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Strategic-Form game

m M players
m S; of pure strategies for each player i € [M]
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Strategic-Form game

m M players
m S; of pure strategies for each player i € [M]
m U; payoff function for each player i € [M]

m Player i picks a probability distribution x; over the set of
pure strategies S;

m Strategy profile X = (x4,..., Xm)
m Ui(x;, X_;) payoff for the player i under the profile X
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Background

Strategic-Form game

m M players
m S; of pure strategies for each player i € [M]
m U; payoff function for each player i € [M]

m Player i picks a probability distribution x; over the set of
pure strategies S;

m Strategy profile X = (x1,..., Xm)
m U;(x;, X_;) payoff for the player i under the profile X
The payoff function U;j(x;, X_;) is linear in x;
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Background

Definition (e-Nash equilibrium)

A strategy profile is an e-Nash equilibrium if:
no player can gain more than e by a unilateral deviation

(additive notion of approximation)
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Background

Definition (e-Nash equilibrium)

A strategy profile is an e-Nash equilibrium if:

no player can gain more than e by a unilateral deviation

Theorem (Daskalakis, Goldberg, Papadimitriou 2006)

If there is an FPTAS for computing an e-Nash for 4 player
games, then PPAD = P.
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Background

Definition (e-Nash equilibrium)

A strategy profile is an e-Nash equilibrium if:

no player can gain more than e by a unilateral deviation

Theorem (Chen, Deng, Teng 2006)

If there is an FPTAS for computing an e-Nash of a bimatrix
game, then PPAD = P.
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Background

Definition (e-Nash equilibrium)

A strategy profile is an e-Nash equilibrium if:

no player can gain more than e by a unilateral deviation

Theorem (Rubinstein 2016)

If there is a PTAS for computing an e-Nash of a bimatrix game,
then EndOfTheLine can be solved faster than exponential time.
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Background

Definition (e-Nash equilibrium)

A strategy profile is an e-Nash equilibrium if:

no player can gain more than e by a unilateral deviation

Theorem (Lipton, Markakis, Mehta (LMM) 2003)

For every constant e > 0, an e-Nash can be computed in
quasi-polynomial time.
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Background

Definition (e-Nash equilibrium)

A strategy profile is an e-Nash equilibrium if:

no player can gain more than e by a unilateral deviation

Theorem (Lipton, Markakis, Mehta (LMM) 2003)

For every constant e > 0, an e-Nash can be computed in
quasi-polynomial time.

All these results apply on strategic-form games.
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Lipschitz Games

Ap-Lipschitz game

m M players
m S; is the convex hull of n vectors in RY
m T;(x;, X-;) utility function for each player i € [M],
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Lipschitz Games

Ap-Lipschitz game

m M players

m S;is the convex hull of n vectors in RY
(continuous action space)

m T;(x;, X_;) utility function for each player i € [M],
where function T;(x;, X_;) is Ap-Lipschitz continuous
w.r.t. X; when X_; is fixed.
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Lipschitz Games

Ap-Lipschitz game

m M players

m S; is the convex hull of n vectors in RY

m Ti(x;, X_;) utility function for each player i € [M],
where function T;(x;, X_;i) is Ap-Lipschitz continuous
w.r.t. x; when X_; is fixed.

Definition (Ap-Lipschitz)

A function f: A » R, with A C RY is Ap-Lipschitz continuous if

for every x and y in A, it is true that |f(x) — f(y)| < A-|Ix = yllp.
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Lipschitz Games: examples

Concave Games Rosen (Econometrica 65)
Risk Games Fiat, Papadimitriou (SAGT 10)
Mavronicolas, Monien (TCS 16)

Biased Games Caragiannis, Kurokawa, Procaccia (AAAI 15)
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Lipschitz Games: examples

Concave Games Rosen (Econometrica 65)
Risk Games Fiat, Papadimitriou (SAGT 10)
Mavronicolas, Monien (TCS 16)

Biased Games Caragiannis, Kurokawa, Procaccia (AAAI 15)
m Concave and Biased Games always possess an

equilibrium
m Equilibrium existence for Risk Games is NP-complete
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m Efficient algorithms for computing e-equilibria in
Ap-Lipschitz games for every constant e > 0,
or decide that the game does not possess one.
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m Efficient algorithms for computing e-equilibria in
Ap-Lipschitz games for every constant e > 0,
or decide that the game does not possess one.

m Polynomial-time algorithms for computing constant
approximate equilibria for three classes of biased games.
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The QPTAS of LMM

In any n x n bimatrix game, any € > 0 and k > O('g—z"), there
exists a k-uniform strategy profile that is an e-NE.

9/20



The QPTAS of LMM

In any n x n bimatrix game, any € > 0 and k > O('g—z”), there
exists a k-uniform strategy profile that is an e-NE.

Computation

Find such a profile in quasi-polynomial time by exhaustive
Inn
search over all k-uniform strategy profiles (time n° e_z)).
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k-uniform strategies

X =1{xq,x,..., Xn} C RY

conv(X): convex hull of X
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k-uniform strategies

X={X1,X2,...,Xn}C]Rd

conv(X): convex hull of X

Definition

A vector y € conv(X) is said to be k-uniform with respect to X
if there exists a size k multiset S of [n] such that y = % Yies Xi-
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k-uniform strategies

X={X1,X2,...,Xn}C]Rd

conv(X): convex hull of X

Definition

A vector y € conv(X) is said to be k-uniform with respect to X
if there exists a size k multiset S of [n] such that y = % Yies Xi-

Definition

A strategy profile is said to be k-uniform if the strategy for every
player is a k-uniform vector.
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Theorem 1 (Existence)

In any Ap-Lipschitz game that possess an equilibrium and any
16M2A2p

€2

€ > 0, there is a k-uniform strategy profile, with k =
that is an e-equilibrium.
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Theorem 1 (Existence)

In any Ap-Lipschitz game that possess an equilibrium and any
16M2A2p

€2

€ > 0, there is a k-uniform strategy profile, with k =
that is an e-equilibrium.

m Ap-Lipschitz continuity is crucial for the existence
m In the proof we utilize a recent result of Barman (STOC 15)

11/20



Theorem 1 (Existence)

In any Ap-Lipschitz game that possess an equilibrium and any

2
€ > 0, there is a k-uniform strategy profile, with k = 16""? P
€

that is an e-equilibrium.

m Exhaustive search is not trivial in our case.
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m Hard to compute the approximation guarantee
of a k-uniform strategy profile.
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Theorem 1 (Existence)

In any Ap-Lipschitz game that possess an equilibrium and any

2
€ > 0, there is a k-uniform strategy profile, with k = 16""? P
€

that is an e-equilibrium.

m Exhaustive search is not trivial in our case.

m Hard to compute the approximation guarantee

of a k-uniform strategy profile.
m Hard to compute best responses (maxy, Ti(xi, X_i))
m We compute approximate best responses

using k-uniform strategies.
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Theorem 2 (Computation)

For any Ap-Lipschitz game L in time O (MnYk+) we can either

compute a e-equilibrium, or decide that L does not posses an
A A2Mp A%p
exact equilibrium, where k = O( — )and I = O(—)

€2
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Bimatrix games

c d m Two players: row, column

m Each player has n pure
strategies

1 0 m R, C are n x n matrices

1 0.5 m Row player plays x,

b column player plays y

0.1 1 m Payoff functions

m Row: x"Ry

m Column: x"Cy

0.3 0.8
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Penalty Games

m Extension of bimatrix games
m Payoff functions
m Row: T,(x,y) = x"Ry — f,(x)
m Column: T¢(x,y) = xTCy — f:(y)
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m f.(x) and f¢(y) are continuous, non-linear functions
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Penalty Games

m Extension of bimatrix games
m Payoff functions
m Row: T,(x,y) = x"Ry — f,(x)
m Column: T¢(x,y) = xTCy — f.(y)
m f.(x) and f¢(y) are continuous, non-linear functions

P2, penalty games where f(x) and f¢(y) are Ap-Lipschitz
continuous
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Theorem 3 (Existence)

For any penalty game in the class #,, that possesses an

equilibrium, any € > 0, and any k € M , there exists a
k-uniform strategy profile that is an e- equmbrlum
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Theorem 3 (Existence)

For any penalty game in the class #,, that possesses an

equilibrium, any € > 0, and any k € M , there exists a
k-uniform strategy profile that is an e- equmbrlum

Theorem 4 (Computation)

In any penalty game #,, and any e > 0, in quasi polynomial
time we can either compute a e-equilibrium, or decide that ,,,
does not posses an exact equilibrium.
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Biased Games

m Subclass of penalty games

m Base strategies: s and t
m Payoff functions
m Row: T,(x,y) = x"TRy — d; - [Ix - sllp
m Column: Te(x,y) = x"Cy —d. - lly — tllp
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Biased Games

m Subclass of penalty games

m Base strategies: s and t
m Payoff functions
m Row: T,(x,y) = x"TRy — d; - [Ix - sllp
m Column: Te(x,y) = x"Cy —d. - lly — tllp

T y) = x"Ry - 1 - |x - [£, 3173
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Biased Games

m Subclass of penalty games

m Base strategies: s and t
m Payoff functions
m Row: T,(x,y) = x"TRy — d, - [Ix - sllp
m Column: Te(x,y) = x"Cy —d. - lly — tllp

We study three norms: Ly, L,‘f, L.

Approximation guarantee

Li: 2/3
2.

L2 : 5/7

L : 2/3
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A polynomial time approximation

aglorithm

Generalization of DMP algorithm
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A polynomial time approximation

aglorithm

Generalization of DMP algorithm

The Base Algorithm

El Compute a best response y* against s.

H Compute a best response x against y*.

H Setx*=6-s+ (1-0) - x, forsome 6 € [0,1].
B Return the strategy profile (x*, y*).
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A polynomial time approximation

aglorithm

Generalization of DMP algorithm

The Base Algorithm

El Compute a best response y* against s.

H Compute a best response x against y*.

H Setx*=6-s+ (1-0) - x, forsome 6 € [0,1].
B Return the strategy profile (x*, y*).

.

Not trivial how to compute best responses

We derive simple combinatorial algorithms
for computing best responses.
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Simple best response algorithm

Best Response Algorithm for L., penalty

Bl Forallie £, set xj =0.
A If P < |H|- Smax, then set xj = sj + =—
and x; = s;j for j € M.
HE Else if P < [H U M| - Smax, then
m Setx; = sj + smax foralli e H.

lSetk_Lﬂj.

m Set X; _s,+smax forall i < |H| + k.
]

]

P
o forallie H

Set Xir+k+1 = Sip14k+1 + P = (IH| + K) - Smax-
Set x; = s; for all I?{|+k+2 <j<LIH|+IMI.

I Else set x; = sj + ——— foralli e HU M.

|‘HUM|
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Open questions

m Exact complexity for Lipschitz and biased games?
PPAD is not suitable. FIXP?

m Better polynomial-time approximation algorithms
m Tractable cases? (Zero sum biased games)
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Open questions

m Exact complexity for Lipschitz and biased games?
PPAD is not suitable. FIXP?

m Better polynomial-time approximation algorithms
m Tractable cases? (Zero sum biased games)

THANK YOU!
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