Finite Models for Safety Verification

Alexei Lisitsa

Department of Computer Science
University of Liverpool,
Liverpool, UK

ENS Cachan, LSV, June 22, 2012
Outline

- Preamble
- Reachability as deducibility
- Verification via countermodel finding
 - Lossy Channel Systems
 - Cache Coherence Protocols
 - Linear Systems of Automata and Monotonic Abstraction
 - Regular Model Checking
 - Regular Tree Model Checking
 - Safety for general TRS and Tree Automata Completion
Fibonacci words:

- $w_0 = b$
- $w_1 = a$
- $w_{i+2} = w_{i+1}w_i$

- $b, a, ab, aab, abaab, aababaab, abaabaababaab \ldots$
Fibonacci words:

- $w_0 = b$
- $w_1 = a$
- $w_{i+2} = w_{i+1}w_i$

- $b, a, ab, aab, abaab, aababaab, abaabaababaab \ldots$

Observation: none of the words contains bb or aaa as the subword
Fibonacci words:

- $w_0 = b$
- $w_1 = a$
- $w_{i+2} = w_{i+1}w_i$

- $b, a, ab, aab, abaab, aababaab, abaabaababaab \ldots$

Observation: none of the words contains bb or aaa as the subword

Question: How to prove it?
Fibonacci words:

- $w_0 = b$
- $w_1 = a$
- $w_{i+2} = w_{i+1}w_i$
- $b, a, ab, aab, abaab, aababaab, abaabaababaab \ldots$

Observation: none of the words contains bb or aaa as the subword

Question: How to prove it?

Answer: Let’s apply FO logic \ldots
Fibonacci words:

- \(w_0 = b \)
- \(w_1 = a \)
- \(w_{i+2} = w_{i+1}w_i \)
- \(b, a, ab, aab, abaab, aababaab, abaabaababaab \ldots \)

Observation: none of the words contains \(bb \) or \(aaa \) as the subword

Question: How to prove it?

Answer: Let’s apply FO logic \ldots
Logic encoding

FO theory FIB:

- $(x * y) * z = x * (y * z)$
- $R(b, a)$
- $R(x, y) \rightarrow R(y, x * y)$

Proposition

If w is a Fibonacci word then $FIB \vdash \exists x R(t_w, x)$

Here t_w denote a term encoding of w, i.e. $t_{aba} = (a * b) * a$

Corollary

*If $FIB \not\vdash \exists x \exists z \exists y R(z * b * b * y, x)$ then there is no Fibonacci word with bb as a subword*
Finite countermodel

Now to show $FIB \not\vdash \exists x \exists z \exists y R(z \ast b \ast b \ast y, x)$ we are looking for

- Finite countermodels for $FIB \rightarrow \exists x \exists z \exists y R(z \ast b \ast b \ast y, x)$, or equivalently, for
- Finite models for $FIB \land \neg \exists x \exists z \exists y R(z \ast b \ast b \ast y, x)$

To find a model we apply generic finite model finding procedure, e.g. implemented in Mace4 finite model finder by W. McCune (see demonstration)
Now to show \(FIB \not\vdash \exists x \exists z \exists y R(z \ast b \ast b \ast y, x) \) we are looking for

- Finite countermodels for \(FIB \rightarrow \exists x \exists z \exists y R(z \ast b \ast b \ast y, x) \), or equivalently, for

- Finite models for \(FIB \land \neg \exists x \exists z \exists y R(z \ast b \ast b \ast y, x) \)

To find a model we apply generic finite model finding procedure, e.g. implemented in Mace4 finite model finder by W.McCune (see demonstration)

- A model of size 5 is found in 0.05s. The property is proved!
Finite countermodels

Now to show $FIB \not\vdash \exists x \exists z \exists y R(z \ast b \ast b \ast y, x)$ we are looking for

- Finite countermodels for $FIB \rightarrow \exists x \exists z \exists y R(z \ast b \ast b \ast y, x)$, or equivalently, for

- Finite models for $FIB \land \neg \exists x \exists z \exists y R(z \ast b \ast b \ast y, x)$

To find a model we apply generic finite model finding procedure, e.g. implemented in Mace4 finite model finder by W. McCune (see demonstration)

- A model of size 5 is found in 0.05s. The property is proved!

- To show that ‘aaa’ is not a subword of any Fib. word a model of size 11 can be found in $\approx 45s$
In this talk:
the same idea/approach can be applied to (surprisingly) large classes of infinite state and parameterized safety verification problems.
Many problems in verification can be naturally formulated in terms of *reachability* within transition systems;

We propose to use deducibility (or derivability) in first-order predicate logic to model reachability in transition systems of interest;

Then verification can be treated as theorem (dis)proving in classical predicate logic;

Many automated tools (provers and model finders) are readily available.
Let $\mathcal{S} = \langle S, \to \rangle$ be a transition system with the set of states S and transition relation \to.

Let $e : s \mapsto \varphi_s$ be encoding of states of \mathcal{S} by formulae of first-order predicate logic, such that

- the state s' is reachable from s, i.e. $s \to^* s'$ if and only if $\varphi_{s'}$ is the logical consequence of φ_s, that is $\varphi_s \models \varphi_{s'}$ and $\varphi_s \vdash \varphi_{s'}$.

Under such assumptions:

- Establishing reachability \equiv theorem proving
- Establishing non-reachability \equiv theorem disproving
Verification of safety

- Safety \equiv non-reachability of “bad” states
- Verification of safety properties \equiv theorem disproving
- To disprove $\varphi \models \psi$ it is sufficient to find a countermodel for $\varphi \rightarrow \psi$, or which is the same a model for $\varphi \land \neg \psi$
- In general, such a model can be inevitably infinite and the set of satisfiable first-order formulae is not r.e.
- One cannot hope for full automation here
- Our proposal: use automated finite model finders/builders
For the verification of safety the weaker assumption on the encoding is sufficient:
\[s \rightarrow^{\ast} s' \Rightarrow \varphi_s \models \varphi_{s'} \]

For the verification of parameterized systems general idea of reachability as deducibility should be suitably adjusted
- depends on particular classes of systems
- unary or binary predicates modeling reachability can be used
The idea of using finite model finders for verification is not new (thanks to anonymous referees of FMCAD 2010 conference!)

It was proposed and developed in the area of verification of security protocols in the following papers (at least):

What is new then?

- Countermodel finding based verification methods are practically efficient for the verification of various classes of infinite state and parameterized systems:
 - lossy channel systems
 - cache coherence protocols
 - parameterized linear arrays of finite state automata
 - etc.

- Completeness (for lossy channel systems verification)
- Relative completeness wrt to regular model checking (RMC); regular tree model checking (RTMC); tree automata completion techniques
- In many cases no specialized model finding procedures is needed. Generic MACE4 finite model finder by W.McCune has been successfully used to verify above systems
Parameterized linear arrays of automata
Parameterized mutual exclusion protocol

- Operates on the parameterized linear array of finite state automata
The protocol is specified as a parameterized system $\mathcal{M} = (Q, T)$, where $Q = \{\text{green, black, blue, red}\}$ is the set of local states of finite automata, and T consists of the following transitions:

- $\forall_{LR}\{\text{green, black}\} : \text{green} \rightarrow \text{black}$
- $\text{black} \rightarrow \text{blue}$
- $\exists_{L}\{\text{black, blue, red}\} : \text{blue} \rightarrow \text{blue}$
- $\forall_{L}\{\text{green}\} : \text{blue} \rightarrow \text{red}$
- $\text{red} \rightarrow \text{black}$
- $\text{black} \rightarrow \text{green}$

The correctness condition: if the protocol starts with all states being green it will never get to a state where there are two or more automata in the red state.
Translation to the first-order logic,

- \((x * y) * z = x * (y * z)\)
- \(e * x = x * e = x\)

\(* is a monoid operation and e is a unit of a monoid\)

- \(G(e)\)
- \(G(x) \rightarrow G(x * \text{green})\)

\((specification of configurations with all green states)\)

- \(GB(e)\)
- \(GB(x) \rightarrow GB(x * \text{green})\)
- \(GB(x) \rightarrow GB(x * \text{black})\)

\((specification of configurations with all states being green or black)\)
Translation to the first-order logic, II

- $G(x) \rightarrow R(x)$

 (initial states assumption: “allgreen” configurations are reachable)

- $(R((x \ast \text{green}) \ast y) \& GB(x) \& GB(y)) \rightarrow R((x \ast \text{black}) \ast y)$
- $R((x \ast \text{black}) \ast y) \rightarrow R((x \ast \text{blue}) \ast y)$
- $R((x \ast \text{blue}) \ast y) \& (x = (z \ast \text{black}) \ast w) \rightarrow R((x \ast \text{blue}) \ast y)$
- $R((x \ast \text{blue}) \ast y) \& (x = (z \ast \text{blue}) \ast w) \rightarrow R((x \ast \text{blue}) \ast y)$
- $R((x \ast \text{blue}) \ast y) \& (x = (z \ast \text{red}) \ast w) \rightarrow R((x \ast \text{blue}) \ast y)$
- $R((x \ast \text{blue}) \ast y) \& G(x) \rightarrow R((x \ast \text{red}) \ast y)$
- $R((x \ast \text{red}) \ast y) \rightarrow R((x \ast \text{black}) \ast y)$
- $R((x \ast \text{black}) \ast y) \rightarrow R((x \ast \text{green}) \ast y)$

 (specification of reachability by one step transitions from T; one formula per transition, except the case with existential condition, where three formulae are used)
If a configuration \bar{c} is reachable in \mathcal{ME} then $\Phi_P \vdash R(t_{\bar{c}})$

To establish safety property of the protocol (mutual exclusion) it does suffice to show that

$\Phi_P \nvdash \exists x \exists y \exists z R(((x * \text{red}) * y) * \text{red} * z)$.

Delegate the latter task to the finite model finder MACE4 (see demonstration)
If a configuration \bar{c} is reachable in $\mathcal{M}\mathcal{E}$ then $\Phi_\mathcal{P} \vdash R(t_{\bar{c}})$

To establish safety property of the protocol (mutual exclusion) it does suffice to show that $\Phi_\mathcal{P} \not\vdash \exists x \exists y \exists z R(((x \ast red) \ast y) \ast red) \ast z)$.

Delegate the latter task to the finite model finder MACE4 (see demonstration)

It takes approx. 0.01s to find a countermodel and verify the safety property!
Take a configuration \bar{c} of the protocol, consider its term representation $t_{\bar{c}}$.

The following property is an invariant of the system:

$$[t_{\bar{c}}] \in [R]$$

Here $[\ldots]$ denote the interpretation in the (counter)model.
The domain D of the model is a four element set $\{0, 1, 2, 3\}$. Interpretations of constants: $[\text{black}] = [\text{blue}] = 0$, $[e] = [\text{green}] = 1$, $[\text{red}] = 2$. Interpretations of unary predicates: $[G] = \{1\}$; $[GB] = \{0, 1\}$; $[R] = \{0, 1, 2\}$.

The interpretation of the binary function \star is given by the following table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Invariant property which holds for any reachable configuration \bar{c}:

$$[t_{\bar{c}}] \in [R] = \{0, 1, 2\}$$
Relative completeness

Theorem (2010)

If the safety of parameterized linear system of automata can be demonstrated by monotonic abstraction method then it can be demonstrated by FCM too.
Safety for parameterized linear systems

Problem

Given: A parameterized system $\mathcal{P} = (Q, T)$, a set $\text{In} \subseteq C$ of initial configurations, a set $B \subseteq C$ of bad configurations.

Question: Are there any configurations $c \in \text{In}$ and $c' \in B$ such that c' is reachable from c in \mathcal{P}, i.e. for which $c \xrightarrow{\mathcal{P}}^* c'$ holds?

A negative answer for the above question means the safety property ("not B") holds for the parameterized system. Further assumptions:

- $I = q_0^*$ for $q_0 \in Q$
- The set B of bad configurations is defined by a finite set of words $F \subseteq Q^*$: $B = \{ \bar{c} | \exists \bar{w} \in F \land \bar{w} \preceq \bar{c} \}$, where $\bar{w} \preceq \bar{w}'$ denotes that \bar{w} is a (not necessarily contiguous) subword of \bar{w}'
Abdulla et al 2009

Given a parameterized system $\mathcal{P} = (Q, T)$ and the corresponding transition relation $\rightarrow_{\mathcal{P}}$ on the configurations within \mathcal{P}.

The monotonic abstraction $\rightarrow_{\mathcal{P}}^{A}$ of $\rightarrow_{\mathcal{P}}$ is as follows. For two configurations \bar{c} and \bar{c}', $\bar{c} \rightarrow_{\mathcal{P}}^{A} \bar{c}'$ holds iff either

- $\bar{c} \rightarrow_{\mathcal{P}} \bar{c}'$ holds, or
- there is a transition $t = \forall_L Jq \rightarrow q'$ in T, $\bar{c} = \bar{c}_l \ q \ \bar{c}_r$ and $\bar{c}' = \text{reduct}_J(\bar{c}_l) \ q' \ \bar{c}_r$
- there is a transition $t = \forall_R Jq \rightarrow q'$ in T, $\bar{c} = \bar{c}_l \ q \ \bar{c}_r$ and $\bar{c}' = \bar{c}_l \ q' \ \text{reduct}_J(\bar{c}_r)$
- there is a transition $t = \forall_{LR} Jq \rightarrow q'$ in T, $\bar{c} = \bar{c}_l \ q \ \bar{c}_r$ and $\bar{c}' = \text{reduct}_J(\bar{c}_l) \ q' \ \text{reduct}_J(\bar{c}_r)$
Symbolic backward reachability algorithm Abdulla et al 2009

- $U_0 = B$
- $U_{i+1} = U_i \cup \text{Pre}(U_i)$

where $\text{Pre}(X) = \{ \overline{c} \mid \exists \overline{c}' \in X \land \overline{c} \rightarrow^A \overline{c}' \}$.

- This iterative process is guaranteed to stabilize, i.e $U_{n+1} = U_n$ for some finite n.
- Once the process stabilized the resulting U consists of all configurations from which some bad configuration can be reached via \rightarrow^A.
- Then the check is performed on whether $\text{Init} \cap U = \emptyset$. If this condition is satisfied then the safety is established, for no bad configuration can be reached from initial configurations via \rightarrow^A and, a fortiori, via \rightarrow^P.

Verification via monotonic abstraction
Important properties of the fixed-point U

- If the safety holds then \bar{U} (complement of U) is an invariant of the system sufficient to prove the safety. Indeed, it subsumes $Init$ and is closed under reachability.
- U has a finite set of generators and therefore is a regular set. It follows that \bar{U} is a regular set too.
Theorem (on regular invariants)

Given a parameterized system $\mathcal{P} = (Q, T)$ and the set of bad configurations $B = \{\bar{c} \mid \exists \bar{w} \in F \land \bar{w} \preceq \bar{c}\}$. Then the following two conditions are equivalent:

1. There exists a regular set of configurations Inv such that
 - $Reach \subseteq Inv$ where $Reach = \{y \mid \exists x (x \in Init \land x \xrightarrow{\star}^*_\mathcal{P} y)\}$
 - Inv is closed under reachability, that is $x \in Inv \land x \xrightarrow{\mathcal{P}} y \Rightarrow y \in Inv$
 - $Inv \cap B = \emptyset$

2. There exists a finite model for $\Phi_{\mathcal{P}} \land \neg \Psi_F$

Proof.

Uses an algebraic characterization of regular languages in terms of inverse homomorphistic images of subsets of finite monoids.
If the safety for \mathcal{P} holds and can be shown by the monotonic abstraction method, then
If the safety for P holds and can be shown by the monotonic abstraction method, then

There exists a regular invariant, which implies
If the safety for P holds and can be shown by the monotonic abstraction method, then

- There exists a regular invariant, which implies

- An existence of a finite countermodel for FO encoding of the problem, which means
If the safety for P holds and can be shown by the monotonic abstraction method, then
- There exists a regular invariant, which implies
- An existence of a finite countermodel for FO encoding of the problem, which means
- Safety can be established by FCM (finite countermodel method) if a complete finite model building procedure is used
Figure: Subsets of configurations in general position
The parameterized system \((Q, T)\) where \(Q = \{q_0, q_1, q_2, q_3, q_4\}\) and where \(T\) includes the following transition rules

1. \(\forall_{LR}\{q_0, q_1, q_4\} : q_0 \rightarrow q_1\)
2. \(q_1 \rightarrow q_2\)
3. \(\forall_L\{q_0\} : q_2 \rightarrow q_3\)
4. \(q_3 \rightarrow q_0\)
5. \(\exists_{LR}\{q_2\} : q_3 \rightarrow q_4\)
6. \(q_4 \rightarrow q_0\)

satisfies mutual exclusion for state \(q_4\), but this fact can not be established by the monotonic abstraction method.
Using FCM we have verified mutual exclusion for this system, demonstrating that FCM method is stronger than monotone abstraction. Mace4 has found a finite countermodel of the size 6 in 341s.
Further relative completeness results

<table>
<thead>
<tr>
<th>Theorem (2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the safety of a linear parameterized system can be demonstrated by regular model checking method then it can be demonstrated by FCM too.</td>
</tr>
</tbody>
</table>
Further relative completeness results

<table>
<thead>
<tr>
<th>Theorem (2010)</th>
<th>If the safety of a linear parameterized system can be demonstrated by regular model checking method then it can be demonstrated by FCM too.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorem (2011)</td>
<td>If the safety of a tree-shape parameterized system can be demonstrated by regular tree model checking method then it can be demonstrated by FCM too.</td>
</tr>
</tbody>
</table>
Further relative completeness results

Theorem (2010)
If the safety of a linear parameterized system can be demonstrated by regular model checking method then it can be demonstrated by FCM too.

Theorem (2011)
If the safety of a tree-shape parameterized system can be demonstrated by regular tree model checking method then it can be demonstrated by FCM too.

Theorem (2011, RTA 2012)
If the safety of a term rewriting system can be demonstrated by tree automata completion technique then it can be demonstrated by FCM too.
In all cases the proofs of relative completeness results rely upon existence of regular invariants, that is regular sets (of words or trees) subsuming all reachable states and disjoint with all unsafe states.
Parameterized tree-like systems
Verification of parameterized tree-like systems

- Verification of safety (a system never goes into a failure state)
Verification of parameterized tree-like systems

- Verification of safety (a system never goes into a failure state)
- Tree-like systems: protocols and algorithms operating in the networks with tree topology
Verification of parameterized tree-like systems

- Verification of safety (a system never goes into a failure state)
- Tree-like systems: protocols and algorithms operating in the networks with tree topology
- Systems are specified by tree transducers, initial and unsafe configurations are specified by tree automata
Verification of parameterized tree-like systems

- Verification of safety (a system never goes into a failure state)
- Tree-like systems: protocols and algorithms operating in the networks with tree topology
- Systems are specified by tree transducers, initial and unsafe configurations are specified by tree automata
- Parameterized verification: safety holds for all sizes of networks
Verification of parameterized tree-like systems

- Verification of safety (a system never goes into a failure state)
- Tree-like systems: protocols and algorithms operating in the networks with tree topology
- Systems are specified by tree transducers, initial and unsafe configurations are specified by tree automata
- Parameterized verification: safety holds for all sizes of networks
- **Regular Tree Model Checking (RTMC)** is a traditional approach
Verification of safety (a system never goes into a failure state)

Tree-like systems: protocols and algorithms operating in the networks with tree topology

Systems are specified by tree transducers, initial and unsafe configurations are specified by tree automata

Parameterized verification: safety holds for all sizes of networks

Regular Tree Model Checking (RTMC) is a traditional approach

We show that FCM method using disproving in first-order logic can be used instead
A tree automaton over a ranked alphabet Σ is a triple $A = (Q, F, \delta)$, where Q is a finite set of states, $F \subseteq Q$ is a set of final states, and δ is a transition relation, represented by a finite set of rules of the form $(q_1, \ldots, q_p) \rightarrow^f q$, where $f \in \Sigma^p$ and $q_1, \ldots, q_p, q \in Q$. A tree automaton over an alphabet Σ^2 is called a tree transducer.

- The language $L(A)$ of trees accepted by an automaton A is defined as usual.
- For a tree transducer D over an alphabet Σ^2 one-step transition relation $R_D \subseteq T(\Sigma) \times T(\Sigma)$ is defined as $R_D^D = \{(T, T') \mid T \times T' \text{ is accepted by } D\}$.
- R^i denotes the ith power of R i.e. i compositions of R. $R^* = \bigcup_{i \geq 0} R^i$.
- For any $L \subseteq T(\Sigma)$ and $R \subseteq T(\Sigma) \times T(\Sigma)$ we denote by $L \star R$ the set $\{y \mid \exists x (x, y) \in L \times T(\Sigma) \cap R\}$.

Alexei Lisitsa
Finite Models for Safety Verification
Regular Tree Model Checking (RTMC) is a general method for the verification of parameterized systems that have tree topology [Abdulla et al, 2002].

Regular Tree Model Checking deals with the following basic verification task.

Problem

Given two tree automata A_I and A_U over an alphabet Σ and a tree transducer D over Σ^2. Does $(L(A_I) \star R^*_D) \cap L(A_U) = \emptyset$ hold?

The verification in RTMC proceeds by producing a tree transducer TR approximating R^*_D from above, that is $R^*_D \subseteq L(TR)$, and showing the emptiness of the set $(L(A_I) \star L(TR)) \cap L(A_U)$.
We show that basic RTMC verification problem can be reduced to a purely logical problem of disproving a first-order formula.

Assume we are given an instance of the basic verification problem (over ranking alphabet \(\Sigma \)), that is

- a tree automaton \(A_I = (Q_I, F_I, \delta_I) \) accepting a regular set of initial states;
- a tree automaton \(A_U = (Q_U, F_U, \delta_U) \) accepting a regular set of unsafe states;
- a tree transducer \(D = (Q_D, F_D, \delta_D) \) representation one-step transition relation \(R_D \).

Now define a set formulae of first-order predicate logic as follows.
Vocabulary

- constants for all elements of $Q_I \sqcup Q_U \sqcup Q_D \sqcup \Sigma_0$;
- unary predicate symbols $\text{Init}^{(1)}$, $\text{Unsafe}^{(1)}$;
- binary predicate symbols Init^2, Unsafe^2, R;
- a ternary predicate symbol T;
- a p-ary functional symbol f_θ for every $\theta \in \Sigma_p$.
Given any tree τ from $T(\Sigma)$ define its term translation t_τ by induction:

- $t_\tau = c$ for a tree τ with one node labeled by $c \in \Sigma_0$;
- $t_\tau = f_\theta(t_{\tau_1}, \ldots, t_{\tau_p})$ for a tree τ with the root labeled by $\theta \in \Sigma_p$ and children $\tau_1, \ldots \tau_p$.
Now we are ready to define a translation of RTMC problem, given by tree automata A_I, A_U and a tree transducer D to a set Φ of first-order formulae.

Φ consists of the following formulae...
Translation of the automaton A_I

- $Init^{(2)}(a, q)$ for every $a \in \Sigma_0$, $q \in Q_I$ and $\rightarrow^a q$ in δ_I;
- $Init^{(2)}(x_1, q_1) \land \ldots \land Init^{(2)}(x_p, q_p) \rightarrow Init^{(2)}(f_\theta(x_1, \ldots, x_p), q)$ for every $(q_1, \ldots, q_p) \rightarrow^\theta q$ in δ_I;
- $\forall q \in F_I Init^{(2)}(x, q) \rightarrow Init^{(1)}(x)$;
Translation of the automaton A_U

- $Unsafe^{(2)}(a, q)$ for every $a \in \Sigma_0$, $q \in Q_I$ and $\rightarrow^a q$ in δ_I;
- $Unsafe^{(2)}(x_1, q_1) \land \ldots \land Unsafe^{(2)}(x_p, q_p) \rightarrow Unsafe^{(2)}(f_\theta(x_1, \ldots, x_p), q)$ for every $(q_1, \ldots, q_p) \rightarrow^{\theta} q$ in δ_I;
- $\forall q \in F_I Unsafe^{(2)}(x, q) \rightarrow Unsafe^{(1)}(x)$;
Translation of the transducer D

- $T(a, b, q)$ for every $\rightarrow^{(a, b)} q$ in δ_D;
- $T(x_1, y_1, q_1) \land \ldots \land T(x_p, y_p, q_p) \rightarrow T(f_{\theta_1}(x_1, \ldots, x_p), f_{\theta_2}(y_1, \ldots, y_p), q)$ for every $(q_1, \ldots, q_p) \rightarrow^{\theta_1, \theta_2} q$ in δ_D;
- $\forall q \in F_D T(x, y, q) \rightarrow R(x, y)$;

plus reflexive-transitive closure axioms for R:

- $R(x, x)$;
- $R(x, y) \land R(y, z) \rightarrow R(x, z)$.

Alexei Lisitsa
Finite Models for Safety Verification
Adequacy of translation

Proposition

If $\tau \in L(A_I)$ then $\Phi \vdash \text{Init}^{(1)}(t_\tau)$

If $\tau \in L(A_U)$ then $\Phi \vdash \text{Unsafe}^{(1)}(t_\tau)$

If $\tau \in L(A_I) \star R_D^*$ then $\Phi \vdash \exists x \text{ Init}^{(1)}(x) \land R(x, t_\tau)$

Corollary

(correctness of the verification method)

If $\Phi \not\vdash \exists x \exists y (\text{Init}^{(1)}(x) \land R(x, y) \land \text{Unsafe}^{(1)}(y)$ then

$(L(A_I) \star R_D^*) \cap L(A_U) = \emptyset$
In order to prove safety, that is \((L(A_I) \star R^*_D) \cap L(A_U) = \emptyset\) it is sufficient to demonstrate
\[
\Phi \not\vdash \exists x \exists y (\text{Init}^{(1)}(x) \land R(x, y) \land \text{Unsafe}^{(1)}(y))
\]

In the FCM method we delegate this task to the generic finite model finding procedure, which searches for the finite countermodels for
\[
\Phi \rightarrow \exists x \exists y (\text{Init}^{(1)}(x) \land R(x, y) \land \text{Unsafe}^{(1)}(y)).
\]

If a countermodel is found the safety is established!
Theorem (relative completeness of FCM)

Given an instance of the basic verification problem for RTMC, that is two tree automata A_I and A_U over an alphabet Σ and a tree transducer $D = (Q_D, F_D, \delta_D)$ over Σ^2. If there exists a regular tree language R such that $(L(A_I) \star R^*_D) \subseteq R$ and $R \cap L(A_U) = \emptyset$ then there is a finite countermodel for

$$\Phi \rightarrow \exists x \exists y (Init^{(1)}(x) \land R(x, y) \land Unsafe^{(1)}(y))$$

It follows then that FCM is at least as powerful in establishing safety as RTMC, provided a complete finite model finding procedure is used.
Parameterized Two-Way Token protocol:

- The system consists of finite-state processes connected to form a binary tree structure.
- Each process stores a single bit which represents the fact that the process has a token.
- During operation of the protocol the token can be passed up or down the tree.
- The correctness condition is that no two or more tokens ever appear (if started with one token).
- In parameterized verification we would like to establish correctness for all possible sizes of trees.

(see Demo)
Lossy channel systems
Lossy Channel Systems (LCS)

- Essentially finite state machines equipped with the channels
 - during transitions the messages can be sent into the channels
 - during transitions the messages can be read off the channels
 - the messages can be lost
 - but the order of the messages can not change
- Can be used to specify and verify the protocols on behavioral level
- Due to unbounded channels these are, generally infinite state systems
- Verification of safety is decidable Abdulla, Jonsson, 93
Theorem

Parallel composition of
- complete theorem proving and
- complete finite model building

for first-order predicate logic provides with a decision procedure for safety properties of lossy channel systems.

ATVA 2010
Parameterized cache coherence protocols specified in terms of Extended FSM *ATVA 2010*
Parameterized cache coherence protocols specified in terms of Extended FSM ATVA 2010
Safety verification for general term rewriting RTA 2012
- Parameterized cache coherence protocols specified in terms of Extended FSM ATVA 2010
- Safety verification for general term rewriting RTA 2012
Consider the TRS $\mathcal{R} = \{f(x) \rightarrow f(s(s(x)))\}$ and assume that we want to prove that $f(a) \not\Rightarrow^* f(s(a))$ (automatically).
Consider the TRS $\mathcal{R} = \{f(x) \rightarrow f(s(s(x))))\}$ and assume that we want to prove that $f(a) \not\rightarrow^* f(s(a))$ (automatically).

Traditional approach (Genet & Rusu, 2010): use tree automata completion + finite state abstraction, expressed equationally (and added manually).
Consider the TRS $R = \{ f(x) \rightarrow f(s(s(x)))) \}$ and assume that we want to prove that $f(a) \not\rightarrow^* f(s(a))$ (automatically)

- Traditional approach (Genet & Rusu, 2010): use tree automata completion + finite state abstraction, expressed equationally (and added manually)
- Alternative approach we advocate in this talk: translate the original question into a logical problem of disproving a first-order formula (in classical predicate logic)
How it works

- Let $\Phi = \{R(f(x), f(s(s(x)))),$

 $R(x, y) \land R(y, z) \rightarrow R(x, z),$

 $R(x, y) \rightarrow R(f(x), f(y))\}$

- Suppose to the contrary $f(a) \rightarrow^* f(s(a))$

- Then $\Phi \vdash R(f(a), f(s(a)))$ holds in classical first-order logic (a derivation would follow rewriting)

- But one can easily find a finite countermodel for $\Phi \rightarrow R(f(a), f(s(a)))$ automatically using a generic finite model finding procedure (e.g. implemented in Mace4)

- So, the original question is resolved positively
Experimental results

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABP*</td>
<td>0.93s</td>
</tr>
<tr>
<td>MSI</td>
<td>0.01s</td>
</tr>
<tr>
<td>MESI</td>
<td>0.03s</td>
</tr>
<tr>
<td>MOESI</td>
<td>0.05s</td>
</tr>
<tr>
<td>Firefly</td>
<td>0.03s</td>
</tr>
<tr>
<td>Synapse N+1</td>
<td>0.01s</td>
</tr>
<tr>
<td>Illinois</td>
<td>0.03s</td>
</tr>
<tr>
<td>Berkeley</td>
<td>0.03s</td>
</tr>
<tr>
<td>Dragon</td>
<td>0.05s</td>
</tr>
<tr>
<td>Futurebus+</td>
<td>1.14s</td>
</tr>
<tr>
<td>Bakery</td>
<td>0.01s</td>
</tr>
<tr>
<td>MutEx</td>
<td>0.01s</td>
</tr>
</tbody>
</table>

* ABP = Alternating Bit Protocol
Monotonic abstraction and RMC problems.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Token passing (non-optimized)</td>
<td>0.12s</td>
</tr>
<tr>
<td>Token passing (optimized)</td>
<td>0.01s</td>
</tr>
<tr>
<td>Mutual exclusion I</td>
<td>0.03s</td>
</tr>
<tr>
<td>Mutual exclusion II</td>
<td>341s</td>
</tr>
<tr>
<td>Bakery</td>
<td>0.03s</td>
</tr>
<tr>
<td>Paterson$^{-}$</td>
<td>0.77s</td>
</tr>
</tbody>
</table>
FCM vs RTMC and Monotonic Abstraction

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Time</th>
<th>Time reported for RTMC*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Token</td>
<td>0.02s</td>
<td>0.06s</td>
</tr>
<tr>
<td>Two-way Token</td>
<td>0.03s</td>
<td>0.09s</td>
</tr>
</tbody>
</table>

* the system configuration was *Intel Centrino 1.6GHZ with 768MB of RAM*

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Time</th>
<th>Time reported*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Token</td>
<td>0.02s</td>
<td>1s</td>
</tr>
<tr>
<td>Two-way Token</td>
<td>0.03s</td>
<td>1s</td>
</tr>
<tr>
<td>Percolate</td>
<td>0.02s</td>
<td>1s</td>
</tr>
<tr>
<td>Leader Election</td>
<td>0.03s</td>
<td>1s</td>
</tr>
<tr>
<td>Tree-arbiter</td>
<td>0.02s</td>
<td>37s</td>
</tr>
<tr>
<td>IEEE 1394</td>
<td>0.04s</td>
<td>1h15m25s</td>
</tr>
</tbody>
</table>

* the system configuration was *dual Opteron 2.8 GHZ with 8 GB of RAM*
We presented FCM method for verification of parameterized systems
Conclusion

- We presented FCM method for verification of parameterized systems
- FCM is simple
We presented FCM method for verification of parameterized systems. FCM is simple. FCM is at least as powerful as methods based on monotonic abstraction, RMC, RTMC, tree automata completion techniques in establishing safety.
Conclusion

- We presented FCM method for verification of parameterized systems
- FCM is simple
- FCM is at least as powerful as methods based on monotonic abstraction, RMC, RTMC, tree automata completion techniques in establishing safety
- FCM is efficient in practice
We presented FCM method for verification of parameterized systems.

FCM is simple.

FCM is at least as powerful as methods based on monotonic abstractions, RMC, RTMC, tree automata completion techniques in establishing safety.

FCM is efficient in practice.
References

- Lossy Channel Systems ATVA 2010
- Cache Coherence Protocols ATVA 2010
- Regular Model Checking CoRR abs/1011.0447: (2010)
- Regular Tree Model Checking CoRR abs/1107.5142:(2011), TTATT 2012 Workshop, Nagoya, RTA’12
- Safety for general TRS and Tree Automata Completion RTA 2012
Thank you!