Overview

- Last time
 - Logic as a knowledge representation scheme
 - Reminder of Propositional logic
 - Introduction to first-order predicate logic
- Today
 - Introduction to first-order predicate logic
 - Terminology
 - Equivalences
 - Proof
 - Decidability

Quantifiers

- Quantifiers allow us to express properties about collections of objects
- The quantifiers are
 - \forall universal quantifier ‘For all . . . ’
 - \exists existential quantifier ‘There exists . . . ’
- If $P(x)$ is a predicate then we can write
 - $\forall x \cdot P(x)$; and
 - $\exists x \cdot P(x)$;
 - where x is a variable which can stand for any object in the domain.

Universal Quantification

- Note that universal quantification is similar to conjunction
- Suppose the domain is the numbers $\{2, 4, 6\}$. Then
 - $\forall n \cdot \text{Even}(n)$
 - is the same as
 - $\text{Even}(2) \land \text{Even}(4) \land \text{Even}(6)$

Universal Quantification and \Rightarrow

- Typically, \Rightarrow is the main connective with \forall
- If we have domain $\{\text{Kitty}, \text{Horace}\}$ where Kitty is a cat (and a mammal) and Horace is a lizard (not a mammal)
 - $\forall x \cdot \text{cat}(x) \Rightarrow \text{mammal}(x)$ really means
 - $\text{cat(Kitty)} \Rightarrow \text{mammal(Kitty)}$ \land
 - $\text{cat(Horace)} \Rightarrow \text{mammal(Horace)}$
- This evaluates to true as both cat(Kitty) and mammal(Kitty) are true, also cat(Horace) is false so the second implication is true
A Common Mistake to Avoid

• Common mistake: using ∧ as the main connective with ∀:

$\forall x \cdot \text{At}(x, \text{Berkeley}) \land \text{Smart}(x)$

means “Everyone is at Berkeley and everyone is smart”

Existential Quantification

• Existential quantification is the same as disjunction

Thus with the same domain

$\exists n \cdot \text{Even}(n)$

is the same as

$\text{Even}(2) \lor \text{Even}(4) \lor \text{Even}(6)$

Existential Quantification

• Existential quantification allows us to make a statement about some object without naming it

• There exists an x such that x is a man and x is a father

 $(\text{some men are fathers})$

 $\exists x \cdot \text{man}(x) \land \text{father}(x)$

• Some cats are white and have three legs

 $(\text{some cats are white and have three legs})$

 $\exists y \cdot \text{cat}(y) \land \text{white}(y) \land \text{three_legs}(y)$

Another Common Mistake to Avoid

• Common mistake: using ⇒ as the main connective with ∃:

 $\exists x \cdot \text{At}(x, \text{Stanford}) \Rightarrow \text{Smart}(x)$

 is true if there is anyone who is not at Stanford!

Examples

• $\forall x \cdot \text{Man}(x) \Rightarrow \text{Mortal}(x)$

 ‘For all x, if x is a man, then x is mortal.’

 (i.e. all men are mortal)

• $\forall x \cdot \text{Man}(x) \Rightarrow (\exists y \cdot \text{Woman}(y) \land \text{MotherOf}(y, x))$

 ‘For all x, if x is a man, then there exists a y such that y is a woman and y is the mother of x.’

 (i.e., every man has a mother)

• $\exists m \cdot \text{Monitor}(m) \land \text{MonitorState}(m, \text{ready})$

 ‘There exists a monitor that is in a ready state.’

• $\forall r \cdot \text{Reactor}(r) \Rightarrow (\exists t \cdot (100 \leq t \leq 1000) \land \text{temp}(r) = t)$

 ‘Every reactor will have a temperature in the range 100 to 1000.’
More Than One Quantifier

- For all x and y, if x is the parent of y then y is the child of x

$$\forall x \forall y \cdot \text{parentOf}(x, y) \Rightarrow \text{childOf}(y, x)$$

The Order of Quantifiers is Important

- Everyone ate something
 $$\forall x \exists y \cdot \text{ate}(x, y)$$
- There is something that was eaten by everyone
 $$\exists y \forall x \cdot \text{ate}(x, y)$$
- Everything was eaten by someone
 $$\forall y \exists x \cdot \text{ate}(x, y)$$
- Someone ate everything
 $$\exists x \forall y \cdot \text{ate}(x, y)$$

Syntax of Predicate Logic

- The formulae of predicate logic are constructed from the following symbols
 - a set PRED of predicate symbols with arity
 - a set FUNC of function symbols with arity
 - a set CONS of constant symbols
 - a set VAR of variable symbols
 - the quantifiers \forall and \exists
 - true, false and the connectives \land, \lor, \Rightarrow, \neg, \iff

Terms

- The set of terms, TERM, is constructed by the following rules
 - any constant is in TERM
 - any variable is in TERM
 - if t_1, \ldots, t_n are in TERM and f is a function symbol of arity n then $f(t_1, \ldots, t_n)$ is a term
 - $f(x, y)$
 - $\text{add}(2, 4)$
 - $\text{motherOf}(\text{Annabel})$

Well-Formed Formulae

- The set of sentences or well-formed formulae of predicate logic are:
 - true, false and propositional formulae are in WFF
 - if t_1, \ldots, t_n are in TERM and p is a predicate symbol of arity n then $p(t_1, \ldots, t_n)$ is in WFF
 - If A and B are in WFF then so is $\neg A$, $A \lor B$, $A \land B$, $A \Rightarrow B$ and $A \Leftrightarrow B$
 - If A is in WFF and x is a variable then $\forall x \cdot A$ and $\exists x \cdot A$ are in WFF
 - If A is in WFF then so is (A)

Binding

- A variable in the scope of a quantifier is said to be bound
- A variable not in the scope of a quantifier is said to be free
Equivalences Between Quantifiers (I)

• The universal and existential quantifiers are in fact duals of each other:

• Saying that everything has some property is the same as saying that there is nothing that does not have the property

\[\forall x \cdot P(x) \equiv \neg \exists x \cdot \neg P(x) \]

• everyone doesn’t like sprouts

\[\forall x \cdot \neg \text{likes}_{\text{sprouts}}(x) \]

is the same as saying it’s not the case that someone likes sprouts

\[\neg \exists x \cdot \text{likes}_{\text{sprouts}}(x) \]

Domains and Interpretation

• Suppose we have a formula \(\forall x \cdot P(x) \). What does \(x \) range over? Physical objects, numbers, people, times, . . . ?

• Depends on the domain that we intend. Often, we name a domain to make our intended interpretation clear

 – Suppose our intended interpretation is the positive integers

 – Suppose \(+, \times, \ldots \) have the usual mathematical interpretation

 – Is this formula satisfiable under this interpretation?

\[\exists n \cdot n = (n \times n) \]

 – Now suppose that our domain is negative integers (where \(\times \) has the usual mathematical interpretation)

 – Is the formula satisfiable under this interpretation?

Equivalences Between Quantifiers (II)

• Saying that there is something that has the property is the same as saying that its not the case that everything doesn’t have the property

\[\exists x \cdot P(x) \equiv \neg \forall x \cdot \neg P(x) \]

• Also

\[\forall x \cdot \neg P(x) \equiv \neg \exists x \cdot P(x) \]

\[\exists x \cdot \neg P(x) \equiv \neg \forall x \cdot P(x) \]

Semantics of Predicate Logic

• We haven’t given the formal semantics of predicate logic

 – See good logic and AI books

 – Informally we’ve seen we need a domain of interest

 – Constants, predicates, functions have mappings into this domain

 – To evaluate quantifiers we must check whether all objects in the domain satisfy the formula (\(\forall \)) or some object does (\(\exists \))

Validity

• A formula of FOL that is true under all interpretations is said to be valid

• So we could try to check for validity by writing down all the possible interpretations and looking to see whether the formula is true or not

First-Order Example

• Unfortunately in general we can’t use this method

• Consider the formula:

\[\forall n \cdot \text{Even}(n) \Rightarrow \neg \text{Odd}(n) \]

and the domain Natural Numbers, i.e. \(\{1, 2, 3, 4, \ldots \} \)

• There are an infinite number of interpretations

• Is there any other procedure that we can use, that will be guaranteed to tell us, in a finite amount of time, whether a FOL formula is, or is not, valid?
Proof in FOL Decidable?

- The answer is no
- FOL is for this reason said to be undecidable. FOL is often called semi-decidable, as given a formula that is not valid, the procedure may not terminate

Proof in FOL

- Proof in FOL is similar to that in propositional logic; we just need an extra set of rules, to deal with the quantifiers
- FOL inherits all the rules of propositional logic
- The most obvious rule, ∀-elimination
 - Tells us that if everything in the domain has some property, then we can infer that any particular individual has the property,
 \[
 \forall x \cdot \varphi(x) \\
 \varphi(a)
 \]
 for any a in the domain
- Going from general to specific

Example

- Let's use ∀-Elimination to consider the cat/mammal example
 \[
 \text{cat(Kitty), } \forall x \cdot \text{cat}(x) \Rightarrow \text{mammal}(x) \\
 \]
 \[
 \vdash \text{mammal(Kitty)}
 \]
 1. \text{cat(Kitty)} [Given]
 2. \forall x \cdot \text{cat}(x) \Rightarrow \text{mammal}(x) [Given]
 3. \text{cat(Kitty)} \Rightarrow \text{mammal(Kitty)} [2, ∀-Elimination]
 4. \text{mammal(Kitty)} [1, 3, MP]

Summary

- We’ve seen the formal syntax of first-order predicate logic and informally considered the semantics
- We’ve considered decidability for predicate logic
- We’ve seen an example of a proof rule for predicate logic
 - There are other proof rules related to quantifiers
 - See good logic or AI books
- Next time: Propositional resolution