
VPS @ LIVERPOOL

[ONGOING WORK]

Michael Fisher

Department of Computer Science, University of Liverpool, UK

Michael Fisher – p.1/23



Example

As we walk into a shopping area, our intelligent clothing
interacts wirelessly with shops in the area and then with our
mobile phone to let us know that our shoes are wearing out
and that the best deals nearby are at shops X, Y and Z.

Our PDA, which holds our shopping list, also interacts with
our phone to suggest the optimum route to include shoes in
our shopping, and with the shops to assess their stock.

At the same time, our PDA interacts with the shopping
area’s network and finds that one of our friends is also
shopping — a text message is sent to the friend’s
mobile/PDA to coodinate shopping plans and schedule a
meeting for coffee at a close location in 15 minutes.

Michael Fisher – p.2/23



Example (2)

Even in this simple example the components of this
pervasive system at least need capabilities to carry out:

plan synchronisation;

spatial reasoning and context-awareness;

planning and scheduling;

mobility and communication, etc....

And there are many dimensions to formalize:

security and reliability;

safety and liveness;

real-time response, probabilistic behaviour, etc.
Michael Fisher – p.3/23



Problem: Multiple Dimensions

Pervasive Systems comprise many different facets and we
need to describe/specify not just their basic dynamic
behaviour, but also

real-time aspects

uncertainty and environmental models

collaboration and cooperation

mobility , distribution and concurrency

autonomous decision-making, etc...

Michael Fisher – p.4/23



Problem: Context Dependency

Pervasive Systems are context-dependent — behaviour can
change because of movement between contexts.

Contexts do not just concern location. Contexts can be

locations

roles or societal norms

teams or organisational structures

styles or preferences, etc....
Michael Fisher – p.5/23



Problem: Humans “in the loop”

Pervasive Systems involve

humans, or at least external autonomous entities, and

a variety of tools or artifacts

within the system.

Typically, humans are embedded within pervasive systems.

But how shall we model humans (and other autonomous
entities) within our formalisation?

Michael Fisher – p.6/23



Verifying Pervasive Systems [Our View]

Michael Fisher – p.7/23



A Plethora of Formal Logics

dynamic communicating systems −→ temporal logics
systems managing information −→ logics of knowledge
autonomous systems −→ logics of goals, intentions
situated systems −→ logics of belief, contextual logics
timed systems −→ real-time temporal logics
uncertain systems −→ probabilistic logics
cooperative systems −→ cooperation/coalition logics

Michael Fisher – p.8/23



Example: Pre-emptive Shopping

B>0.75
me ♦Gassistantsell_shoes(me) ⇒ Ime♦

<5s
leave_shop(me)

“If I believe, with over 75% probability that at some
point in the future the shop assistant’s goal will be
to sell me some shoes, then I intend that within 5
seconds I will leave the shop.”

Michael Fisher – p.9/23



Combining Logics

Since we cannot describe all aspects of a pervasive system
in one framework, we will often need to combine formalisms.

As we do not want to develop new verification techniques,
we wish to re-use tools from the constituent logics.

So: we (Savas, Sven, Michael) are working on ways to
practically verify complex combinations of logics by putting
together the constituent model-checkers [A].

A. Model-Checking Combined Temporal Logics
— Konur, Fisher, Schewe. In preparation.

[algorithms for, and complexity of, model-checking combinations

of real-time temporal, probabilistic temporal, and modal logics]
Michael Fisher – p.10/23



Modelling Teamwork

In a pervasive system, we can see humans and
autonomous components as working together in a team.

But how might we try to verify behaviours within such
human-computer teams?

We choose to model the high-level behaviours of the team
participants, abstracting away from low-level details.

So, just describe the relevant behaviours of our humans and
treat these as agents within our model-checking system.

Michael Fisher – p.11/23



Example — Astronaut-Robot Teams

Michael Fisher – p.12/23



Verifying Human-Agent Teams

Clearly: humans are impossible to describe precisely!

So, we model human behaviour at a very coarse level...
...then refine the model, introducing more detail if needed.

Richard will be looking at using Louise’s verification system
[B] in order to verify high-level human-agent teamwork [C],
for example utilising Brahms descriptions [D].

B. Automated Verification of Multi-Agent Programs
— Bordini, Dennis, Farwer, Fisher. Proc. ASE’08.

C. Formal Verification of Human-Robot Teamwork
— Bordini, Fisher, Sierhuis. Proc. HRI’09.

D. BRAHMS: A Multiagent Modeling and Simulation Language for

Work System Analysis and Design — Sierhuis.
Michael Fisher – p.13/23



Context

Can we (formally) describe component/agent behaviour?

Michael Fisher – p.14/23



Context

Can we (formally) describe component/agent behaviour?

...especially if it occurs in multiple contexts?

Michael Fisher – p.14/23



Context

Can we (formally) describe component/agent behaviour?

...especially if it occurs in multiple contexts?

...and if it can move in and out of contexts dynamically?

Michael Fisher – p.14/23



Context

Can we (formally) describe component/agent behaviour?

...especially if it occurs in multiple contexts?

...and if it can move in and out of contexts dynamically?

...and if the notion of ‘context’ covers more than location?

Michael Fisher – p.14/23



Context

Can we (formally) describe component/agent behaviour?

...especially if it occurs in multiple contexts?

...and if it can move in and out of contexts dynamically?

...and if the notion of ‘context’ covers more than location?

We are looking at two aspects:

1. verification of a ‘real’ context-based system;

2. logical description of “context-oriented computing”.
Michael Fisher – p.14/23



Scatterbox

Michael Fisher – p.15/23



Scatterbox Verification

Simple probabilistic models of:

user movement;

Scatterbox’s belief about user position;

Scatterbox’s belief about user context;

message-forwarding behaviour.

Then, in [E] Savas (and Ahmed, an MSc student) carried out
simple PRISM verification

→ our aim is to refine this further in collaboration with
Scatterbox developers.

E. Verification of a Message Forwarding System using PRISM.
— Konur, Al Zahrani, Fisher Proc. AVoCS’09.

Michael Fisher – p.16/23



Contexts

In most pervasive systems, contexts just describe location.

However, contexts can represent much more:

roles or societal norms

teams or organisational structures

styles or preferences, etc....

We are developing a logic-based programming language for
such systems [F,G], but have yet to incorporate verification.

F. Language Constructs for Multi-Agent Programming
— Dennis, Hepple, Fisher. Proc. CLIMA’08.

G. Executing Logical Agent Specifications — Fisher, Hepple.
In Multi-Agent Programming: Languages, Tools and Applications.

Michael Fisher – p.17/23



Concluding Remarks

There’s a lot to do!

Currently:

theoretical work on combined model-checking;

verification of ‘realistic’ systems using PRISM;

high-level human-agent verification.

Big problem here is putting everything together.

Future:

security; context-oriented computing; abstraction;
open/infinite systems; other application areas
(robotics?); etc....

Michael Fisher – p.18/23



SPARE SLIDES: COOKING EXAMPLE

Michael Fisher – p.19/23



Context-Oriented Computing→ Cooking

There is much more that we can do with contexts, as is
shown by the simple ‘cookery’ example below.

Basically: cooking agent just wants to ‘cook’.

It doesn’t know how to cook and doesn’t know about any
contexts — i.e. it has one goal and no plans!

So, the cooking agent moves into content of chef role.

Michael Fisher – p.20/23



Learning to Cook

The chef role context provides capabilities of (i.e. plans for)
cooking various meals: pizza; risotto; steak.

Since its one goal is to cook, it has 3 choices.

Michael Fisher – p.21/23



Meat eaters don’t like rice!

But: cooking agent now moves into a ‘meat-eater’ context.

Here, such meat-eaters dislike risotto and so send
appropriate constraints.

Michael Fisher – p.22/23



Vegetarians don’t like meat!!

Now: cooking agent takes on a vegetarian role, by moving
into the appropriate context — cooking agent now can only
cook pizza!

Michael Fisher – p.23/23


	Example
	Example (2)
	Problem: Multiple Dimensions
	Problem: Context Dependency
	Problem: Humans ``in the loop''
	Verifying Pervasive Systems [Our View]
	A Plethora of Formal Logics
	Example: Pre-emptive Shopping
	Combining Logics
	Modelling Teamwork
	Example --- Astronaut-Robot Teams
	Verifying Human-Agent Teams
	Context
	Scatterbox
	Scatterbox Verification
	Contexts
	Concluding Remarks
	{sc Spare Slides: Cooking Example}
	Context-Oriented Computing $ightarrow $ Cooking
	Learning to Cook
	Meat eaters don't like rice!
	Vegetarians don't like meat!!

