
Tackling Fibonacci words puzzles by finite
countermodels

Alexei Lisitsa1

Department of Computer Science, The University of Liverpool
A.Lisitsa@csc.liv.ac.uk

Abstract. In the paper we present an automated solution to the puzzle
on Fibonacci words using first-order theorem disproving by finite model
finding.

1 Introduction

The verification of properties of infinite state systems in general is undecidable
problem and the development of new verification techniques and methods will
never stop. One of the promising directions for tackling infinite-state, or param-
eterized, verification is to apply the methods based on direct encoding of states
and transitions of the systems of interest in classical first order logic in a way
that computations of the system are faithfully modelled by the derivations in
first-order logic. The verification of safety properties, that is non-reachability of
unsafe states, then translated into the task of disproving first-order formulae,
which can be then tackled by automated finite countermodel finding.

The safety verification technique using first-order encoding and finite model
finding has been originated in earlier work on the verification of cryptographic
protocols [14, 13, 2, 3] and the first, particularly simple and convincing presenta-
tion of such ideas can be found in a paper [13].

More recent work [6–8, 10, 11] has showed that there is nothing specifically
“cryptographic” or “security-related” in such an approach to verification and
it can be applied to the numerous and wider classes of infinite-state and pa-
rameterized verification tasks. Rather surprisingly it has turned out that Finite
Countermodel verification method (FCM) not only has particularly simple and
elegant theoretical foundations but is robust and very efficient in practice.

In this paper we present a small case study and apply FCM method to resolve
automatically the puzzle(s) on Fibonacci words. We illustrate both the elegance
and the power of the method and explain the meaning of produced proofs.

2 Preliminaries

We assume that the reader is familiar with the basics of first-order logic. In
particular, we use without definitions the following concepts: first-order predicate
logic, first-order models, interpretations of relational, functional and constant

symbols, satisfaction |= of a formula in a model, semantical consequence |=,
deducibility (derivability) ` in first-order logic. We denote interpretations by
square brackets, so, for example, [f] denotes an interpretation of a functional
symbol f in a model. We also expect the reader not to be surprised by the
existence of complete finite model finding procedures for the first-order predicate
logic [1, 12], which given a first-order sentence ϕ eventually produce a finite model
for ϕ if such a model exists.

3 Fibonacci words

Fibonacci words probably are less known than their classical cousins Fibonacci
numbers, but not less interesting. The infinite sequence F of Fibonacci words is
defined recursively as

w0 = b, w1 = a,wi+2 = wiwi+1

and consists of the words: b, a, ba, aba, baaba, ababaaba, baabaababaaba,
After quick inspection one may notice that none of the words shown above

contains bb as a subword. The same is true for the subword aaa. Indeed, it is
known that actually none of the infinitely many Fibonacci words contains bb or
aaa as the subwords. The reader may wish to try to prove it himself/herself, or
consult [15] for further hints.

Here we demonstrate how to establish such properties automatically using
first-order theorem disproving by finite countermodels finding. Following [9] con-
sider the theory FIB in first-order predicate logic:

– (x ∗ y) ∗ z = x ∗ (y ∗ z)
– R(b, a)
– R(x, y)→ R(y, x ∗ y)

The first (semigroup) axiom expresses associativity of concatenation and
remaining two axiomatize the binary predicate R, where intuitive meaning of
R(x, y) is x and y are two consecuitive Fibonacci words. We have now

Proposition 1. If w is a Fibonacci word then FIB ` ∃xR(tw, x), where tw
denote a term encoding of w, i.e. taba = (a ∗ b) ∗ a

Proof. It is sufficient to show that for all i ≥ 0 Fib ` R(twi
, twi+1

). The
proof proceeds by easy induction. For i = 0 we have Fib ` R(b, a) and therefore
Fib ` R(tw0 , tw1). Assume Fib ` R(twi , twi+1). We also have Fib ` R(x, y) →
R(y, x ∗ y) (by definition of FIB). It follows that Fib ` R(twi+1

, twi
∗ twi+1

)
(by application of Modus Ponens), and therefore Fib ` R(twi+1

, twi+2
) (by

wi+2 = wiwi+1).
By contraposition we have now

Corollary 1. 1. If FIB 6` ∃x∃z∃yR(z ∗ b ∗ b ∗ y, x) then there is no Fibonacci
word with bb as a subword, and similarly,

2. If FIB 6` ∃x∃z∃yR(z ∗ a ∗ a ∗ a ∗ y, x) then there is no Fibonacci word with
aaa as a subword.

3.1 The case of ‘bb’

To show FIB 6` ∃x∃z∃yR(z ∗ b ∗ b ∗ y, x) it is sufficient to demonstrate a coun-
termodel for FIB → ∃x∃z∃yR(z ∗ b ∗ b ∗ y, x), or equivalently, a model for
FIB ∧ ¬∃x∃z∃yR(z ∗ b ∗ b ∗ y, x).

To find a model we apply generic finite model finding procedure [1], e.g.
implemented in Mace4 finite model finder by W.McCune [12]. A model of size 5
is found in 0.05s. The property is proved, no bb will ever appear in a Fibonacci
word. The actual output of Mace4 can be found in [6]. Here we describe the
model.

The domain of the modelM1 is a 5 elements set D = {0, 1, 2, 3, 4}. Interpre-
tations of constants are: [a] = 0 and [b] = 1 . The interpretation of ∗ is given by
the following multiplication table:

[∗] 0 1 2 3 4
0 0 3 0 3 4
1 2 4 4 1 4
2 2 1 2 1 4
3 0 4 4 3 4
4 4 4 4 4 4

The interpretation [R] of the binary relation R is given by the table

[R] 0 1 2 3 4
0 0 0 1 0 0
1 1 0 0 0 0
2 1 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0

which means [R] = {(1, 0), (2, 0), (0, 2)}
Now we explain how the existence of such a model proves the property. We

have already presented a logical argument - the existence of the model prevents a
formula above to be derivable and by virtue of that, prevents the corresponding
word violating the property to be Fibonacci(an). That does not explain however
why the property holds. Consider interpretations of (term encodings of) initial
Fibonacci words: [b] = 1, [a] = 0, [b∗a] = 2, [a∗b∗a] = 0, [b∗a∗a∗b∗a] = 2,
Using [twi+2

] = [twi+1
] ∗ [twi+1

] we conclude that [tw2k
] = 2 and [tw2k+1

] = 0 for
all k ≥ 1. Thus for any Fibonacci word wi we have [twi

] ∈ {0, 1, 2}. Consider now
the interpretation tw of any word w = xbby. We claim that [tw] = 4 6∈ {0, 1, 2}.
Indeed, [b ∗ b] = 4 and for any x, y ∈ D x ∗ 4 = 4 and 4 ∗ y = 4, i.e. 4 is a zero
element of the semigroup. That resolves the puzzle.

3.2 The case of ‘aaa’

Similarly to the case above, to show FIB 6` ∃x∃z∃yR(z ∗ a ∗ a ∗ a ∗ y, x) it is
sufficient to demonstrate a countermodel for FIB → ∃x∃z∃yR(z ∗a∗a∗a∗y, x),
or equivalently, a model for FIB ∧¬∃x∃z∃yR(z ∗ a ∗ a ∗ a ∗ y, x). It took 45s for
Mace4 to find a countermodel M2 of size 11.

The domain of the modelM2 is an 11 elements setD = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
Interpretations of constants are: [a] = 0 and [b] = 1 . The interpretation of ∗ is
given by the following multiplication table:

[∗] 0 1 2 3 4 5 6 7 8 9 10
0 2 4 5 9 7 5 10 5 5 8 2
1 3 1 6 3 1 5 6 1 3 3 6
2 5 7 5 8 5 5 2 5 5 5 5
3 6 1 5 3 1 5 6 5 5 3 6
4 9 4 10 9 4 5 10 4 9 9 10
5 5 5 5 5 5 5 5 5 5 5 5
6 5 1 5 3 5 5 6 5 5 5 5
7 8 7 2 8 7 5 2 7 8 8 2
8 2 7 5 8 7 5 2 5 5 8 2
9 10 4 5 9 4 5 10 5 5 9 10
10 5 4 5 9 5 5 10 5 5 5 5

The interpretation [R] of the relationR is given by [R] = {(0, 3), (1, 0), (3, 9), (9, 3)}.
Using the same arguments as in the case ’bb’, we have [twi] ∈ {0, 1, 3, 9} for all
Fibonacci words wi and [tw] = 5 6∈ {0, 1, 3, 9} for all w = xaaay. The property
is established. Notice that as in the previous case the words with a forbidden
pattern are interpreted by a zero element of the semigroup, that is 5 in this case.

3.3 Finite Models as Regular Invariants

The finite models produced above can be seen as the compact representations of
the regular invariants (separators) sufficient to prove the properties. Indeed, con-
sider, for example, the modelM2 above and let L = {w ∈ Σ∗|[tw] ∈ {0, 1, 3, 9}}
where Σ = {a, b}. Let A ⊆ Σ∗ be the language of all words containing aaa as
a subword. Then we have F ⊆ L, L ∩ A = ∅. The language L separates F and
A and is regular due to well-known algebraic characterization of regular lan-
guages as the inverse images of homomorphisms from free monoids (semigroups)
to finite monoids (semigroups) , see e.g. [5]. Thus the work of the finite model
finder in this context can bee seen as a systematic attempt to build a regular
separator, or invariant, sufficient to show the safety. This observation explains
the relative completeness of FCM method with respect to the variants of regu-
lar model checking [8, 10, 11]. Notice that in general the termination of a finite
model building procedure is not guaranteed. It can be fixed by setting an upper
bound for the model size.

4 Challenge

The author was very surprised to find an automated solution of Fibonacci puzzle
using Mace4 model finder and strongly suspect that it would be difficult to get
such a solution in any other way. The author would like to challenge anyone to
demonstrate an alternative automated solution to this puzzle. The conditions of
the challenge will appear at
http://www.csc.liv.ac.uk/~alexei/Fibonacci_Challenge/

Have a fun!

5 Acknowledgement

The author learned about Fibonacci words and the puzzle above from the very
nice presentation of the paper [4] by Naoki Kobayashi at TTATT 2012 Work-
shop, Nagoya, Japan, 02.06.2012. In the talk a bounded version of the problem
considered, namely how to prove efficiently that all Fibonacci words up to w1000

do not contain fobidden patterns.

References

1. R. Caferra, A. Leitsch, N. Peltier, Automated Model Building, Applied Logic Series,
31, Kluwer, 2004.

2. Goubault-Larrecq, J., (2008), Towards producing formally checkable security proofs,
automatically. In: Computer Security Foundations (CSF), pp. 224–238 (2008)

3. Guttman, J., (2009) Security Theorems via Model Theory, Proceedings 16th In-
ternational Workshop on Expressiveness in Concurrency, EXPRESS, EPTCS, vol. 8
(2009)

4. Kobayashi, N., Matsuda, K., and Shinohara, A., Functional Programs as Com-
pressed Data, Proceedings of TTATT 2012 1st International Workshop on Trends in
Tree Automata and Tree Transducers, Nagoya, Japan, 02.06.2012.

5. Lallement, G., Semigroups and Combinatorial Applications, John Wiley & Sons,
1979

6. Lisitsa, A., (2009a), Verfication via countermodel finding
http://www.csc.liv.ac.uk/~alexei/countermodel/ (accessed 12.04.2013)

7. Lisitsa, A., (2010b), Reachability as deducibility, finite countermodels and verifica-
tion. In Proceedings of ATVA 2010, LNCS 6252, 233–244

8. Lisitsa, A., (2010c), Finite model finding for parameterized verification, CoRR
abs/1011.0447: (2010)

9. Lisitsa, A., (2012) , Finite models for Verification, a talk given in ENS Cachan,
LSV, June 22, 2012, slides avialable at [6]

10. Lisitsa, A., Finite Models vs Tree Automata in Safety Verification, 23rd Interna-
tional Conference on Rewriting Techniques and Applications RTA’ 2012, pp 225–239

11. Lisitsa, A., Finite Reasons for Safety, Journal of Automated Reasoning, DOI
10.1007/s10817-013-9274-9, February 2013

12. McCune, W., Prover9 and Mace4 http://www.cs.unm.edu/~mccune/mace4/ (ac-
cessed 12.04.2013)

13. Selinger, P., (2001), Models for an adversary-centric protocol logic. Electr. Notes
Theor. Comput. Sci. 55(1) (2001)

14. Weidenbach, C., (1999), Towards an Automatic Analysis of Security Protocols in
First-Order Logic, in H. Ganzinger (Ed.): CADE-16, LNAI 1632, pp. 314–328, 1999.

15. Whealton, S., String Rewriting and the Fibonacci Word,
http://www.washingtonart.net/whealton/fibword.html (accessed 12.04.2013)

