Lipschitz Continuity and Approximate Equilibria

Argyrios Deligkas John Fearnley Paul Spirakis

Department of Computer Science University of Liverpool

Strategic-Form game

- M players
- **S**_{*i*} of pure strategies for each player $i \in [M]$
- **U**_i payoff function for each player $i \in [M]$

Strategic-Form game

- M players
- **S**_{*i*} of pure strategies for each player $i \in [M]$
- **U**_i payoff function for each player $i \in [M]$

- Player *i* picks a probability distribution *x_i* over the set of pure strategies *S_i*
- Strategy profile $X = (x_1, \dots, x_M)$
- U_i(x_i, X_{-i}) payoff for the player i under the profile X

Strategic-Form game

- M players
- **S**_{*i*} of pure strategies for each player $i \in [M]$
- **U**_i payoff function for each player $i \in [M]$

- Player *i* picks a probability distribution *x_i* over the set of pure strategies *S_i*
- Strategy profile $X = (x_1, \ldots, x_M)$
- U_i(x_i, X_{-i}) payoff for the player i under the profile X The payoff function U_i(x_i, X_{-i}) is linear in x_i

Definition (*c*-Nash equilibrium)

A strategy profile is an ϵ -Nash equilibrium if:

no player can gain more than ϵ by a unilateral deviation

(additive notion of approximation)

Definition (*c*-Nash equilibrium)

A strategy profile is an ϵ -Nash equilibrium if:

no player can gain more than ϵ by a unilateral deviation

Definition (*c*-Nash equilibrium)

A strategy profile is an ϵ -Nash equilibrium if:

no player can gain more than ϵ by a unilateral deviation

Theorem (Daskalakis, Goldberg, Papadimitriou 2006)

If there is an FPTAS for computing an ϵ -Nash for 4 player games, then **PPAD** = **P**.

Definition (*c*-Nash equilibrium)

A strategy profile is an ϵ -Nash equilibrium if:

no player can gain more than ϵ by a unilateral deviation

Theorem (Chen, Deng, Teng 2006)

If there is an FPTAS for computing an ϵ -Nash of a bimatrix game, then **PPAD** = **P**.

Definition (*c*-Nash equilibrium)

A strategy profile is an ϵ -Nash equilibrium if:

no player can gain more than ϵ by a unilateral deviation

Theorem (Rubinstein 2016)

If there is a PTAS for computing an ϵ -Nash of a bimatrix game, then **EndOfTheLine** can be solved faster than exponential time.

Definition (*c*-Nash equilibrium)

A strategy profile is an ϵ -Nash equilibrium if:

no player can gain more than ϵ by a unilateral deviation

Theorem (Lipton, Markakis, Mehta (LMM) 2003)

For every constant $\epsilon > 0$, an ϵ -Nash can be computed in **quasi-polynomial time**.

Definition (*c*-Nash equilibrium)

A strategy profile is an ϵ -Nash equilibrium if:

no player can gain more than ϵ by a unilateral deviation

Theorem (Lipton, Markakis, Mehta (LMM) 2003)

For every constant $\epsilon > 0$, an ϵ -Nash can be computed in **quasi-polynomial time**.

All these results apply on **strategic-form** games.

Lipschitz Games

λ_p -Lipschitz game

- M players
- **S**_{*i*} is the convex hull of **n** vectors in \mathbb{R}^d
- $T_i(x_i, X_{-i})$ utility function for each player $i \in [M]$,

Lipschitz Games

λ_p-Lipschitz game

- *M* players
- S_i is the convex hull of n vectors in R^d (continuous action space)
- $T_i(x_i, X_{-i})$ utility function for each player $i \in [M]$, where function $T_i(x_i, X_{-i})$ is λ_p -Lipschitz continuous w.r.t. x_i when X_{-i} is fixed.

Lipschitz Games

λ_p -Lipschitz game

M players

- S_i is the convex hull of n vectors in R^d
- $T_i(x_i, X_{-i})$ utility function for each player $i \in [M]$, where function $T_i(x_i, X_{-i})$ is λ_p -Lipschitz continuous w.r.t. x_i when X_{-i} is fixed.

Definition (λ_p -Lipschitz)

A function $f : A \to \mathbb{R}$, with $A \subseteq \mathbb{R}^d$ is λ_p -Lipschitz continuous if for every x and y in A, it is true that $|f(x) - f(y)| \le \lambda \cdot ||x - y||_p$.

Lipschitz Games: examples

Concave Games

Rosen (Econometrica 65)

Risk Games

Fiat, Papadimitriou (SAGT 10)

Mavronicolas, Monien (TCS 16)

Biased Games Caragiannis, Kurokawa, Procaccia (AAAI 15)

Lipschitz Games: examples

Concave Games

Rosen (Econometrica 65)

Risk Games

Fiat, Papadimitriou (SAGT 10)

Mavronicolas, Monien (TCS 16)

Biased Games Caragiannis, Kurokawa, Procaccia (AAAI 15)

- Concave and Biased Games always possess an equilibrium
- Equilibrium existence for Risk Games is NP-complete

Efficient algorithms for computing ε-equilibria in λ_p-Lipschitz games for every constant ε > 0, or decide that the game does not possess one.

Efficient algorithms for computing ε-equilibria in λ_p-Lipschitz games for every constant ε > 0, or decide that the game does not possess one.

 Polynomial-time algorithms for computing constant approximate equilibria for three classes of biased games.

The QPTAS of LMM

Existence

In any $n \times n$ bimatrix game, any $\epsilon > 0$ and $k \ge O(\frac{\ln n}{\epsilon^2})$, there exists a *k*-uniform strategy profile that is an ϵ -NE.

The QPTAS of LMM

Existence

In any $n \times n$ bimatrix game, any $\epsilon > 0$ and $k \ge O(\frac{\ln n}{\epsilon^2})$, there exists a *k*-uniform strategy profile that is an ϵ -NE.

Computation

Find such a profile in quasi-polynomial time by exhaustive search over all **k**-uniform strategy profiles (time $n^{O(\frac{\ln n}{e^2})}$).

k-uniform strategies

$$\boldsymbol{X} = \{\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n\} \subset \mathbb{R}^d$$

conv(X): convex hull of X

k-uniform strategies

$$X = \{x_1, x_2, \ldots, x_n\} \subset \mathbb{R}^d$$

conv(X): convex hull of X

Definition

A vector $y \in conv(X)$ is said to be *k*-uniform with respect to *X* if there exists a size *k* multiset *S* of [*n*] such that $y = \frac{1}{k} \sum_{i \in S} x_i$.

k-uniform strategies

$$X = \{x_1, x_2, \ldots, x_n\} \subset \mathbb{R}^d$$

conv(X): convex hull of X

Definition

A vector $y \in conv(X)$ is said to be *k*-uniform with respect to *X* if there exists a size *k* multiset *S* of [*n*] such that $y = \frac{1}{k} \sum_{i \in S} x_i$.

Definition

A strategy profile is said to be k-uniform if the strategy for every player is a k-uniform vector.

Theorem 1 (Existence)

In any λ_p -Lipschitz game that possess an equilibrium and any $\epsilon > 0$, there is a *k*-uniform strategy profile, with $k = \frac{16M^2\lambda^2 p}{\epsilon^2}$ that is an ϵ -equilibrium.

Theorem 1 (Existence)

In any λ_p -Lipschitz game that possess an equilibrium and any $\epsilon > 0$, there is a *k*-uniform strategy profile, with $k = \frac{16M^2\lambda^2 p}{\epsilon^2}$ that is an ϵ -equilibrium.

λ_p-Lipschitz continuity is crucial for the existence
 In the proof we utilize a recent result of Barman (STOC 15)

Theorem 1 (Existence)

In any λ_p -Lipschitz game that possess an equilibrium and any $\epsilon > 0$, there is a *k*-uniform strategy profile, with $k = \frac{16M^2\lambda^2 p}{\epsilon^2}$ that is an ϵ -equilibrium.

Exhaustive search is not trivial in our case.

Theorem 1 (Existence)

In any λ_p -Lipschitz game that possess an equilibrium and any $\epsilon > 0$, there is a **k**-uniform strategy profile, with $\mathbf{k} = \frac{16M^2\lambda^2 p}{\epsilon^2}$ that is an ϵ -equilibrium.

Exhaustive search is not trivial in our case.

Hard to compute the approximation guarantee of a k-uniform strategy profile.

Theorem 1 (Existence)

In any λ_p -Lipschitz game that possess an equilibrium and any $\epsilon > 0$, there is a **k**-uniform strategy profile, with $\mathbf{k} = \frac{16M^2\lambda^2 p}{\epsilon^2}$ that is an ϵ -equilibrium.

Exhaustive search is not trivial in our case.

- Hard to compute the approximation guarantee of a *k*-uniform strategy profile.
- Hard to compute best responses (max_{xi} T_i(x_i, X_{-i}))

Theorem 1 (Existence)

In any λ_p -Lipschitz game that possess an equilibrium and any $\epsilon > 0$, there is a **k**-uniform strategy profile, with $\mathbf{k} = \frac{16M^2\lambda^2 p}{\epsilon^2}$ that is an ϵ -equilibrium.

Exhaustive search is not trivial in our case.

- Hard to compute the approximation guarantee of a *k*-uniform strategy profile.
- Hard to compute best responses (max_{xi} T_i(x_i, X_{-i}))
- We compute approximate best responses using k-uniform strategies.

Theorem 2 (Computation)

For any λ_p -Lipschitz game L in time $O(Mn^{Mk+I})$, we can either compute a ϵ -equilibrium, or decide that L does not posses an exact equilibrium, where $\mathbf{k} = O(\frac{\lambda^2 M p}{\epsilon^2})$ and $I = O(\frac{\lambda^2 p}{\epsilon^2})$.

Bimatrix games

- Two players: row, column
- Each player has *n* pure strategies
- **R**, C are $n \times n$ matrices
- Row player plays x, column player plays y
- Payoff functions
 - Row: *x^TRy*
 - Column: **x^TCy**

Penalty Games

- Extension of bimatrix games
- Payoff functions

Row:
$$T_r(x, y) = x^T R y - f_r(x)$$

Column: $T_c(x, y) = x^T C y - f_c(y)$

Penalty Games

- Extension of bimatrix games
- Payoff functions
 - Row: $T_r(x, y) = x^T R y f_r(x)$
 - Column: $T_c(x, y) = x^T C y f_c(y)$

f_r(x) and $f_c(y)$ are continuous, non-linear functions

Penalty Games

- Extension of bimatrix games
- Payoff functions

Row:
$$T_r(x, y) = x^T R y - f_r(x)$$

Column: $T_c(x, y) = x^T C y - f_c(y)$

f_r(x) and $f_c(y)$ are continuous, non-linear functions

 \mathcal{P}_{λ_p} : penalty games where $f_r(x)$ and $f_c(y)$ are λ_p -Lipschitz continuous

Theorem 3 (Existence)

For any penalty game in the class \mathcal{P}_{λ_p} that possesses an equilibrium, any $\epsilon > 0$, and any $\mathbf{k} \in \frac{\Omega(\lambda^2 \log n)}{\epsilon^2}$, there exists a \mathbf{k} -uniform strategy profile that is an ϵ -equilibrium.

Theorem 3 (Existence)

For any penalty game in the class \mathcal{P}_{λ_p} that possesses an equilibrium, any $\epsilon > 0$, and any $\mathbf{k} \in \frac{\Omega(\lambda^2 \log n)}{\epsilon^2}$, there exists a \mathbf{k} -uniform strategy profile that is an ϵ -equilibrium.

Theorem 4 (Computation)

In any penalty game \mathcal{P}_{λ_p} and any $\epsilon > 0$, in quasi polynomial time we can either compute a ϵ -equilibrium, or decide that \mathcal{P}_{λ_p} does not posses an exact equilibrium.

Biased Games

- Subclass of penalty games
- Base strategies: s and t
- Payoff functions
 - Row: $T_r(x, y) = x^T R y d_r \cdot ||x s||_p$
 - Column: $T_c(x, y) = x^T C y d_c \cdot ||y t||_p$

Biased Games

- Subclass of penalty games
- Base strategies: s and t
- Payoff functions
 - Row: $T_r(x, y) = x^T R y d_r \cdot ||x s||_p$
 - Column: $T_c(x, y) = x^T C y d_c \cdot ||y t||_p$

$$T_r(x, y) = x^T R y - \frac{1}{3} \cdot \left\| x - [\frac{1}{2}, \frac{1}{2}]^T \right\|_2^2$$

Biased Games

- Subclass of penalty games
- Base strategies: **s** and **t**
- Payoff functions

Row:
$$T_r(x, y) = x^T R y - d_r \cdot ||x - s||_p$$

• Column:
$$T_c(x, y) = x^T C y - d_c \cdot ||y - t||_p$$

We study three norms: L_1, L_2^2, L_∞

Approximation guarantee

$$L_1 : 2/3$$

 $L_2^2 : 5/7$
 $L_{\infty} : 2/3$

Generalization of DMP algorithm

Generalization of DMP algorithm

Generalization of DMP algorithm

Not trivial how to compute best responses

Generalization of DMP algorithm

Not trivial how to compute best responses

We derive simple combinatorial algorithms for computing best responses.

Simple best response algorithm

Best Response Algorithm for L_{∞} penalty

```
1 For all i \in \mathcal{L}, set x_i = 0.
2 If \mathcal{P} \leq |\mathcal{H}| \cdot \mathbf{s}_{\max}, then set \mathbf{x}_i = \mathbf{s}_i + \frac{\mathcal{P}}{|\mathcal{H}|} for all i \in \mathcal{H}
        and x_i = s_i for j \in \mathcal{M}.
3 Else if \mathcal{P} < |\mathcal{H} \cup \mathcal{M}| \cdot \mathbf{s}_{max}, then
              Set \mathbf{x}_i = \mathbf{s}_i + \mathbf{s}_{max} for all i \in \mathcal{H}.
              • Set \mathbf{k} = \lfloor \frac{\mathcal{P} - |\mathcal{H}| \cdot \mathbf{p}_{\text{max}}}{n} \rfloor.
              Set \mathbf{x}_i = \mathbf{s}_i + \mathbf{s}_{\max} for all i \leq |\mathcal{H}| + k.
              • Set \mathbf{X}_{|\mathcal{H}|+k+1} = \mathbf{S}_{|\mathcal{H}|+k+1} + \mathcal{P} - (|\mathcal{H}|+k) \cdot \mathbf{S}_{\max}.
              Set \mathbf{x}_i = \mathbf{s}_i for all |\mathcal{H}| + \mathbf{k} + 2 \le \mathbf{j} \le |\mathcal{H}| + |\mathcal{M}|.
4 Else set \mathbf{x}_i = \mathbf{s}_i + \frac{\mathcal{P}}{\mathcal{H} \cup \mathcal{M}} for all i \in \mathcal{H} \cup \mathcal{M}.
```

Open questions

- Exact complexity for Lipschitz and biased games? PPAD is not suitable. FIXP?
- Better polynomial-time approximation algorithms
- Tractable cases? (Zero sum biased games)

Open questions

- Exact complexity for Lipschitz and biased games? PPAD is not suitable. FIXP?
- Better polynomial-time approximation algorithms
- Tractable cases? (Zero sum biased games)

THANK YOU!