Symmetric Encryption. Part 2

Block ciphers modes

Block ciphers may be used in different modes. Most common modes are

- Electronic Codebook Mode (ECB)
- Cipher Block Chaining (CBC)
- Cipher Feedback Mode (CFB)

Electronic Codebook Mode (ECB)

- **Simple mode**: each block, say of size 64 bits is encrypted with the same key;
- For a given block of the plaintext and a given key the result of encryption is unique;
- If a block of plaintext is repeated several times, the result of encryption contains several copies of the same ciphertext;
- So, the encryption of the lengthy (regular) messages might be insecure.

Cipher Block Chaining Mode (CBC)

- CBC mode fixes abovementioned disadvantage of ECB mode: here the same blocks of plaintext may produce different blocks of ciphertext;
- **Simple idea**: before encryption a block of the plaintext is XOR’ed with the result of encryption of the previous block;
 \[C_i = E_K[C_{i-1} \oplus P_i] \]
- For the first block encryption some initialisation vector (IV) is used;
- It is better to keep both a key and IV secret.
Cipher Feedback Mode (CFB)

- CFB mode may be used to transform a block cipher to the stream cipher;
- It has a parameter s (the size of transmission unit); if 8-bit characters are used as transmission unit, then $s = 8$;
- Shift register of the size equal to the size of the block of the block cipher is used (typically it is 64 bits);
- Again, an initialisation vector is needed.

s-bits CFB encryption

s-bits CFB decryption
Key distribution

From requirements for symmetric encryption:

“Sender and receiver must have obtained copies of the secret key in a secure way and must keep the key secure”

• Important issue: how to distribute secret keys?

Key distribution, manual delivery

For two parties A and B:
• A key could be created by A and delivered physically to B (or vice versa);
• A key could be created by the third trusted party C and delivered physically to A and B;

Difficult to use in wide area distributed systems, when dynamic connections are needed.

Key distribution, further techniques

• If A and B have used recently a secret key, one of them could create a new secret key and send it to the partner using old key;
 Potential problem: once an attacker learned one key, he can disclose all keys afterwards

• There is a third trusted party C connected by encrypted channels with both A and B. Then C creates a key and distributes it among A and B using encrypted channels;

Automated key distribution

1. Host sends packet requesting connection
2. Host and buffer packet, asks KDC for session key
3. KDC distributes session key to both from cache
4. Buffered packet transmitted

KDC – key distribution center
KIP – first intermediate packet

HOST -----> KDC -----> HOST
HOST -----> KIP -----> HOST
KIP -----> HOST

network

COMP 522
Finally

The option we will discuss next time:

Both parties use public-key cryptographic techniques