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Strategic-Form game

M players
Si of pure strategies for each player i ∈ [M]

Ui payoff function for each player i ∈ [M]

Player i picks a probability distribution xi over the set of
pure strategies Si

Strategy profile X = (x1, . . . , xM)

Ui(xi ,X−i) payoff for the player i under the profile X
The payoff function Ui(xi ,X−i) is linear in xi
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Background

Definition (ε-Nash equilibrium)

A strategy profile is an ε-Nash equilibrium if:

no player can gain more than ε by a unilateral deviation

(additive notion of approximation)
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If there is an FPTAS for computing an ε-Nash for 4 player
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no player can gain more than ε by a unilateral deviation

Theorem (Chen, Deng, Teng 2006)

If there is an FPTAS for computing an ε-Nash of a bimatrix
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Background

Definition (ε-Nash equilibrium)

A strategy profile is an ε-Nash equilibrium if:

no player can gain more than ε by a unilateral deviation

Theorem (Rubinstein 2016)

If there is a PTAS for computing an ε-Nash of a bimatrix game,
then EndOfTheLine can be solved faster than exponential time.
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Background

Definition (ε-Nash equilibrium)

A strategy profile is an ε-Nash equilibrium if:

no player can gain more than ε by a unilateral deviation

Theorem (Lipton, Markakis, Mehta (LMM) 2003)

For every constant ε > 0, an ε-Nash can be computed in
quasi-polynomial time.

All these results apply on strategic-form games.

4 / 20



Lipschitz Games

λp-Lipschitz game

M players
Si is the convex hull of n vectors in Rd

Ti(xi ,X−i) utility function for each player i ∈ [M],
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Lipschitz Games

λp-Lipschitz game

M players
Si is the convex hull of n vectors in Rd

(continuous action space)
Ti(xi ,X−i) utility function for each player i ∈ [M],
where function Ti(xi ,X−i) is λp-Lipschitz continuous
w.r.t. xi when X−i is fixed.

5 / 20



Lipschitz Games

λp-Lipschitz game

M players
Si is the convex hull of n vectors in Rd

Ti(xi ,X−i) utility function for each player i ∈ [M],
where function Ti(xi ,X−i) is λp-Lipschitz continuous
w.r.t. xi when X−i is fixed.

Definition (λp-Lipschitz)

A function f : A → R, with A ⊆ Rd is λp-Lipschitz continuous if
for every x and y in A , it is true that |f(x)− f(y)| ≤ λ · ‖x − y‖p .
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Lipschitz Games: examples

Concave Games Rosen (Econometrica 65)

Risk Games Fiat, Papadimitriou (SAGT 10)

Mavronicolas, Monien (TCS 16)

Biased Games Caragiannis, Kurokawa, Procaccia (AAAI 15)
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Lipschitz Games: examples

Concave Games Rosen (Econometrica 65)

Risk Games Fiat, Papadimitriou (SAGT 10)

Mavronicolas, Monien (TCS 16)

Biased Games Caragiannis, Kurokawa, Procaccia (AAAI 15)

Concave and Biased Games always possess an
equilibrium
Equilibrium existence for Risk Games is NP-complete
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Our results

Efficient algorithms for computing ε-equilibria in
λp-Lipschitz games for every constant ε > 0,
or decide that the game does not possess one.

Polynomial-time algorithms for computing constant
approximate equilibria for three classes of biased games.
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The QPTAS of LMM

Existence

In any n × n bimatrix game, any ε > 0 and k ≥ O( ln n
ε2 ), there

exists a k -uniform strategy profile that is an ε-NE.

Computation

Find such a profile in quasi-polynomial time by exhaustive

search over all k -uniform strategy profiles (time nO( ln n
ε2

)).
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k -uniform strategies

X = {x1, x2, . . . , xn} ⊂ R
d

conv(X): convex hull of X

Definition

A vector y ∈ conv(X) is said to be k -uniform with respect to X
if there exists a size k multiset S of [n] such that y = 1

k
∑

i∈S xi .

Definition

A strategy profile is said to be k -uniform if the strategy for every
player is a k -uniform vector.
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Our result

Theorem 1 (Existence)

In any λp-Lipschitz game that possess an equilibrium and any

ε > 0, there is a k -uniform strategy profile, with k =
16M2λ2p

ε2

that is an ε-equilibrium.

λp-Lipschitz continuity is crucial for the existence
In the proof we utilize a recent result of Barman (STOC 15)
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Exhaustive search is not trivial in our case.

Hard to compute the approximation guarantee
of a k -uniform strategy profile.
Hard to compute best responses (maxxi Ti(xi ,X−i))
We compute approximate best responses
using k -uniform strategies.
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Our result

Theorem 2 (Computation)

For any λp-Lipschitz game L in time O
(
MnMk+l

)
, we can either

compute a ε-equilibrium, or decide that L does not posses an
exact equilibrium, where k = O

(λ2Mp
ε2

)
and l = O

(λ2p
ε2

)
.
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Bimatrix games

@
@@
I

II

a

b

c d

1 0

0.3 0.8

0.1 1

1 0.5

Two players: row, column
Each player has n pure
strategies
R,C are n × n matrices
Row player plays x,
column player plays y
Payoff functions

Row: xT Ry
Column: xT Cy
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Penalty Games

Extension of bimatrix games
Payoff functions

Row: Tr(x, y) = xT Ry − fr(x)
Column: Tc(x, y) = xT Cy − fc(y)

fr(x) and fc(y) are continuous, non-linear functions

Pλp : penalty games where fr(x) and fc(y) are λp-Lipschitz
continuous
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Our result

Theorem 3 (Existence)

For any penalty game in the class Pλp that possesses an

equilibrium, any ε > 0, and any k ∈ Ω(λ2 log n)

ε2 , there exists a
k -uniform strategy profile that is an ε-equilibrium.
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Our result

Theorem 3 (Existence)

For any penalty game in the class Pλp that possesses an

equilibrium, any ε > 0, and any k ∈ Ω(λ2 log n)

ε2 , there exists a
k -uniform strategy profile that is an ε-equilibrium.

Theorem 4 (Computation)

In any penalty game Pλp and any ε > 0, in quasi polynomial
time we can either compute a ε-equilibrium, or decide that Pλp

does not posses an exact equilibrium.
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Biased Games

Subclass of penalty games
Base strategies: s and t
Payoff functions

Row: Tr(x, y) = xT Ry − dr · ‖x − s‖p
Column: Tc(x, y) = xT Cy − dc · ‖y − t‖p
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Base strategies: s and t
Payoff functions

Row: Tr(x, y) = xT Ry − dr · ‖x − s‖p
Column: Tc(x, y) = xT Cy − dc · ‖y − t‖p

Tr(x, y) = xT Ry − 1
3 ·

∥∥∥x − [1
2 ,

1
2 ]T

∥∥∥2
2
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Biased Games

Subclass of penalty games
Base strategies: s and t
Payoff functions

Row: Tr(x, y) = xT Ry − dr · ‖x − s‖p
Column: Tc(x, y) = xT Cy − dc · ‖y − t‖p

We study three norms: L1, L2
2
, L∞

Approximation guarantee

L1 : 2/3

L2
2

: 5/7

L∞ : 2/3
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A polynomial time approximation
aglorithm

Generalization of DMP algorithm

The Base Algorithm

1 Compute a best response y∗ against s.
2 Compute a best response x against y∗.
3 Set x∗ = δ · s + (1 − δ) · x, for some δ ∈ [0, 1].
4 Return the strategy profile (x∗, y∗).

Not trivial how to compute best responses

We derive simple combinatorial algorithms
for computing best responses.
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Simple best response algorithm

Best Response Algorithm for L∞ penalty

1 For all i ∈ L, set xi = 0.

2 If P ≤ |H| · smax, then set xi = si + P

|H|
for all i ∈ H

and xj = sj for j ∈ M.

3 Else if P < |H ∪M| · smax, then
Set xi = si + smax for all i ∈ H .
Set k = b

P−|H|·pmax

pmax
c.

Set xi = si + smax for all i ≤ |H|+ k .
Set x|H|+k+1 = s|H|+k+1 + P − (|H|+ k) · smax.
Set xj = sj for all |H|+ k + 2 ≤ j ≤ |H|+ |M|.

4 Else set xi = si + P

|H∪M|
for all i ∈ H ∪M.
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Open questions

Exact complexity for Lipschitz and biased games?
PPAD is not suitable. FIXP?

Better polynomial-time approximation algorithms
Tractable cases? (Zero sum biased games)

THANK YOU!
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