Overall marking scheme

The coursework for COMP522 consists of two assignments, contributing to 25% of the final mark. The contribution of the single assignments is as follows:

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment 1</td>
<td>12%</td>
</tr>
<tr>
<td>Assignment 2</td>
<td>13%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25%</td>
</tr>
</tbody>
</table>

Failure in any assignment may be compensated for by higher marks in other components of the module.

This document describes Assignment 2. Assignment 2 will be marked according to the following broad criteria:

- correctness of the program (40%);
- presence/absence of the report on the experiments (10%);
- clarity of the arguments explaining the observed behaviour (20%);
- analysis of the possible practical issues with the implemented scheme (30%).

Aims of the Assignment 2

- to illustrate the practical aspects of using asymmetric cryptography and hash functions for the message authentication;
- to test the students skills in programming with JCE/JCA;
- to test the students skills in the analysis of the experiments.
Message authentication using SHA-1 hash algorithm and RSA encryption

This exercise asks you to write a program in Java using JCE which implements message authentication protocol shown as a variant b) on the page 9 of lecture notes on Message Authentication and Hash Functions. You need to implement a program which models activities of two participants, Sender and Verifier.

Sender:
- takes a text of the message;
- calculates the message digest (hash function) using SHA-1 algorithm;
- generates a pair of RSA private/public keys;
- encrypts the produced digest (hash) with a private key;
- passes the original message, encrypted digest and public key to the Verifier.

Verifier:
- decrypts the digest he has received from the Sender with the Sender’s public key;
- recalculates a new digest from the text of the message he has received;
- compares these two digests.

Extend your program with the third participant, Adversary, which is placed in between Sender and Verifier and may change either the original message, or encrypted digest, or both. Show that Verifier may detect Adversary's attacks.

Digital Signature Algorithm

Implement a version of a program for the message authentication which utilizes Digital Signature Algorithm (DSA) available in JCA. See details on use of DSA in http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html#SigEx. Show that again Verifier may detect Adversary’s attacks. Compare usability and efficiency of two solutions: SHA-1+RSA and DSA.

Report

In your report please give a short explanation of your solution, the description of experiments and the explanation of the observed behaviour of the authentication schemes, the comparison of SHA-1+RSA and DSA schemes.
Useful information

You may find it useful to have a look on the simple program implementing RSA encryption/decryption with keys generated randomly:
http://www.csc.liv.ac.uk/~alexei/COMP522/RandomKeyRSAExample.java
and on the simple program generating a digest of the message using SHA-1:
http://www.csc.liv.ac.uk/~alexei/COMP522/MessageDigestExample.java
(there are links to these programs from the web page of the module)

Submission

You need to submit:

- Java code and compiled classes of your program;
- Report

The work must be submitted electronically by going to the Web page at
https://cgi.csc.liv.ac.uk/login.php
and follow the link “Coursework submission.” This must be done by

17.00 on Monday December 4, 2017

Please be aware that the standard University policies

- on plagiarism, collusion and fabricated data
 www.liv.ac.uk/tqsd/pol_strat_cop/cop_assess/cop_assess.doc, Section 8
 and

- on late submission
 www.liv.ac.uk/tqsd/pol_strat_cop/cop_assess/cop_assess.doc, Section 6

are applied to this assignment.