Logical representation and analysis of protocols.

Security protocols

- A security protocol is a set of rules, adhered to by the communication parties in order to ensure achieving various security or privacy goals, such as establishing a common cryptographic key, achieving authentication, etc.
- We have discussed already several protocols, aiming at:
 - Key exchange;
 - Private electronic payments;
 - E-voting.

Correctness of protocols

- Are they correct at all?
- How do we establish correctness?
- We have used semi-formal arguments, like
 \textit{If a message is encrypted with the public key of Alice, then only a participant who knows private key of Alice (presumably Alice herself only) can decrypt it.}
- Typically we have considered possible attacks and argued using the reasoning as above, that attacks are impossible (under some reasonable assumptions).
- Is that enough? Are we sure that we have considered all possible situations of use?

Correctness of protocols. II

- Security protocols are designed to succeed even in the presence of a malicious agent, often called \textit{intruder} (adversary);
- Intruder may have complete or partial control over the communication network and may have different computational capabilities;
- The correctness of the protocols depends on the assumptions on capabilities of possible intruder;
- Assumptions are often left implicit;
- Typically in security we have to deal with numerous non-trivial assumptions.
The power of formal methods

- What should we do about establishing correctness of security protocols?
- Apply formal methods!
 - Make explicit all the assumptions involved in a protocol;
 - Make a formal model of the protocol (and its execution);
 - Apply formal reasoning, which would establish the correctness of the protocol.
- Two important aspects:
 - The correctness is established only for a particular formal model of the protocol;
 - and under explicit assumptions (about capabilities of participants, etc);

Logical representation

- Formal aspects of reasoning is an important part of logic;
- Logical representation and analysis of the security protocols is a particular successful approach for the protocols verification;
- Non-classical modal epistemic logics dealing with such notions as “belief” and “knowledge”, are more suitable here than classical logics dealing primarily with “truth”.

Protocol analysis using a logic

- Derive the specification of an idealized protocol in a logical language from the (usually informal) original specification;
- Specify the assumptions about the initial state;
- Attach logical formulae to statements of the protocol as assertions about the state of the system after each statement;
- Apply logical axioms and inference rules to derive beliefs held by parties in the protocols.

BAN logic

- M. Burrows, M. Abadi, R. Needham (1989): Logic of authentication, or BAN logic;
- Suitable for formal analysis of authentication protocols;
- A protocol is analysed from the point of view of each principal (participant) P.
- Each message received by P is considered in relation to previous messages received by P and sent by P;
- The question, one can address using BAN logic, is what a principal should believe, on the basis of the messages it has sent and received.
Formulae of BAN logic

- **P believes** X is a formula of BAN logic saying
 - P is entitled to conclude that X is true, or
 - P has a justification for X;
- **P sees** X
 - The principal P receives a message containing X. P might need to perform decryption to extract X. X can be a statement or a simple item of data. P does not necessarily believes X.

Formulae of BAN. II

- **P controls** X
 - P has jurisdiction over X, or P is trusted as an authority on X. For example an authentication server is trusted as an authority on statements about a key it has allocated.
- **P said** X
 - At some point in the past, P is known to have sent a message including X

Further notation

- If K is a key, then \{X\}_K means X encrypted with the key K.
- If X and Y are statements, then X \cdot Y means X and Y

Formulae of BAN logic. II

- **Fresh(X)**
 - X has not been sent earlier. It is a fresh value (nonce = number used once).
- **P \&\& Q**
 - K is a secret between P and Q and possibly other principals trusted by P and Q (such as authentication server).
Main assumption

- Trusted principals do not lie about their beliefs to other principals.
- That means if P is trusted, and if a formula X is received in a message (known to have been) sent by P then it can be deduced that P believes X.

Deduction rules

- Deduction rules (or postulates) of BAN logic have the following format

$$\frac{X, Y}{Z}$$

meaning Z follows from a conjunction of statements X and Y.

Main postulates of BAN logic

The message meaning rule:

\[
\begin{align*}
\text{P believes } P \rightarrow Q, P \text{ sees } \{X\}_K \\
\text{P believes } (Q \text{ said } X)
\end{align*}
\]

If P believes that it shares a secret key K with Q, and if P receives a message containing X encrypted with K then P believes that Q once said X.

Main postulated of BAN logic

The nonce-verification rule

\[
\begin{align*}
P \text{ believes fresh}(X), P \text{ believes } (Q \text{ said } X) \\
P \text{ believes } (Q \text{ believes } X)
\end{align*}
\]

Nonce = number used once = fresh value.

If P believes that Q once said X, then P believes that Q once believed X (by main assumption). If additionally P believes X is fresh then P must believe that Q currently believes X.
Main postulated of BAN logic

The jurisdiction rule:

\[
P \text{ believes } (Q \text{ controls } X), P \text{ believes } (Q \text{ believes } X) \\
\hline
P \text{ believes } X \\
\]

If \(P \) believes that \(Q \) has control over whether or not \(X \) true and if \(P \) believes that \(Q \) believes it to be true, then \(P \) must believe in it also. The reason is \(Q \) is an authority on the matter as far as \(P \) is concerned.

Decomposition postulates

\(P \) sees \((X,Y)\)

\[
\frac{P \text{ sees } (X,Y)}{P \text{ sees } X} \\
\hline
P \text{ believes fresh}(X) \\
\frac{P \text{ believes fresh}(X,Y)}{P \text{ believes } (Q \text{ believes } (X,Y))} \\
\frac{P \text{ believes } (Q \text{ believes } (X))}{P \text{ believes } (Q \text{ believes } (X,Y))} \\
\]

\(P \) sees \((X,Y)\) and \(P \) believes fresh\((X)\) leads to \(P \) believing that \(Q \) believes \((X,Y)\) and further that \(Q \) believes \((X)\).