
A Common Semantic Basis for BDI Languages⋆

Louise A. Dennis1, Berndt Farwer2, Rafael H. Bordini2,
Michael Fisher1, and Michael Wooldridge1

1 Department of Computer Science, University of Liverpool, UK
2 Department of Computer Science, University of Durham, UK

Contact:lad@csc.liv.ac.uk

Abstract. We describe the design of an intermediate language (AIL) for BDI-
style programming languages. AIL is not intended as yet another programming
language, but is meant to provide a common semantic basis for a numberof
BDI programming languages in order to support both formal verification and the
transfer of concepts and developments. We examine some of the key features of
AIL, unifying a wide variety of structures appearing in the operational semantics
of BDI programming languages. In particular, we highlight issues in the treatment
of events, goals, and intentions, which are central to the design of these languages.

1 Introduction

As the concept of an “agent” becomes more popular, so the variety of programming
languages based upon this concept increases. Theseagent-orientedprogramming lan-
guages range from minimal extensions of JAVA through to logic-based languages for
“intelligent” agents [1, 14]. In our work, we are particularly concerned (at least initially)
with approaches based onrational agent theories[28], primarily theBDI theorydevel-
oped by Rao and Georgeff [23]. Such languages not only incorporate the autonomous
behaviour required for the agent concept, but also provide sophisticated mechanisms
for instigating, controlling, and reasoning about such behaviours.

Although programming languages based on the BDI approach (let us call theseBDI
languages) are increasingly popular, there are several problems, forexample:

1. there aretoomany languages – consider all the varieties described in [1];
2. many of the languages are similar, yet subtly different – this makes it difficult for

developers to learn more than one language, as they are not based on agreed no-
tions/definitions; further, such differences make it difficult to identify precisely the
general mechanisms and to transfer new techniques between languages; and

3. despite the fact that many BDI languages have logical semantics and utilise logical
mechanisms, formal verification tools are rare.

This last aspect is particularly important, since BDI approaches are increasingly used
in complex, critical applications such as space exploration [20, 5, 24].

In our work1 we aim to design an intermediate language (called AIL–Agent Infras-
tructure Layer) for BDI-style programming languages. There are several motivations
for this, including:
⋆ Work supported by EPSRC grants EP/D054788 (Durham) and EP/D052548 (Liverpool).
1 Seehttp://www.csc.liv.ac.uk/∼michael/mcapl06 for details.

– providing a common semantic basis for a number of BDI languages, thus clarifying
issues and aiding further programming language development;

– supporting formal verification by developing amodel-checkeroptimised for check-
ing AIL programs – existing BDI languages can have language-specific compilers
for AIL so as to take advantage of its associated model-checker; and

– providing, potentially, a high-level virtual machine for efficient and portable imple-
mentation.

Rather than attempting to cover all BDI languages from the start, we have initially
tackled some of the most popular. Thus, we have principally referred to the variant of
AgentSpeak [22] used inJason[3] and 3APL [18, 8] when designing the semantics for
the AIL, but have also taken Jadex [21] and (Concurrent) METATEM [13] into account.
However, we expect that a significant proportion of the existing programming languages
for multi-agent systems will have mappings into AIL in the future.

The current design for AIL, in the form of an extensive operational semantics, can
be found in [10]. For the sake of space, in this paper we only discuss the main aspects of
AIL and introduce only the most important rules of the operational semantics. In order
to model a particular language in AIL it will be necessary to create a custom AIL com-
piler for that language. It may also be necessary to provide some custom JAVA classes
for the language although these will, in general, be specificto a particularinterpreter
for the language rather than the language itself. We intend to provide such classes and
compilers for AgentSpeak and 3APL, though this work remainsto be done. The cor-
rectness of these compilers will then also need to be addressed. One of the reasons why
AIL is to be implemented as a JAVA library is that we aim to use JPF2 [26] as a target
model checker for programs written in various BDI languages.

Sometimes it will prove possible to map only fragments of a given language into
AIL. Our expectation is that large and useful fragments of most BDI-style agent pro-
gramming languages will be translatable. In order to accommodate the main features of
the primary BDI languages, AIL has some components with overlapping functionality.

The structure of the remainder of this paper is as follows. InSection 2, we will
describe the key similarities in the programming languagesconsidered, which will in
turn provide the basis for AIL. Section 3 then describes the core features and operational
semantics of AIL. Within AIL, certain language design decisions are required; those
related to plan revision in particular are highlighted in Section 4. Finally, in Section 5,
we provide concluding remarks, outline future work, and point to aspects of AIL not
covered in this paper.

2 General Similarities

There are some general concepts that are found in many BDI languages. We will review
these similarities and discuss the design implications forAIL.
Formula Representation. 3APL, AgentSpeak, and METATEM all use minor variations
on first order literals for the representation of beliefs, goals, actions, etc. Jadex uses
an internal JAVA representation but fragments of this can be mapped into firstorder
logic [4]. Therefore we have chosen first order literals as the basic representation.

2 http://javapathfinder.sf.net

Beliefs. All these languages have the concept of abelief base, generally considered as a
set of (belief) formulæ. A formula is considered to be believed if it is (unifiable with) a
formula in this set. In some languages there is extra reasoning machinery on top of this.
In both AgentSpeak and 3APL this additional machinery is a Prolog-style reasoning
engine which we have therefore adopted for AIL.

Goals. All the BDI languages have the concept of goals – states of theworld the agent
is trying to bring about. The precise internal representation of goals differs but all the
languages we have considered maintain sets ofoutstanding goals. In general, the lan-
guages (with the exception of METATEM) also maintain a stack (or set of stacks) of
deeds3 to be performed in order to achieve these goals – these deeds may include com-
mitting to the achievement of further sub-goals. Informally, an agent’s reasoning cycle
involves either adding new deeds to this stack (triggered bythe creation of a sub-goal)
or removing deeds from the stack (as actions are performed and goals achieved).

In [9] goals are categorised into four types:achieve, perform, maintainandquery.
When an achieve goal appears in a deed stack it must be believedbefore it can be
removed. This contrasts with a perform goal which is removedas soon as new deeds
are added to the stack as a result of generating an intention from a suitable plan. Query
goals are used to query the belief base, usually in order to obtain instantiations for
variables. Maintain goals only trigger plan execution if they cease to be believed.

Terminology and semantics in this area is quite subtle, sometimes also referring to
events(AgentSpeak, 2APL [6]). In AgentSpeak, events refer both tocommitment to
achieving goals and changes perceived in the environment. There are also many ways
of managing the relationship between (outstanding) goals,sub-goals, and the deeds
associated with achieving them. Outstanding goals are those to which the agent has
committed but not yet achieved. This places a design burden on AIL, as it must:

– allow outstanding goals to be identified;
– be possible to link a given outstanding goal with the sequence of deeds currently

being pursued in order to achieve it;
– maintain sequences of deeds to be performed (including committing to new goals).

Actions. Actions are performed by an agent in the “outside world”, i.e., the environ-
ment where the agent is situated. The only effect an action has on the working of AIL
is that it may return a unifier for some variables (as this is allowed in some of the lan-
guages, but not all) and, of course, it may be deemed to have succeeded or failed. In
some languages, actions have specific effects on the belief base (e.g., 3APLcapabili-
ties4); such actions can be modelled as plans (see next point).

Plans. The word ‘plan’ is overloaded among BDI languages and can be used to repre-
sent either something that a programmer writes to describe how particular goals should
be tackled, or an agent’s internal deed stack of pending actions. We have chosen to use
plansfor the first of these, anddeed stackfor the second.

3 The term “deed” has not been used in the agent programming languageliterature, to our knowl-
edge, but we have adopted it as a way to refer to the various types of formula one can typically
have in the body of plans.

4 A 3APL capability is an “internal” action which alters an agent’s beliefs aboutthe world.

BDI languages have plans which are triggered according to aspects of the agent’s
state, typically the existence of an outstanding goal. Suchplans are of the form

(trigger,guard,body)

where the guard is some set of literals that should be believed for the plan to be deemed
applicable. If a plan is selected, the plan body is placed on the relevant deed stack.

Jasonalso allows plans (and therefore deed stacks) to include belief update infor-
mation and so this is also permitted in AIL. This allows us to model actions with side
effects (and specifically 3APL capabilities) within our definition of plans.

It should be noted that we do not intend humans to write nativeAIL code, so we are
able to ignore features which help a programmer conceptually differentiate between
aspects of the language, as is the case with 3APL plans and capabilities.

As well as having plans triggered by outstanding goals, AgentSpeak allows plans
to be triggered by changes in the belief base. 3APL allowsplan revisionrules/plans
which match the prefix of the deed stack and replace it with some alternative. Jadex and
METATEM haveconstraintrules/plans which are triggered by some specific configura-
tion of the belief base alone. In order to represent these different types of plans within
AIL, we need to make a number of generalisations. We assume a set of intentions,
each composed, among other things, of a stack ofevents(such as outstanding goals and
sub-goals or information about belief updates) and a stack of deeds. The structure of in-
tentions will be further explained in Section 3.1 and later exemplified in Section 3.4. In
this set, what some languages (such as AgentSpeak) call an “event” can be represented
as an AIL intention with an empty deed stack. We assume that acurrent intention, thus
also acurrent eventand acurrent deed stack, has been selected from this set.

Each plan in the agent’s plan library is represented by a tuple consisting of a trigger
event, a deed stack (called theprefix), a stack of belief expressions (called theguard
stack), and a (second) deed stack (called thebody). The trigger must match the current
event, and the prefix must match the prefix of the current deed stack for the plan to
be deemed relevant. The belief expression at the top of the guard stack must also be
believed by the agent. When this happens, the prefix is droppedfrom the current deed
stack and replaced with the body. Each new deed is paired withthe corresponding guard
(i.e., belief expression) from the guard stack. Through theuse variables in triggers and
empty prefixes, this structure allows us to model many different types of plan.

We use a guard stack in order to model the different semanticsfor guards. Some
languages (e.g., Jadex) haveinvariant expressionsthat must be checked at every stage
during the execution of a deed stack, while others (e.g., AgentSpeak and 3APL) check
guards only when a plan is to be adopted. When a plan does have aninvariant expres-
sion, that expression is paired with every deed on the stack.For normal plans (i.e., those
with only a guard and no invariants), only the first deed is paired with the guard expres-
sion; the remaining deeds are simply paired with⊤ (‘true’, denoting an empty guard).
Once again, since humans are not expected to write native AILplans, the tedium of
repeating the guard multiple times in order to represent a Jadex invariant is not an issue.

Applicable Plans. Most of the BDI languages employ the concept of generating an
applicableplan for achieving an outstanding goal. This is based on matching the plan’s
trigger, or prefix (to generaterelevant plans) and then checking the guard (to generate
applicable plans). These BDI languages rely on user-defined methods used by the inter-

?>=<89:;C select planp′

""
?>=<89:;B

applicable plans
i + P33

?>=<89:;D

handle top of plan
plan(i) = p′@plan(i)

?>=<89:;A

select intention
i JJ

?>=<89:;E

perception

I (new intention set)

Inbox,I (extended intention set)

ss?>=<89:;F
handle messages

I (extended intention set)
bb

Fig. 1.AIL’s deliberation cycle

preter to selectoneof the appropriate plans from the plan library, which then isused to
generate a new deed stack. However, METATEM generates all possible next states (deed
stacks). In particular, it instantiates all the relevant plans, in some cases generating sev-
eral potential new deed stacks for a single plan, and then chooses between these based,
among other things, on how many outstanding goals are achieved by each option. We
adopt this as a more general solution.

3 Agent Infrastructure Layer

AIL’s reasoning cycle may informally be viewed as shown in Figure 1.
In this cycle, starting at stageA, an intention– which includes a deed stack – is

selected, leading to stageB. Using the agent’s plan library and belief base, a set of
applicable plans (P in Figure 1) is generated (stageC). From this, a single applicable
plan is selected and its deed stack joined to the current deedstack (D). The topdeedin
this stack is then handled in the appropriate way (dependingon the type of formula) and
the set of intentions updated accordingly (E). Next, perception takes place, posting new
events (i.e., belief updates), leading to stageF. At this final stage, agent communication
messages are handled and the reasoning cycles restarts.

When events are generated from perception of the environment(from E to F), they
are treated as intentions with empty plans. Agents have a message “inbox” where agent
messages are placed. Any messages received during the last cycle are handled just be-
fore another reasoning cycle starts; this may also extend the intention set.

Since AIL is designed as a basis for efficient verification andnot as a programming
language to be used in developing agent-based systems, someparts of AIL programs
are essentially syntax-less (e.g., plans are represented directly as data structures in AIL).
We summarise AIL in the following sections.

3.1 Intentions: Events, Goals and Deed Stacks

The concept of anintention is common in BDI languages and is used to represent the
intended meansfor achieving goals – intentions include what we call a deed stack, but

may also maintain information about the sub-goal they are intended to achieve or the
event that triggered them.

In AIL, we treat intentions as a complex abstract data structure. This data structure
aggregates the information about events, outstanding goals, and deed stacks used by
the various BDI languages we have considered. As suggested above, we use the idea of
events to represent outstanding goals (as, e.g., in AgentSpeak).

AIL intentions may most simply be viewed as a matrix structure consisting of four
columns in which we record events, guards, deeds, and unifiers (respectively). These
columns form an event stack, a guard stack, a deed stack, and aunifier stack. There are
as many rows in the matrix as there are deeds (in the bodies of the plan instances that
have become intentions) and events that have not been dealt with yet. Individual rows
in the intention associate a particular deed with the event that has caused the deed to
be placed on the intention, a guard, and a unifier; new events are associated with an
empty deed. An example of the use of this data structure can befound in Section 3.4.
The actual implementation of intentions is likely to be morecompact than this – for
instance the commitment to achieving a goal (i.e., an event)will generally cause a stack
of deeds (the plan body) to be joined to the intention’s deed stack, all of which will get
associated with the same event; that is, each new deed generates a new row in the matrix
and the event is repeated in all those rows. Information about outstanding goals can be
extracted from the event stacks of all intentions, which record the agent’s existing goals
and the sequence of unachieved sub-goals generated in pursuit of these.

3.2 Interpreter Specifics

We already noted that many interpreters for BDI languages delegate plan selection to
user-defined methods.Jasonalso defers intention selection to such methods. We have
chosen to provide simple defaults for such functions (in each case the default selects the
top of the stack) but allow them to be overridden. In some cases, such as METATEM,
which has specific phases in which only certain plans are applicable, it will be necessary
to override these defaults when theoretically modelling the language.

3.3 Operational Semantics

In this section we present a simplified outline of the operational semantics for AIL. The
full semantics is available as a technical report (see [10]); we here focus on key issues
and semantic rules.

We view an agent as a tuple consisting of an identifierag , intentions (including a
current intention), applicable plans, a belief base, plan library, and a tag indicating the
current stage of the agent’s reasoning cycle. For presentation reasons we will only show
those parts of the state directly relevant to a rule.

Suppose we have already selected an intention (i.e., we are at stageB in Figure 1).
We use the following rule to generate all applicable plans.

P ′ = filter(appPlans(ag)) P ′ 6= ∅

< ag ,P , B >→< ag ,P ′, C >
(1)

filter is an AIL function that, by default, is the identity mapping,but can be overridden
by a particular interpreter to remove some of the plans whichAIL considers applicable
(e.g., ones which have already been attempted).

The AIL functionappPlans generates the union of two sets.

appPlans(ag) = match plans(ag) ∪ continue(ag) (2)

Informally match plans(ag) produces all the plans applicable to the current intention
by inspection of the plan library. In contrast,continue(ag) produces the plans which
result from continuing to process the current deed stack.

The plans generated byappPlans are tuples consisting of the event, deed stack,
guard stack, and unifier to be added to the current intention.However, they also include
a number (n), representing a number of rows to be dropped from the current intention
before this plan is added (typically, this number would be 1,to remove theǫ “no plan
yet” marker; see semantic rule (4)). The need for this is discussed further in Section 4.1.

The interpreter then selects one of these applicable plans,drops the specified num-
ber of rows from the current intention, and replaces them with a new row for each deed
in the plan’s deed stack (paired with the event, unifier, and appropriate guard as sup-
plied by the plan). In the next semantic rule, the selection function ‘Splan’ defaults to
selecting the top plan in the stack but may be overridden if required by a particular
application. We use ‘i ’ to denote the current intention.

Splan(P) = (< e, ds , gs, θ, n >)

< ag , i ,P , C >→< ag , (e, ds , gs, θ) @ drop(n, i)[θhd/θ], [], D >
(3)

The topn rows (as specified in the plans generated fromappPlans) are dropped from
the intention stack (drop(n, i)), the top unifier on the unifier stack of this new inten-
tion5 is replaced byθ ([θhd/θ]) and the new intention segment(e, p, gs , θ) is joined to
the front of the intention stack (@). The set of applicable plans is emptied. The plans
provided to the agent by the programmer remain in its plan library.

Then the top of the plan is handled by a variety of rules. The following rule shows
how to handle an (achieve) sub-goal not yet achieved. Recallfrom our discussion of
appPlans that ‘ǫ’ is a special symbol used to denote “no plan yet”. In our semantics we
use the syntax+!ag to signify the adoption of an achieve goal (a for “achieve”),g. This
is a deed when it appears in the deed stack of an intention and an event when it appears
in the event stack – its type is determined by context. When+!ag appears in the event
stack of an intention we may say that the agent has committed to achieving the goal.
The full syntax for AIL can be found in [10].

ag |= gu, ag 6|= g

< ag , (e,+!ag , gu, θ); i , D >→< ag , (+!ag , ǫ,⊤, θ); (e,+!ag , gu, θ); i , E >
(4)

The rule pushes “no plan yet” on top of the intention’s deed stack. This is associated
with the event+!ag (i.e., the commitment to achievingg) and an empty guard. Note
that ‘|=’ is used to represent the AIL belief checking process. Thus,“ag |= gu” asserts

5 see Section 3.1 for a description of the intention data structure.

that the agent believes the guard to be true, while “ag 6|= g” asserts that the agent does
not believeg , which can be interpreted as the agent not believing the goalhas been
achieved. Belief checking may cause the instantiation of variables.

If a goal is achieved, then we remove it from the top of the intention

ag |= gu, ag |= g

< ag , (e,+!ag , gu, θ); i , D >→< ag , i[θhd(i)/θ ∪ θhd(i)], E >
(5)

Because we want to preserve any decisions about unifiers, theunifier associated with
+!ag is merged with the top unifier ofi (the tail of the intention).

It is worth noting here that AIL does not distinguish betweenachieveandquery
goals. Query goals are easily handled by (5), since ‘|=’ instantiates variables. AgentSpeak
even allows query goals to act as trigger events and match plans if they do not succeed,
so (4) is also used.Performgoals can be handled by a simple modification to (4) which
does not leave+!pg on the stack. Onlymaintaingoals need to be treated entirely sep-
arately. In AIL, maintain goals insert a new constraint planin the library which fires
whenever the goal is no longer believed (details of this can be found in [10]).

Beliefs. All the languages we considered allow new beliefs to be inserted into, and
removed from, the agent’s belief base. However, some (e.g.,AgentSpeak) also allow
new plans to be placed in the plan library. We have therefore generalised the concept of
belief to include many aspects of an agent’s internal state,such as the plan library. Belief
updates (i.e., the addition of new beliefs, or the deletion of old beliefs) are tagged by the
relevant part of the state (e.g.,+bbb is an instruction to addb to the belief base, while
+ppl is an instruction to addp to the plan library). We have found by this mechanism
that all such updates can be handled essentially by the same rule, the only difference
being the state component that is selected. Rule (6) shows the special version of this
general rule for adding a belief to the belief base6.

ag |= gu

< ag , (e,+bbb , gu, θ); i , I , B, D >→
< ag , i[θhd(i)/θ ∪ θhd(i)], (+bbb , [ǫ],⊤, ∅); I , B ∪ {b}, E >

(6)

This causes the top of the current intention to be removed as in rule (5), and also causes
b to be added to the belief base. However, since a belief updatemay be a trigger for a
plan, we also place a new intention on the intention stack(+bbb , [ǫ],⊤, ∅), which has a
“no plan yet” deed stack. This, recall, is how events are represented in AIL.

3.4 Example

We now illustrate the operation of an AIL agent via a simple example. This is loosely
based on a 3APL example available in its user guide7. A robot has a goal to clean rooms.
When the robot believes a room is dirty, the plan is to go to thatroom and vacuum clean

6 AIL’s actual semantics allows multiple belief updates of mixed types at onceresulting in a
rather complex rule but (6) captures the key idea applied to a single update.

7 http://www.cs.uu.nl/3apl/download/java/userguide.pdf

it. There is insufficient space here to discuss a translationfrom 3APL to AIL although
we will briefly touch on some of the more interesting issues.

The robot possesses the following plans for cleaning rooms and changing locations.

PLAN 1:
trigger +!aclean()
prefix [ǫ]
guard stack dirty(Room)

TRUE
body +!aGoto(Room)

+!aVacuum(Room)

PLAN 2:
trigger +!Goto(R)
prefix [ǫ]
guard stack pos(P)

TRUE
TRUE

body -pos(P)
+pos(R)
+Goto(R)

We represent the components plans in table form showing the components introduced
in Section 2. Since 3APL guards are only checked once the guard is only associated
with the top deed. Note that 3APL goals such as+!aclean() are ‘achieve’ goals and it
is expected that the truth ofclean() will be established during execution. (In the sequel
we assume all goals to be achieve goals and drop the subscripts.)

Plan 2 is derived from a 3APL capability. The semantics of capabilities is given in a
Hoare-triple like format, for example:{pos(P)} Goto(R) {NOT pos(P), pos(R)}.
The plan shows how this is can be transformed into AIL.

Let us consider the execution of an AIL agent which starts outwith the goalclean()
and the beliefspos(room3) anddirty(room1). We examine the intention stack since
this is of the most interest in understanding the execution of an AIL agent. We represent
individual intentions as a matrix with four columns as discussed in Section 3.1.

Initially there is one intention, and this has one row to achieve the goal+!clean().
The event is the start of the program. The guard and unifier stacks are initially empty
(left-hand table below). Since the agent does not believeclean(), ǫ is placed on top of
the plan according to rule (5) with the trigger event noting the need to achieveclean().

trigger deed guardunifier

start +!clean() ⊤ ∅

(5)
−−→

trigger deed guardunifier

+!clean() ǫ ⊤ ∅

start +!clean() ⊤ ∅

Plan 1 now matches the intention. The ‘ǫ’ is dropped (since it matches the prefix) and
the plan’s new deed stack is joined to the intention’s remaining deed stack. All the deeds
in this new stack are associated with the plan’s trigger.

trigger deed guard unifier

+!clean() +!Goto(Room) dirty(Room) Room = room1

+!clean() +!Vacuum(Room) ⊤ Room = room1

start +!clean() ⊤ ∅

This process then repeats to planGoto:

trigger deed guard unifier

+!Goto(R) -pos(P) pos(P) Room = room1, P = room3, R = room1

+!Goto(R) +pos(room1) ⊤ Room = room1, P = room3, R = room1

+!Goto(R) +Goto(room1) ⊤ Room = room1, P = room3, R = room1

+!clean() +!Goto(Room) dirty(Room) Room = room1

...
...

...
...

AIL now performs the belief updates on the deed stack. These generate new intentions
according to rule (6); let us assume these are not prioritised by the intention selection
process so the intention stack becomes:

trigger deed guard unifier

+!Goto(R) +Goto(R) ⊤ Room = room1, P = room3, R = room1

+!clean() +!Goto(Room) dirty(Room) Room = room1

+!clean() +!Vacuum(Room) ⊤ Room = room1

start +!clean() ⊤ ∅

-pos(room3) ǫ ⊤ ∅

+pos(room1) ǫ ⊤ ∅

When we handle this last belief update the unifier is merged into the one for the top of
the first sub-plan, preserving any unifications obtained.

trigger deed guard unifier

+!clean() +!Goto(Room) dirty(Room) Room = room1, P = room3, R = room1

+!clean() +!Vacuum(Room) ⊤ Room = room1

start +!clean() ⊤ ∅

...
...

...
...

For lack of space we cannot expound on this example any further.

4 Plan Failure and Plan Revision

In most BDI languages it is assumed, in general, that once an agent has committed
to a goal, the goal is not abandoned. However, in reality, it is sometimes necessary to
reconsider intentions. Unfortunately, the literature on agent programming languages is
mostly vague about this process.

4.1 Plan Revision

3APL usesplan revision rulesto replace the prefix of whole intentions with revisions.
This influenced the design of AIL plans.

Consider an intention to give Jane a present, which has formed the deed stack: check
what is in the Harrods department store, go to London, and purchase the gift. So our
intention stack (ignoring guards) is represented as follows:

trigger deed unifier

+!give(X1, Y1) +!in harrods(Y1) X1 = jane, Y1 = X

+!give(X1, Y1) gotolondon X1 = jane, Y1 = X

+!give(X1, Y1) purchase(Y1, harrods) X1 = jane, Y1 = X

start +!give(jane, X) ∅

Let us suppose that achieving+!in harrods(Y1) instantiatesY1 to ‘computer’ yielding
the new intention stack:

trigger deed unifier

+!give(X1, Y1) gotolondon X1 = jane, Y1 = X, Y1 = computer

+!give(X1, Y1) purchase(Y1, harrods) X1 = jane, Y1 = X

start +!give(jane, X) ∅

Suppose also that we have a plan revision rule that says that instead of going to London
and buying a computer in Harrods we should, instead, purchase it from Dell:

PLAN 3:
trigger Any

prefix gotolondon

purchase(computer, harrods)

guard stack TRUE

body purchase(computer, dell)

The prefix is of length 2 so we drop two items from our intention. The last trigger of
the dropped section is+!give(X1, Y1) so that unifies withAny and we replace the
dropped parts of the stack with the new deed stack:

trigger deed unifier

Any purchase(Y1, dell) X1 = jane, Y1 = X, Y1 = computer, Any = +!give(X1, Y1)

start +!give(jane, X) ∅

This has preserved the unifications already decided upon (e.g., thatY1 = computer)8.

4.2 Plan Failure

The original AgentSpeak specification [23] includes a “dropgoal” construct in its syn-
tax but its semantics has never been made clear and thereforeit is often ignored in
attempts to model the language. For instance [17], which embeds AgentSpeak in an
early version of 3APL, ignores this aspect of the AgentSpeaksemantics. TheJasonin-
terpreter [2] for AgentSpeak posts drop goal (−!g) events when a plan fails [19]. There
are no default rules for handling these events but it is possible to write handlers as a
plan, for instance:

-!g:true <- +!g

which forces backtracking9, or other plans for handling failure. While there is no default
backtracking behaviour in either AgentSpeak or 3APL, METATEM uses backtracking
as a default revision procedure.

It seemed necessary to provide a mechanism by which the designer of an AIL com-
piler may define plan failure handling behaviour without providing unnecessary ad-
ditions to the language. This meant that plan failure had to be defined by plans. We
therefore needed to introduce a distinguished symbol ‘backtrack’ into our deed syntax
which, if used, causes the execution of the AIL operational semantics rules to system-
atically retrace their steps attempting different instantiations and rules, as in traditional
backtracking.

We adopt theJasonidea of posting a drop goal event when applicable plans can-
not be found or actions fail. When this happens the current trigger event is selected and
posted as a drop goal. A particular AIL interpreter need never select such events for han-
dling. However, if a drop goal eventis selected, then it is matched withall outstanding

8 This does mean that incautious use of plan revision can preserve unexpected unifications.
9 Note that this backtracking only retries the goal – the programmer must enforce the use of a

different plan or this could potentially cycle.

intentions to see if it unifies with an event (i.e., one of the goals or sub-goals to which
the intention has committed). If it does, ‘ǫ’ is placed on top of the plan for that intention
with −!g as its trigger. We plan to extend the semantics to allow the option of unifying
with just one intention. This allows us to model 3APL’s drop goal constructs10.

Any plans available for dropping goals can then be applied atthe applicable plan
stage. Possible plans include:

PLAN: Actually drop a goal
trigger -!g
prefix ǫ

guard stack TRUE

body -!g

PLAN: Retry a goal
trigger -!g
prefix ǫ

guard stack TRUE

body +!g

PLAN: Traditional backtracking
trigger -!g
prefix ǫ

guard stack TRUE

body backtrack

The first of these will place -!g on top of the deed stack. We have specified the handling
of a -!g deed in AIL as dropping everything on the goal stack after that goal was first
committed to. This also drops all unifiers allowing different rules to be used.

ag |= gu +!g = events(i)[n] ∀m > n.¬(+!g = events(i)[m])

< ag , (e,−!g , gu, θ); i , D >→< ag , drope(n, i), E >
(7)

whereevents(i)[n] is thenth trigger event on the intention stack.
Let us reconsider purchasing the present for Jane, suppose we are unable to get to

London. The failure of the actiongotolondon will post a new “drop goal” intention:

trigger deed unifier

-!give(X1, Y1) ǫ X1 = jane, Y1 = X, Y1 = computer

+!give(X1, Y1) gotolondon X1 = jane, Y1 = X, Y1 = computer

+!give(X1, Y1) purchase(Y1, harrods) X1 = jane, Y1 = X

start +!give(jane, X) ∅

Assuming this intention is selected a new merged intention is generated

trigger deed unifier

-!give(X1, Y1) ǫ X1 = jane, Y1 = X, Y1 = computer

+!give(X1, Y1) gotolondon X1 = jane, Y1 = X, Y1 = computer

+!give(X1, Y1) purchase(Y1, harrods) X1 = jane, Y1 = X

start +!give(jane, X) ∅

Upon using the plan “Actually drop a goal” above, we arrive at:

trigger deed unifier

-!give(X1, Y1) -!give(X1, Y1) X1 = jane, Y1 = X, Y1 = computer

+!give(X1, Y1) gotolondon X1 = jane, Y1 = X, Y1 = computer

+!give(X1, Y1) purchase(Y1, harrods) X1 = jane, Y1 = X

start +!give(jane, X) ∅

Now, (7) causes us to drop back to the first appearance of+!give(X1, Y1):

triggerplan unifier

start +!give(jane, X) ∅

We have lost our commitment to giving Jane a computer (since it is such commitments
that may have caused failure).

10 Mehdi Dastani, Personal Communication.

5 Concluding Remarks

This paper provides an overview of ourAgent Infrastructure Layer(AIL), capturing
all major features of common BDI languages. The main purposeof AIL is to provide
a common (operational) semantics for large fragments of these languages in order to
aid the transfer of new ideas and techniques and to allow the development of common
verification tools and technologies. The development of AILhas highlighted several
subtle language design decisions, which we have described in the paper. In this way,
AIL serves a valuable role in clarifying and formalising BDIlanguage semantics.

In order to provide this semantics, we needed to characterise the shared concepts of
beliefs, goals, actions, and plans as well as accounting forcommon variations such as
the use of events and deed stacks. Thus, our semantics develops a complex data structure
to represent intentions associating events (which includeoutstanding goals) with stacks
of deeds (which include belief updates) to be performed. A generalised notion of a plan
is developed to be used in this data structure which capturesmany of the notions of
plans available in the literature.

While we have described aspects relating to goals, beliefs, plans, etc.within agents,
AIL itself covers much more than we addressed in this paper [10]. Three important
aspects that are omitted are mentioned briefly below.

Constraints. An additional construct within the agent’s state is actually provided within
AIL. Constraintsdescribe pre-conditions that must hold before a given action may be
performed or a goal may be adopted. These preconditions are checked just like the
guards of plans and it is here that we particularly expect theextended notion of belief
to become useful (so constraints may express that the agent has particular goals or par-
ticular plans in its library). It is important to note that whereas an agent selectsonly one
applicable plan it must satisfyall relevant constraints. The generalised notion of con-
straint allows us to express a wide variety of permissions and prohibitions. If an action
is prohibited, the pre-condition is simply⊥ (false), so it always fails and the action is
never taken (or the goal never adopted). If certain actions are only permitted in certain
situations, or to agents who have adopted certain roles, these can also easily be mod-
elled (e.g., an agent can check if it is performing the appropriate role). The operational
semantics of AIL, therefore, forces an agent to check if there are any constraints and, if
so, to see that they hold before it takes an action or selects aplan.

Communication. Armed with constraints, we are able to describe a wide range of
communication protocols. A common concept among BDI languages is that messages
should contain bothcontentand aperformative(which determines what should be done
with the content). Communication protocols are established by agreeing on constraints
associated with these messages (e.g., which performativescan be used in a given stage
of a communication protocol) and associating particular plans to be enacted on their
receipt. Variations on these basic ideas are present in [27,3, 12].

In this model a communication protocol would consist of a selection of plans and
constraints onsend actions andreceived events. Sending messages is treated as an ac-
tion by AIL, and constraints are checked in the same way as they are for any action. The

last phase of the AIL reasoning cycle is dedicated to handling the receipt of messages.

I ′ = {(+received(ag ′, ilf , φ), [ǫ],⊤, ∅)|
< ag ′, ilf , φ >∈ In ∧ check constraints(+received(ag ′, ilf , φ)}

< ag , I , In, F >→< ag , I ′@I , [], A >
(8)

In this rule the intention stack,I is extended with a set of+received events, one for
each message in the inbox whose relevant constraints are satisfied. These events can
then trigger appropriate plans for reacting to the message.The use of constraints allows
AIL to filter out certain messages; this allows AIL to handle concepts such as the social
acceptability of messages which are important, for example, in Jason[3].

Organisational Structures. We have designed AIL aiming, in future work, not only
to be able to accommodate a variety of languages but also to account for future devel-
opments of the existing languages. For example, most languages currently concentrate
on individual agents, so it is likely that those languages will be extended to include
constructs to support the social level of multi-agent systems, particularly the notion of
“organisations” [25]. Important common concepts in this area are the ability for agents
to form groups which possess and communicate goals, plans, permissions, and prohibi-
tions. Furthermore groups of agents need to be able to organise themselves into organi-
sations, with specific roles within those organisations andspecific relationships between
roles. All of this implies that such groups adhere to certaincommunication protocols;
[11, 25, 7] all describe variants which rely on these basic constructs as building blocks.
Clearly any machinery for organisation and communication within AIL needed, at a
minimum, to be able to express these notions and preferably needed to be customisable
to allow variations on their basic forms.

AIL is therefore being designed with simple constructs which allow it to model
many of the most obvious developments in this area. Of the BDIlanguages we have ex-
amined, only METATEM has any primitives for describing social organisations ofagents
(all other languages have messaging constructs and many areinvestigating frameworks
for describing organisational structures). AIL’s social organisations are currently based
on METATEM’s groups which flexibly allow the concepts of organisationand role to
be captured [16, 15]. In order to properly express permissions and prohibitions it was
necessary to provide AIL with constraints as described above. We also needed to anno-
tate aspects of the agent’s internal state with sources of information/goals and define a
concept of the relevance of a constraint or plan to a situation. The treatment of groups
of agents as agents in their own right also provides a naturalmechanism for introducing
concepts of modularity into agent programs.

Space restrictions preclude further discussion of this important item, but we note
that it forms a key part of our future work.

Future Work

As mentioned above, a key aim of this work is to provide a basisfor the formal veri-
ficationof programs written in BDI-based programming languages. AIL itself still re-
quires refinement, in particular in the communication and organisation aspects men-
tioned above. Thus, deeper analysis of these aspects will becarried out, and appropriate
high-level primitives will be developed.

Also in the short term, planned work revolves around the implementation of AIL (in
JAVA) and the provision of compilers for, at least, significant fragments of AgentSpeak
and 3APL. In the longer term, the correctness of these compilers needs to be addressed
and verification tools for AIL developed. In particular, we aim to extend JPF [26] so
that AIL classes are treated as internal classes of JPF, which should provide for efficient
verification of agent programs written in various BDI languages.

An additional aim, within our future work, is to develop a subset of AIL, currently
called AIL−, which: captures mostreasonableBDI programs, has a very clear and
straightforward semantics, and is easily implementable. Currently, AIL− is conceived,
in particular, as reducing the number of goal types available and the mechanisms for
handling plan failure. It will also eliminate some of the flexibility of the current group
structuring mechanisms. AIL− would then provide the basis for alightweight, efficient,
andverifiableagent programming language.

References

1. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors. Multi-Agent Pro-
gramming: Languages, Platforms and Applications. Number 15 in Multiagent Systems,
Artificial Societies, and Simulated Organizations. Springer-Verlag, 2005.

2. R. H. Bordini and J. F. Ḧubner.Jason: A Java-based interperter for an extended version of
AgentSpeak, 2006. Available fromhttp://jason.sourceforge.net.

3. R. H. Bordini, J. F. Ḧubner, and R. Vieira.Jason and the golden fleece of agent-oriented
programming. In Bordini et al. [1], chapter 1, pages 3–37.

4. L. Braubach, A. Pokahr, and B. Farwer. On Formalising Jadex. Personal Communication,
January 2007.

5. W. Clancey, M. Sierhuis, C. Kaskiris, and R. van Hoof. Advantagesof Brahms for Spec-
ifying and Implementing a Multiagent Human-Robotic Exploration System. InProc. 16th
International Florida Artificial Intelligence Research Society Conference(FLAIRS), pages
7–11. AAAI Press, 2003.

6. M. Dastani. 2APL: A Practical Agent Programming Language. Slidesto be Presented at
PLDT-MAS Tutorial at AAMAS conference, 2007.

7. M. Dastani, V. Dignum, and F. Dignum. Role-Assignment in Open Agent Societies. InProc.
2nd International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
ACM Press, 2003.

8. M. Dastani, M. B. van Riemsdijk, and J.-J. C. Meyer. Programming multi-agent systems in
3APL. In Bordini et al. [1], chapter 2, pages 39–67.

9. M. Dastani, M. B. van Riemsdijk, and J.-J. C. Meyer. Goal Types in Agent Programming. In
Proc. 17th European Conference on Artificial Intelligence (ECAI), 2006.

10. L. A. Dennis. Agent Infrastructure Layer (AIL): Design and Operational Semantics v1.0.
Technical Report ULCS-07-001, Department of Computer Science,University of Liverpool,
2007. Available fromhttp://www.csc.liv.ac.uk/research/techreports/.

11. J. Ferber, O. Gutknecht, and F. Michel. From Agents to Organizations: An Organizational
View of Multi-agent Systems. InProc. 4th International Workshop on Agent-Oriented Soft-
ware Engineering (AOSE), volume 2935 ofLNCS, pages 214–230. Springer, 2003.

12. FIPA. FIPA Communicative Act Library Specification. Technical Report FIPA00037, Foun-
dation for Intelligent Physical Agents, 2002.

13. M. Fisher. METATEM: The story so far. InProc. 3rd International Workshop on Program-
ming Multiagent Systems (ProMAS), volume 3862 ofLNAI, pages 3–22. Springer, 2005.

14. M. Fisher, R. H. Bordini, B. Hirsch, and P. Torroni. ComputationalLogics and Agents — A
Roadmap of Current Technologies and Future Trends.Computational Intelligence, in press.

15. M. Fisher, C. Ghidini, and B. Hirsch. Programming Groups of Rational Agents. InProc. 4th
International Conference on Computational Logic in Multi-Agent Systems (CLIMA), volume
3259 ofLNCS, pages 849–856. Springer, November 2004.

16. M. Fisher and T. Kakoudakis. Flexible Agent Grouping in ExecutableTemporal Logic. In
Proc. 12th International Symposium on Languages for Intensional Programming (ISLIP).
World Scientific Press, 1999.

17. K. V. Hindricks, F. S. Boer, W. van der Hoek, and J.-J. C. Meyer. A Formal Embedding
of AgentSpeak(L) in 3APL. InAdvanced Topics in Artificial Intelligence, volume 1502 of
LNAI, pages 155–166. Springer, 1998.

18. K. V. Hindricks, F. S. de Boer, W. van der Hoek, and J.-J. C. Meyer. Agent Programming in
3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.

19. J. F. Ḧubner, R. H. Bordini, and M. Wooldridge. Programming Declarative Goals using
Plan Patterns. InProc. 4th International Workshop on Declarative Agent Languages and
Technologies (DALT), pages 65–81, Hakodate, Japan, May 2006.

20. N. Muscettola, P. P. Nayak, B. Pell, and B. Williams. Remote Agent: To Boldly Go Where
No AI System Has Gone Before.Artificial Intelligence, 103(1-2):5–48, 1998.

21. A. Pokahr, L. Braubach, and W. Lamersdorf. A Flexible BDI Architecture Supporting Exten-
sibility. In Proc. IEEE/WIC/ACM International Conference on Intelligent Agent Technology
(IAT), pages 379–385, 9 2005.

22. A. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In
Proc. 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent World
(MAAMAW), volume 1038 ofLNCS, pages 42–55. Springer, 1996.

23. A. S. Rao and M. Georgeff. BDI Agents: from theory to practice. In Proc. 1st Interna-
tional Conference on Multi-Agent Systems (ICMAS), pages 312–319, San Francisco, CA,
June 1995.

24. M. Sierhuis. Multiagent Modeling and Simulation in Human-Robot MissionOperations.
(Seehttp://ic.arc.nasa.gov/ic/publications), 2006.

25. J. V́azquez-Salceda, V. Dignum, and F. Dignum. Organizing multiagent systems. Tech-
nical Report UU-CS-2004-015, Institute of Information and ComputingSciences, Utrecht
University, 2004.

26. W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. InProceedings of
the Fifteenth International Conference on Automated Software Engineering (ASE’00), 11-15
September, Grenoble, France, pages 3–12. IEEE Computer Society, 2000.

27. M. Wooldridge, M. Fisher, M. Huget, and S. Parsons. Model Checking Multiagent Systems
with MABLE. In Proc. 1st International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), July 2002.

28. M. Wooldridge and A. Rao, editors.Foundations of Rational Agency. Applied Logic Series.
Kluwer Academic Publishers, Mar. 1999.

