RSA Public-Key Encryption Algorithm

• One of the first, and probably best known public-key scheme;
• It was developed in 1977 by R. Rivest, A. Shamir and L. Adleman;
• RSA is a block cipher in which the plaintext and ciphertext are integers between 0 and n-1, where n is some number;
• Every integer can be represented, of course, as a sequence of bits;

Encryption and decryption in RSA

• Encryption
\[C = M^e \mod n \]

• Decryption
\[M = C^d \mod n = (M^e)^d \mod n = M^{ed} \mod n \]

Here \(M \) is a block of a plaintext, \(C \) is a block of a ciphertext and \(e \) and \(d \) are some numbers. Sender and receiver know \(n \) and \(e \). Only the receiver knows the value of \(d \).

Private and Public keys in RSA

• Public key KU = \(\{e, n\} \);
• Private key KR = \(\{d, n\} \);

Requirements:
• It is possible to find values \(e, d, n \) such that
• It is easy to calculate
Requirements

- It is possible to find values e,d,n such that $M^{ed} = M \mod n$ for all $M < k$ (key generation), where k is some number, $k < n$.
- It is easy to calculate M^e and C^d modulo n.
- It is difficult to determine d given e and n.

Key generation

- Select two prime numbers p and q;
- Calculate $n = p \times q$;
- Calculate $\phi(n) = (p-1)(q-1)$;
- Select integer e less than $\phi(n)$ and relatively prime with $\phi(n)$;
- Calculate d such that $de \mod \phi(n) = 1$;
- Public key $KU = \{e, n\}$;
- Private key $KR = \{d, n\}$.

Fermat – Euler Theorem

Correctness of RSA can be proved by using Fermat-Euler theorem:

$$x^{p-1} = 1 \mod p$$

Where p is a prime number and $x \neq 0 \mod p$.

Chinese Remainder Theorem

For relatively prime p and q and any x and y:

$$x = y \mod p$$
$$x = y \mod q$$

Implies

$$x = y \mod pq$$
Example

- Select two prime numbers, \(p = 17 \), \(q = 11 \);
- Calculate \(n = pq = 187 \);
- Calculate \(\phi(n) = 16 \times 10 = 160 \);
- Select \(e \) less than 160 and relatively prime with 160;
- Determine \(d \) such that \(de \mod 160 = 1 \) and \(d < 160 \). The correct value is \(d = 23 \), indeed \(23 \times 7 = 161 = 1 \mod 160 \).
- Thus \(KU = \{7, 187\} \) and \(KR = \{23, 187\} \) in that case.

Encryption and decryption

Let a plaintext be \(M = 88 \); then encryption with a key \(\{7, 187\} \) and decryption with a key \(\{23, 187\} \) go as follows

How to break RSA

- **Brute-force approach**: try all possible private keys of the size \(n \). Too many of them even for moderate size of \(n \);
- **More specific approach**: given a number \(n \), try to find its two prime factors \(p \) and \(q \); Knowing these would allow us to find a private key easily.

Security of RSA

Relies upon complexity of factoring problem:

- Nobody knows how to factor the big numbers in the reasonable time (say, in the time polynomial in the size of (binary representation of) the number;
- On the other hand nobody has shown that the fast factoring is impossible;
RSA challenge

RSA Laboratories to promote investigations in security of RSA put a challenge to factor big numbers. Least number, not yet factored in that challenge is

RSA-230 =
17969491597941066732916128449573246156367561808
0126000708891883553172664034149093349337224786
86507552308558641999292218144366847228740520652
57937495694348389263171152522525654410980819170
611742509702440718010364831638288518852689

762 bits, or 230 decimal digits

RSA challenge, recent news

RSA-220 =
226013852620340578494165404861019751350803891517197767183211977681
09445941817966676608593121306582577250631582886676637448070001811
14571186300211245792819946746296607013109659864098332798280356037
920539198013399446496955261 = 6863564122675662743823714992884378001308422399791648446212449933
215410614414642667938213644208420192054999867
x
32929074394863498120493015492128352919164551965362339524526880511
692903449049652463373924866390738191765712603

(> ~300 CPU years, S. Bai et al., May 2016)