Needham-Schroeder protocol and its formal analysis

Needham-Schroeder protocol
- The goal of the protocol is to establish mutual authentication between two parties A and B in the presence of an adversary, who can
 - Intercept messages;
 - Delay messages;
 - Read and copy messages;
 - Generate messages,
 But who does not know
 - secret keys of principals, which they share with the authentication server S.
- A and B obtain a secret shared key through authentication server S.
- The protocol uses shared keys encryption/decryption

Needham-Schroeder protocol
- Message 1
- Message 2
- Message 3
- Message 4
- Message 5

The Needham-Schroeder Protocol (with shared keys)

- Here κ_A and κ_B are keys of A and B shared with S, resp.
- N_A and N_B are nonces, introduced by A and B, resp.
- K_{AB} is a secret session key for A and B provided by S.
How it works

• A makes contact with the authentication server S, sending identities A and B and nonce \(N_A \);
• S responds with a message encrypted with the key of A. The message contains session key \(K_{AB} \) (to be used by A and B) and certificate encrypted with B’s key conveying the session key and A’s identity;
• A sends the certificate to B;
• B decrypts the certificates and sends his own nonce encrypted by the session key to A; (nonce handshake);
• A decrypts the last message and sends modified nonce back to B.

By the end of the message exchange both A and B share the secret key and both are assured in the presence of each other.

Formal analysis using BAN logic

- Explicit assumptions:

\[
\begin{align*}
A & \mathbin{\xrightarrow{K_{AB}} B} \\
B & \mathbin{\xrightarrow{K_{AB}} B}
\end{align*}
\]

Authentication goals

- Main: \(A \mathbin{\xrightarrow{K_{AB}} B} \) and \(B \mathbin{\xrightarrow{K_{AB}} B} \)

- Subsidiary: \(A \mathbin{\xrightarrow{K_{AB}} B} \) and \(B \mathbin{\xrightarrow{K_{AB}} B} \)

Protocol steps formalized

- Transform each message into an idealized message, containing only nonces and statements (implicitly asserted by a sender)

<table>
<thead>
<tr>
<th>Message</th>
<th>Idealized Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (A \mathbin{\rightarrow} S, A, B, N_A)</td>
<td>(-)</td>
</tr>
<tr>
<td>2. (S \mathbin{\rightarrow} A; { N_A, B, K_{AB}, { K_{AB}, A } }, K_B A)</td>
<td>({ N_A, A \mathbin{\xrightarrow{K_{AB}}} B, \text{fresh}(A), { K_{AB}, B } } K_B A)</td>
</tr>
<tr>
<td>3. (A \mathbin{\rightarrow} B; { K_{AB}, A } K_B)</td>
<td>({ K_{AB}, B } K_B A)</td>
</tr>
<tr>
<td>4. (B \mathbin{\rightarrow} A; { N_B } K_{AB})</td>
<td>({ N_B, A \mathbin{\xrightarrow{K_{AB}}} B } K_{AB})</td>
</tr>
<tr>
<td>5. (A \mathbin{\rightarrow} B; { N_B } K_{AB})</td>
<td>({ N_B, A \mathbin{\xrightarrow{K_{AB}}} B } K_{AB})</td>
</tr>
</tbody>
</table>
First step of analysis

- Let $M = (N_A, A \rightarrow_{K_{AB}} B, \text{fresh}(A \rightarrow_{K_{AB}} B))$
- Then we have
 - A believes $A \rightarrow_{K_{AB}} B$ (explicit assumption)
 - A sees $M \rightarrow_{K_A}$
- Apply message-meaning rule:

 \[
 \frac{A \text{ believes } A \rightarrow_{K_{AB}} B, A \text{ sees } M \rightarrow_{K_A}}{A \text{ believes } (S \text{ said } M)}
 \]

Further steps

- We have
 - A believes $\text{fresh}(N_A)$ (explicit assumption)
 - $M = (N_A, A \rightarrow_{K_{AB}} B, \text{fresh}(A \rightarrow_{K_{AB}} B))$

 By application of second decomposition rule we deduce:

 A believes $\text{fresh}(M)$

Further steps

- By nonce-verification rule:

 \[
 \frac{A \text{ believes } \text{fresh}(M), A \text{ believes } (S \text{ said } M)}{A \text{ believes } (S \text{ believes } M)}
 \]

 - By the third decomposition rule

 \[
 \frac{A \text{ believes } (S \text{ believes } (N_A, A \rightarrow_{K_{AB}} B, \text{fresh}(A \rightarrow_{K_{AB}} B))), A \text{ believes } A \rightarrow_{K_{AB}} B}{A \text{ believes } A \rightarrow_{K_{AB}} B}
 \]

Final step

- By jurisdiction rule:

 \[
 \frac{A \text{ believes } (S \text{ controls } A \rightarrow_{K_{AB}} B), A \text{ believes } (S \text{ believes } A \rightarrow_{K_{AB}} B)}{A \text{ believes } A \rightarrow_{K_{AB}} B}
 \]

 - The first authentication goal is achievable!
Remaining authentication goals

- The statement $B \text{ believes } A \overset{K_{AB}}{\rightarrow} B$. is not derivable!
- One needs one extra assumption to derive it:

 $$B \text{ believes fresh}(A \overset{K_{AB}}{\rightarrow} B)$$
- Derivation of subsidiary goals is left as an exercise:

Conclusion

- The formal analysis we have just done should not be
 - neither underestimated:
 - We have shown that the protocol is correct under explicit assumptions and concrete formalization;
 - nor overestimated:
 - The analysis is as good as formal (idealized) model and explicit assumptions are;
 - The adequacy of the model and assumptions may be an issue here.