1 Overall marking scheme

The coursework for COMP522 consists of two assignments, contributing to 25% of the final mark. The contribution of the single assignments is as follows:

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment 1</td>
<td>12.5%</td>
</tr>
<tr>
<td>Assignment 2</td>
<td>12.5%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25%</td>
</tr>
</tbody>
</table>

Failure in any assignment may be compensated for by higher marks in other components of the module.

This document describes Assignment 1. Assignment 1 will be marked according to the following broad criteria:

- correctness of the program;
- presence/absence of the report on the experiments;
- clarity of the arguments explaining the observed behaviour.

2 Aims of the Assignment 1

- to illustrate the practical complexity of brute-force search attacks on the password-based encryption;
- to test the students skills of using symmetric cryptography primitives in Java programmes;
- to test the students skills in the analysis of the experiments.
3 Brute-force search attack on the password-based encryption

This exercise asks you to write a program implementing password-based encryption and decryption, and then to extend it with the class(es) implementing brute-force search attack. You need to

- implement a program which takes an user password as the input and performs encryption of the predefined plaintext; then it asks the password again and decrypt the ciphertext;
- extend your program with the class(es) implementing brute-force search attack on your encryption/decryption procedure;
- the attacker knows:
 - the predefined plaintext;
 - the ciphertext produced;
 - the salt;
 - the iteration count;
 - but no password.
- thus an attacker should iterate over all passwords up to the given length \(n \), encrypt the plaintext and compare the result with the given ciphertext;
- assume for simplicity, that the password consists of the decimal digits 0, . . . , 9 only;
- estimate average time required to find a correct password for the predefined plaintext/ciphertext, fixed value of the salt and small values of \(n \);
- investigate how the search time depends on the iteration count value.
- formulate your recommendation on the length of the password, which would allow to withstand brute-force search attack for one hour (1 hour);
- consider a variant of the attack, in which an attacker knows everything as above, except the iteration count, and estimate the time required to recover the password of the small length \((n=3, 4) \).

4 Useful information

You may find it useful to have a look on the simple program implementing password-based encryption:

http://www.csc.liv.ac.uk/~alexei/COMP522/PBEs.java

5 Submission

You need to submit:

- Java code and compiled classes of your program
- short report on experiments

The work must be submitted electronically by going to the Web page at https://cgi.csc.liv.ac.uk/login.php and follow the link “Coursework submission.” This must be done by

17.00 on Monday November 6, 2017

Please be aware that the standard University policies

- on plagiarism, collusion and fabricated data
 www.liv.ac.uk/tqsd/pol_strat_cop/cop_assess/cop_assess.doc, Section 8 and

- on late submission
 www.liv.ac.uk/tqsd/pol_strat_cop/cop_assess/cop_assess.doc, Section 6

are applied to this assignment.