qL+ qR)g. Recalling that
s∗ schedules

∣∣Q(L)
∣∣+ ∣∣Q(R)

∣∣ = 2(qL + qR)g+ rL + rR jobs,



9

the approximation ratio of ALG1 is

2(qL + qR)g + rL + rR
(qL + qR)g

= 2 +
rL + rR

(qL + qR)g
< 2 +

4

qL + qR
.

If qL = qR = 0 then tput∗ ≤ rL + rR ≤ 4g − 2. By
contraposition and using the above claim we conclude

Lemma 4.1: If tput∗ > 4g − 2 then ALG1 is a
6-approximation algorithm for clique instances of
MAXTHROUGHPUT.

It remains to find a good approximation for the case
tput∗ ≤ 4g − 2. In this case to find a schedule that schedules
g jobs on one machine would be a 4-approximation. We
say that an interval I covers a subset Q ⊆ J of jobs if
all the jobs in Q are contained in it. The coverage of I is
the maximal subset Q of J that I covers. The coverage of
some given interval I can be computed in time O(|J |) by
considering each job and testing whether it is covered by I .
Now we observe that in a clique instance, for any subset
Q ⊆ J of jobs, SPAN(Q) is determined by at most two
jobs, each one determining one endpoint. In other words there
exist two (not necessarily distinct) jobs Jl, Jr ∈ Q such that
SPAN({Jl, Jr}) = SPAN(Q). We conclude that the number
of all possible distinct intervals SPAN(Q) is at most |J |2.
ALG2 below is a polynomial-time algorithm by the preceding
discussion.

Algorithm 6 ALG2
1: Try each possible pair Ji, Jj of jobs with

span({Ji, Jj}) ≤ T .
2: choose the pair whose span covers the maximum number
m of jobs.

3: if m ≤ g then
4: assign all the jobs in the coverage of SPAN({Ji, Jj})

to the same machine.
5: else
6: choose arbitrarily g jobs from the coverage of

SPAN({Ji, Jj}).
7: assign them to the same machine.
8: end if

Lemma 4.2: If tput∗ ≤ 4g − 2 then ALG2 is a 4-
approximation algorithm for clique instances of MAX-
THROUGHPUT.

Proof: Consider the span SPAN(J ∗) of all jobs scheduled
by some optimal schedule s∗. Then T ≥ cost∗ ≥ span(J ∗).
ALG2 will consider this span in one of the iterations therefore
the value of m will be at least equal to tput∗. If tput∗ ≥ g
then m ≥ g and the algorithm will schedule g jobs. In this
case the approximation ratio is at most (4g − 2)/g < 4. If
tput∗ < g then tput∗ ≤ min(m, g) and the algorithm schedules
min(m, g) jobs, therefore optimal.
By considering the combined algorithm that runs ALG1 and
ALG2 and returns the best of the two schedule we conclude
by Lemmas 4.1 and 4.2:

Theorem 4.1: There is a 6-approximation algorithm for
clique instances of MAXTHROUGHPUT.

Algorithm ALG1 can be implemented in O(|J |) time.
Though, as we are interested mainly in approximation ratios,
we have chosen the above description for ease of exposition.

B. Proper Clique Instances
In this section we give a polynomial time dynamic

programming algorithm for proper clique instances of
MAXTHROUGHPUT. We first show a structural property of
the optimal solution in Lemma 4.3, which is an extension
of Lemma 3.3 in Section III-C. Recall that without loss of
generality J1 ≤ J2 ≤ · · · ≤ Jn, and that a subset Q ⊆ J
is said to be consecutive in J if Q = {Ji, Ji+1, . . . , Jj} for
some i ≤ j.

Lemma 4.3: For proper clique instances of
MAXTHROUGHPUT there is an optimal (partial) schedule
such that Ji is consecutive in J for every machine Mi.
Note that the statement of Lemma 4.3 is the same as Lemma
3.3 except that an optimal schedule may be partial, and
therefore some jobs may be left unscheduled.

Proof: Let s∗ be a schedule that schedules maximum
number of jobs and has minimum cost among such schedules.
Let J ∗ ⊆ J be the set of jobs scheduled by s∗. For each
machine Mi, J ∗i is consecutive in J ∗ by Lemma 3.3. It re-
mains to prove that Ji is consecutive in J . Assume, by way of
contradiction that for some machine Mi, Ji is consecutive in
J ∗ but not consecutive in J . Then J ∗i = {Ji1 , Ji2 , · · · , Jik},
where i1 < i2 < · · · < ik and there is at least one non-
scheduled job Jx such that i1 < x < ik. Then we can
schedule Jx on Mi and unschedule Ji1 . Since the instance
is a clique instance this still gives a feasible schedule and
since the instance is a proper instance, Jx is entirely within
the span of J ∗i , thus the cost can only decrease. This process
can be repeated until J ∗i is consecutive in J .

By Lemma 4.3, each machine processes a set of consec-
utive jobs in J , and a (possibly empty) set of consecutive
unscheduled jobs are between the jobs of two consecutive
machines Mi and Mi+1. With this observation, we formulate
a dynamic program to find the minimum cost of scheduling
a subset of jobs. We define the cost function cost(i, j, u, t) as
the minimum cost of scheduling the instance consisting of the
first i jobs of J such that the last machine processes exactly
j jobs, the last (exactly) u jobs are not scheduled and a total
of t (out of the i jobs) are not scheduled. A valid schedule
is a scheduling such that cost(n, j, u, t) ≤ T and an optimal
schedule is one that has the minimum value of t. In other
words, the maximum throughput is

n−min{t | cost(n, j, u, t) ≤ T} .
cost(i, j, u, t) can be calculated recursively as follows. For any
1 ≤ i ≤ n, 1 ≤ j ≤ min(i, g), 0 ≤ u ≤ i − j, and u ≤ t ≤
i− j,

cost(i, j, u, t) =



cost(i− 1, j, u− 1, t− 1)
if u > 0,

cost(i− 1, j − 1, u, t) + |Pi| − |Ii−1|
if u = 0 and j > 1,

minj′,u′ cost(i− 1, j′, u′, t) + |Pi|
if u = 0 and j = 1.

(4)
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In the last case, the ranges of j′ and u′ are: 1 ≤ j′ ≤
min(g, i− 1− t) and 1 ≤ u′ ≤ min(i− 1− j′, u).

When u > 0, the schedule with cost(i, j, u, t) is supposed
to have the least u jobs non-scheduled and thus the schedule
of the first i − 1 jobs would have the least u − 1 jobs non-
scheduled, i.e., with cost(i− 1, j, u− 1, t− 1). When u = 0,
it means the last j jobs are supposed to be processed on the
same machine. If j > 1, it means the schedule for the first
i − 1 jobs should have the last j − 1 jobs assigned to the
same machine and Ji is scheduled on the same machine as
these j − 1 jobs, then the cost would become cost(i− 1, j −
1, u, t) + |Ji| − |Ii−1|. Otherwise if j = 1, it means that Ji
is scheduled to a new machine and the schedule for the first
i− 1 machines can have any valid value of j′ and u′ and so
the cost can be computed as shown in recurrence 4. The 4-
dimensional table can be filled by the dynamic programming
algorithm MOSTTHROUGHPUTCONSECUTIVE.

Algorithm 7 MOSTTHROUGHPUTCONSECUTIVE

1: cost(1, 1, 0, 0)← |T |
2: for i = 2 to n do
3: for j = 1 to min(i, g) do
4: for u = 0 to i− j do
5: for t = u to i− j do
6: if u > 0 then
7: cost(i, j, u, t) = cost(i−1, j, u−1, t−1)
8: else
9: if j > 1 then

10: cost(i, j, u, t) = cost(i − 1, j −
1, u, t) + |Pi| − |Ii−1|

11: else
12: cost(i, j, u, t) =

min
1≤j′≤min(g,i−1−t)
1≤u′≤min(i−1−j′,u)

cost(i− 1, j′, u′, t) + |Pi|

13: end if
14: end if
15: end for
16: end for
17: end for
18: end for

The 4-dimensional table contains n3g entries. Among these
entries, the computation of at most n2 entries requires O(gn)
time and the rest requires O(1) time. We conclude

Theorem 4.2: There exists a polynomial time algorithm for
proper clique instances of MAXTHROUGHPUT that computes
an optimal schedule in time O(|J |3 · g).

V. SUMMARY, EXTENSIONS AND FUTURE WORK

In this paper we revisit the problem MINBUSY and initiate
the study of the problem MAXTHROUGHPUT in optimization
of busy times. The full list of results is given in Section I. In
particular, three of our results on MINBUSY directly improve
upon existing results as follows.
• A polynomial-time algorithm for clique instances when
g = 2.

• A g·Hg
Hg+g−1 -approximation algorithm for clique instances,

where Hg is the g-th harmonic number, for small values
of g.

• A (2−1/g)-approximation algorithm for proper instances.

The following open problems are of interest:

• MINBUSY: The exact complexity of MINBUSY for clique
instances and for proper instances is still open. In this
work approximation algorithms were presented.

• MAXTHROUGHPUT: We have shown that this problem is
NP-Hard whenever MINBUSY is NP-Hard. We note that
the problem is NP-Hard in the weak sense even for proper
instances, by a simple reduction from the KNAPSACK
problem (T being the size of the knapsack). The question
of whether it is strictly harder than MINBUSY generally
or in a special case is open.

As we have mentioned, our work is closely related to
power-aware scheduling, cloud computing and optical network
design. Our problems can be extended to cover more general
problems in these three applications.
Power-aware scheduling: As we mentioned in Section I, ma-
chine busy time reflects how long the processor is switched
on and how much energy is used. Energy saving can also be
achieved via other mechanisms.

• Modern processors support Dynamic Voltage Scaling
(DVS) (see, e.g., [15], [21], [29]), which means the
processor speed can be scaled up or down. In the context
of busy time scheduling, the scheduler may speed up the
processor to shorten the busy time, resulting in shorter
time of processing but higher power usage per time unit.
It is interesting to derive algorithms that can make a wise
tradeoff.

• We assume that we can use as many machines as we like
without any overhead. In reality, switching on a machine
from a sleep state requires some energy and it may save
energy to leave a machine to idle if jobs will be scheduled
on it again soon [1], [6]. To take this advantage, different
optimization criteria have to be considered.

Cloud computing: The following extensions can be interpreted
clearly within the context of problems in cloud computing (see,
e.g., [9], [22], [25]) as presented in Section I.

• We measure the throughput as the number of jobs
satisfied. In general, we can consider jobs having an
associated benefit and maximize the total benefit obtained
from the scheduled of jobs.

• We assume that each job requires the same amount of
capacity (1/g) of a machine. An extension is to allow a
job requiring different amount of capacity and a machine
can process jobs as long as the sum of capacity required
is at most g [16].

• We assume that the machines have identical computing
power. An extension is to have different machines types
and to allow a job to require a specified list of machines
type.

• Another extension is to consider machines that can have
different capacities, e.g., there are several types of ma-
chines with capacity gk for machine type k.
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• In this work the jobs are supposed to be processed during
the whole period from start time sj to completion time
cj . We can consider jobs of other characteristics.

– One may consider jobs that also have a processing
time pj and have to be processed for pj time units
during the interval [sj , cj ] (see e.g. [24]).

– One may also consider malleable jobs which can be
assigned several machines and the actual processing
time depends on the number of machines allocated
(see e.g., [20], [24]).

Optical network design: As detailed in Section I, the scheduling
problems studied in this paper have a direct application to
problems in placement of regenerators in optical network
design. Our work is related to two regenerator optimiza-
tion problems with traffic grooming for network with a line
topology. In MINBUSY we are given a set of paths and a
grooming factor g and the objective is to find a valid coloring
for all paths with minimum total number of regenerators. In
MAXTHROUGHPUT we are also given a budget T and the
objective is to find a valid coloring with at most T regenerators
that maximizes the number of satisfied paths. Some of our
results can be extended to other topologies. In particular:
• The algorithm in Proposition 3.1 for one-sided clique

instances can be extended to tree topologies.
• Theorem 3.3 can be extended to ring and tree topologies.
The first two above-mentioned extensions in the context

of cloud computing are of importance also in the context of
optical networks; namely, the case where each job has a benefit
associated with it, and the case where each job has its own
capacity demand. The first case corresponds to the extension
of the regenerator placement problem to the case where there
is a benefit associated with each lightpath to be established,
and in the maximization problem the objective is to maximize
this benefit. The second case corresponds to the extension of
the regenerator placement problem to the case where each
lightpath has a capacity (say, a multiple of 1/g), so that up to
a total of g such capacity units can be groomed together on
any particular communication line, and the objective is to find
optimal solution for the MINBUSY and MAXTHROUGHPUT
problems.
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