Security protocols

- A **security protocol** is a set of rules, adhered to by the communication parties in order to ensure achieving various security or privacy goals, such as establishing a common cryptographic key, achieving authentication, etc.
- We have discussed already several protocols, aiming at:
 - Key exchange;
 - Private electronic payments;
 - E-voting.

Correctness of protocols

- Are they correct at all?
- How do we establish correctness?
- We have used semi-formal arguments, like
 - *If a message is encrypted with the public key of Alice, then only a participant who knows private key of Alice (presumably Alice herself only) can decrypt it.*
- Typically we have considered possible attacks and argued using the reasoning as above, that attacks are impossible (under some reasonable assumptions).
- Is that enough? Are we sure that we have considered all possible situations of use?
The power of formal methods
- What should we do about establishing correctness of security protocols?
 - Apply formal methods!
 - Make explicit all the assumptions involved in a protocol;
 - Make a formal model of the protocol (and its execution);
 - Apply formal reasoning, which would establish the correctness of the protocol.
- Two important aspects:
 - The correctness is established only for a particular formal model of the protocol;
 - and under explicit assumptions (about capabilities of participants, etc).

Logical representation
- Formal aspects of reasoning is an important part of logic;
- Logical representation and analysis of the security protocols is a particular successful approach for the protocols verification;
- Non-classical modal epistemic logics dealing with such notions as "belief" and "knowledge", are more suitable here than classical logics dealing primarily with "truth".

Protocol analysis using a logic
- Derive the specification of an idealized protocol in a logical language from the (usually informal) original specification;
- Specify the assumptions about the initial state;
- Attach logical formulae to statements of the protocol as assertions about the state of the system after each statement;
- Apply logical axioms and inference rules to derive beliefs held by parties in the protocols.

BAN logic
 - Logic of authentication, or BAN logic;
 - Suitable for formal analysis of authentication protocols;
 - A protocol is analysed from the point of view of each principal (participant) P;
 - Each message received by P is considered in relation to previous messages received by P and sent by P;
 - The question, one can address using BAN logic, is what a principal should believe, on the basis of the messages it has sent and received.
Formulae of BAN logic

- **P believes X** is a formula of BAN logic saying
 - P is entitled to conclude that X is true, or
 - P has a justification for X;
- **P sees X**
 - The principal P receives a message containing X. P might need to perform decryption to extract X. X can be a statement or a simple item of data. P does not necessarily believes X.

Formulae of BAN. II

- **P controls X**
 - P has jurisdiction over X, or P is trusted as an authority on X. For example an authentication server is trusted as an authority on statements about a key it has allocated.
- **P said X**
 - At some point in the past, P is known to have sent a message including X

Formulae of BAN logic. II

- **Fresh(X)**
 - X has not been sent earlier. It is a fresh value (nonce = number used once).

\[P \stackrel{K}{\longrightarrow} Q \]

- K is a secret between P and Q and possibly other principals trusted by P and Q (such as authentication server).

Further notation

- If K is a key, then \(\{X\}_K \) means X is encrypted with the key K
- If \(X \) and \(Y \) are statements, then \(X \wedge Y \) means \(X \) and \(Y \)
Main assumption

- Trusted principals do not lie about their beliefs to other principals.
- That means if P is trusted, and if a formula X is received in a message (known to have been) sent by P then it can be deduced that P believes X.

Deduction rules

- Deduction rules (or postulates) of BAN logic have the following format:

$$
\frac{X, Y}{Z}
$$

- meaning Z follows from a conjunction of statements X and Y

Main postulates of BAN logic

- The message meaning rule:

$$
\begin{align*}
P & \text{ believes } P \overset{K}{\rightarrow} Q, P \text{ sees } \{X\}_K \\
P & \text{ believes } (Q \text{ said } X)
\end{align*}
$$

If P believes that it shares a secret key K with Q, and if P receives a message containing X encrypted with K then P believes that Q once said X.

Main postulated of BAN logic

- The nonce-verification rule

$$
\begin{align*}
P & \text{ believes fresh}(X), P \text{ believes } (Q \text{ said } X) \\
P & \text{ believes } (Q \text{ believes } X)
\end{align*}
$$

- Nonce = number used once = fresh value.
- If P believes that Q once said X, then P believes that Q once believed X (by main assumption). If additionally P believes X is fresh then P must believe that Q currently believes X.
Main postulated of BAN logic

- The jurisdiction rule:

 \[P \text{ believes } (Q \text{ controls } X), P \text{ believes } (Q \text{ believes } X) \]
 \[\underline{\rightarrow} \]
 \[P \text{ believes } X \]

 If P believes that Q has control over whether or not X true and if P believes that Q believes it to be true, then P must believe in it also. The reason is Q is an authority on the matter as far as P is concerned.

Decomposition postulates

\[
\begin{align*}
P \text{ sees } (X,Y) & \quad \quad P \text{ believes } \text{fresh}(X) \\
P \text{ sees } X & \quad \quad P \text{ believes } \text{fresh}(X,Y)
\end{align*}
\]

\[
\begin{align*}
P \text{ believes } (Q \text{ believes } (X,Y)) & \\
\underline{\rightarrow} & \\
P \text{ believes } (Q \text{ believes } (X))
\end{align*}
\]