Symmetric Encryption. Feistel cipher and DES family

NSE, sections 2.1-2.2
WSPC, chapter 3

Analysis vs cryptanalysis

- One of the main goals when creating new encryption/decryption algorithm is to make it as difficult as possible for cryptanalysis (difficult to break);
- One the other hand, making an algorithm easy to analyse could be beneficial, because then
 - Analysis of the algorithm can provide with a higher level of assurance;

Block vs stream ciphers

- **The way in which plaintext is processed**
 - Block cipher: input block of elements (e.g. characters) is transformed to the output block at once;
 - Stream cipher: processes the input elements continuously, one element at a time.

Feistel cipher structure

- Most symmetric block encryption algorithms have a structure proposed by H. Feistel in 1973;
- The input is divided into the blocks of even numbers of elements;
- Then multiple stages of substitutions and transpositions is applied;
- Multiple keys (derived from a single key) are used at different rounds of the algorithm.
Feistel Cipher Structure

- Input is a plaintext block of the size 2w bits;
- The block is divided into two parts L0 and R0;
- Two parts going through n rounds of processing;
- At every round, a function F (round function) is applied to the right half using a (sub)key, the result is XOR’ed with the left half of the data;
- At every round a new (sub)key may be used; all subkeys are generated from the same secret key.

Decryption in a Feistel cipher

- The same algorithm is used as for encryption;
- The only difference is subkeys should be applied in a reverse order:
 - If for encryption K1,...,Kn have been used at the rounds 1,...,n, then
 - Kn,...,K1 are used for decryption at the rounds 1,...n.

Choices in Feistel network scheme

- **Block size:** the larger the block size the more secure and slower the scheme is. 64 bits is a usual size;
- **Key size:** the larger key size means the greater security but slower the scheme. 128 bits is the most common key length;
- **Number of rounds:** more rounds means more security;
- **Subkey generation algorithm:** more complex algorithm generally means more difficult cryptanalysis;
- **Round function:** the same as above.

Symmetric Encryption Algorithms

- Most important symmetric block ciphers
 - DES (Data Encryption Standard);
 - 3DES (triple DES);
 - AES (Advanced Encryption Standard);
Data Encryption Standard (DES)

- Adopted in 1977 by National Bureau of Standards (now NIST);
- The algorithm itself is called Data Encryption algorithm (DEA);
- A variant of the Feistel schema;
- Blocks have a size 64-bits;
- The key is 56 bits long;
- Uses 16 rounds of processing;
- From the original 56-bit key, 16 subkeys are generated, one for each round.

The weakness of DEA

- **Weakness**: the size of the key (56 bits). Altogether there are \(2^{56} \approx 7.2 \times 10^{16}\) different keys of such a length;
- The number is huge, but the special purpose machine “DES cracker” built in 1998 was able to break the algorithm in a less than 3 days using brute-force search;
- **Remedy**: increase the length of the key!! Increasing the length to 128 bits would increase the time of the brute-force search by “DES cracker” to \(10^{18}\) years.

The strength of DEA

- The strength of DEA is based on the fact that no essentially better than brute-force search attack is known for DEA;
- In other words, no fatal weakness of DES itself has been discovered (only the weakness related to the small length of the key);
- But, no proof that an efficient attack is impossible.

Triple DES

- Triple DES (3DES) is a standard introduced in 1985;
- 3DES algorithm does what its name says: it runs DES (rather DEA) algorithm 3 times;
- It uses three keys, one for each execution of DEA;
Encryption and Decryption in 3DES

Encryption: \[C = E_{K_3}[D_{K_2}[E_{K_1}[P]]] \]

Decryption: \[P = D_{K_1}[E_{K_2}[D_{K_3}[C]]] \]

Where:
- \(C \) is ciphertext
- \(P \) is plaintext
- \(E_K[X] \) is encryption of \(X \) using key \(K \)
- \(D_K[Y] \) is decryption of \(Y \) using key \(K \)

3DES is compatible with DES: \[C = E_{K_3}[D_{K_2}[E_{K_1}[P]]] = E_{K_3}[P] \]

Advanced Encryption Standard
- Designers: J. Daemen, Vincent Rijmen
- First published: 1998
- Became effective as a NIST standard May, 2002
- A variant of substitution-permutation network
- Key size is 128, 192 or 256 bits
- Number of rounds is 10, 12, or 14

Steps in AES processing, I
- Every round includes the following steps:
 - **Substitution**: each byte is replaced with another based on lookup table

Advanced Encryption Standard
- Design uses theory of finite fields, a branch of algebra;
- Every block of 128 bits is presented as 4 by 4 array of bytes
- Key Expansion: Key \(\rightarrow \) Round keys
Steps in AES processing, II

- **ShiftRows**: each row is shifted cyclically certain amount of steps

Steps in AES processing, III

- **MixColumns**: mixing operation on the columns (defined in terms of computations in a finite field).

Steps in AES processing, IV

- **AddRoundKey**: each byte is combined with the round key

Security of AES

- Considered secure for use for classified information, secret and top secret level;
- However, there are some concerns related to the algebraic foundations of algorithm – underlying algebraic structure might be used in the attacks in some clever way;
- The above is for Black Box setting; rather efficient Side Channels attacks have been discovered recently, see COMP522 web page for links.