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Abstract— In this paper, we introduce an innovative method
to improve the convergence speed and accuracy of object
detection neural networks. Our approach, CONVERGE-FAST-
AUXNET, is based on employing multiple, dependent loss
metrics and weighting them optimally using an on-line trained
auxiliary network. Experiments are performed in the well-
known RoboCup@Work challenge environment. A fully convo-
lutional segmentation network is trained on detecting objects’
pickup points. We empirically obtain an approximate measure
for the rate of success of a robotic pickup operation based on
the accuracy of the object detection network. Our experiments
show that adding an optimally weighted Euclidean distance loss
to a network trained on the commonly used Intersection over
Union (IoU) metric reduces the convergence time by 42.48%.
The estimated pickup rate is improved by 39.90%. Compared
to state-of-the-art task weighting methods, the improvement is
24.5% in convergence, and 15.8% on the estimated pickup rate.

I. INTRODUCTION

Although Deep Convolutional Neural Networks (DCNNs)
form the state of the art in object detection [1], they typically
require a high number of training iterations to converge. In
object detection and robotic pick-up frameworks like the
Factory of the Future [2], a combination of low training
times and accurate object detection is vital to ensure minimal
turnaround times.

This paper introduces an innovative method for fast con-
vergence of DCNNs performing object detection tasks, using
an auxiliary network dubbed CONVERGE-FAST-AUXNET.
Our method combines multiple, synergistic loss functions
to improve both the accuracy and convergence speed of
DCNNs. We use an image segmentation DCNN for object
detection, and use the auxiliary neural network to learn op-
timal weights for its multiple loss functions during training.
No pre-processing is required on the error metrics, and no
additional hyper-parameters are introduced. The approach
is tested in a RoboCup@Work [3] setup, simulating the
requirements for the Factory of the Future. Figure I shows
a typical pickup operation in the RoboCup@Work com-
petition. Results illustrate that CONVERGE-FAST-AUXNET
outperforms the state of the art in accuracy, convergence
speed, and stability. Necessary training iterations are reduced
on average by 24.5%, or roughly an hour of training on a
NVIDIA Titan X. The probability of a successful picking
operation is improved by 15.8% on average (9% absolute

Fig. 1. Picking an object from the position indicated by the activations of
the DCNN (lower right). The dominant axis of the activations is regarded
as the facing of the object, and the gripper oriented perpendicular to it.

difference). The IoU measure is improved by 10.5%. Our
main contributions can thus be summarized as follows:

i the introduction of the AUXNET approach, which learns
optimal weights on-line in a multi-objective environment,

ii the combination of the commonly used Intersection over
Union (IoU) metric and a Euclidean distance loss for
faster convergence,

iii providing a labeled object classification and detection
benchmark dataset, which is publicly available.1

The remainder of this paper is organized as follows: Sec-
tion II provides background in object detection and presents
related work. Section III introduces the CONVERGE-FAST-
AUXNET approach and describes the introduced loss func-
tions in detail. Section IV describes the experimental setup.
Finally, Section V presents and compares the experimental
results and Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

Object detection is a well-researched task in the field of
computer science and artificial intelligence. The purpose is to
output a list of pre-trained objects that are present in a given
image, along with their positions in the image [4]. Major
breakthroughs using DCNNs in the last years have advanced
the performance of neural network object predictors such

1See https://airesearch.de/ObjectDetection@Work/



that DCNNs are now the leading type of classifier in many
image recognition [5] or detection benchmarks, most notably,
the Pascal VOC Challenge [6]. State-of-the-art approaches
such as Faster-RCNN [7] or YOLO9000 [8] pass an image
through the network once, then propose regions for bounding
boxes which are subsequently refined. Another way to detect
objects, avoiding bounding box creation, is using semantic
segmentation [9]. A semantic segmentation network features
input and output layers of the same dimension, with each
output pixel denoting which of the trained classes it belongs
to. This effectively allows a different object to be predicted
at every pixel. Further processing, such as clustering, is
required to obtain the position of each object. The DCNN
used in this research is based on the segmentation approach.

Multi-task learning can be used to improve both training
time and prediction accuracy by learning a shared represen-
tation for multiple objectives simultaneously [10]. Multiple
tasks can be learned by a single network by combining the
respective task loss functions. Commonly, multi-task learning
is employed to learn related, but independent tasks by a
shared model, such as object detection and classification [11].
Combining error functions typically consists of scaling,
weighting and finally summing them. These weights are
conventionally modeled as hyperparameters [12]. Kendall et
al. [13] present a statistically sound way to learn optimal
weights, assuming that the epistemic error in the model will
be eliminated with enough learning, and the dominant form
or error remaining will be the homoscedastic uncertainty,
which can be captured by measuring the variance of the loss
over time. An error function with lower variance will then
gain a higher relative weight, and vice versa. We will refer
to this weighting method as KGC-weighting, after the initials
of the authors. The combined loss LKGC is defined in terms
of the individual losses Li, and their respective variances σ2

i

are defined as shown in Equation 1.

LKGC =
∑
i

1

2σ2
i

Li + log σ2
i (1)

An immediate limitation of this approach is that functions
with extremely low variances, such as an IoU with little or
no overlap, may not train well as they can produce exploding
gradients. Section V-A presents two approaches to address
this issue: KGC+ε and KGC/Mean-weighting.

III. APPROACH

In this work, we will show that combining mutually depen-
dent error functions can provide a significant improvement in
both convergence time and the resulting classifier accuracy.
Common practice is to train multi-objective networks using
mutually independent error functions, that is, when training
one independent function, the values of the others are not
affected.

While [10] hints that tasks can be too similar to gain
improved performance from training a shared model, we will
demonstrate that in an object detection framework, training
a shared model minimizing two mutually dependent loss
functions, i.e., loss functions that are dependent in such a

way that training one may also reduce the other, provides a
significant improvement over learning just one.

We then present CONVERGE-FAST-AUXNET, a method
that models the learning of optimal error function weights
as an auxiliary task [14]. The joint error function can be
described as minimizing the scaled, summed up error of all
the available error functions, while optimizing their weights
for fastest reduction. As an auxiliary network, we use a
fully connected neural network with input features being
the current value, the average, and standard deviation of
every error function. The hidden layer consists of 24 ReLU
neurons, which are combined into the two weights used to
scale the two error functions. Figure 2 displays the auxiliary
network layout. While the number of neurons in the hidden
layer may be seen as an additional hyper-parameter, they
should only depend on the number of error functions to be
weighted, not the type or scale of the functions used.

The total loss of the DCNN, LTotal is derived from
summing all weighted individual functions. The learned
weights for every individual error function are applied to the
respective loss value in a manner similar to KGC-weighting,
i.e., dividing each loss value Li by the respective weight wi
and adding the natural logarithm of the weight, as shown
in Equation 2. Weighting the terms as shown introduces
self-regulating properties of the weights compared to a
simple multiplication with the loss. The auxiliary network
is maximizing the rate of decline in total loss, the term to
be minimized is provided in Equation 3. LTotal and LAUXNET

are optimized with two different Adam instances, both ini-
tialized with the same parameters as listed in Section II. The
individual error functions to be weighted and subsequently
collectively minimized are presented in Section III-B.

LTotal =
∑
i

1

wi
Li + logwi (2)

LAUXNET =
LTotal − LTotal
LTotal

(3)

A. Network

The layout of the DCNN used was inspired by the
networks described in [15], but was extended to feature
the traditional hour-glass shape of semantic segmentation
networks [9]. The derived network features four instead of
the common three input channels, with the fourth channel
encoding distance information obtained by using an Intel
SR300 3D camera for construction of the dataset. The num-
ber of filters per layer was tweaked by hand, and the number
of output layers reflects the number of different objects to
be distinguished by the network. Before being presented to
the network, all images are scaled down from the native
resolution of 640× 480 pixels to a more manageable size of
256× 192 pixels. All activation functions are ReLUs. Regu-
larization is introduced in the form of dropout regularization,
with a 15% dropout chance in the convolutional layers 6 and
7. The innermost layer doubles as a classification vector. If
a specific object is to be retrieved, only the activations on
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Fig. 2. The layout of AUXNET. The current losses Li are averaged to Li
over the course of the training session using exponential moving averages.
The standard deviation σi is obtained likewise. The fully connected hidden
layer produces output weights, which are inserted into Equation 2. The
network optimized to the gradient of the DCNN error reduction, as detailed
in Equation 3.

Fig. 3. The network layout used. Numbers above the layers indicate
pixel dimensions, numbers below the image denote the number of channels
or filters. All layers are convolutional/inverse convolutional, using ReLU
activation functions. It is trained on either minimizing the IoU or distance
error for a queried object on the corresponding output layer, or on a
combination of both using Equation 2.

the corresponding layer are taken into account. A detailed
description of the network can be found in Figure 3.

B. Error Functions

Commonly, object detection or semantic segmentation net-
works are trained on minimizing the cross entropy between
the network output and the labeled ground truth. Training to
maximize the IoU between the predicted and actual bounding
boxes is not possible out of the box, as this function is
not differentiable; however, one can use an approximate
IoU measure instead, which [16] argue converges more
quickly. Note that in this paper we are mainly minimizing

Fig. 4. Left: An example input image. Right: The output of the layer
detecting 40×40mm aluminium profiles. The ratio of activations inside the
area of the object, displayed in blue, divided by the sum of all activations
and the size of the blue area produces the IoU. The Euclidean distance
error between weighted center of activations and ground truth annotation is
displayed in red.

the IoU Error, defined as 1 − IoU . Figure 4 visualizes
how the IoU measure is calculated from a prediction and
approximate segmentation data, obtained by a conventional
object detection approach. In case the prediction and ground
truth do not overlap, the IoU does not produce a usable
gradient and training can get stuck. The Euclidean distance
between prediction and label, however, is always well defined
and produces a slope a gradient descent algorithm can follow.
Because of this, and because the measure of quality for
a picking operation will ultimately be a function of the
distance between predicted and actual position of the object,
one might train the network on this measure immediately.
The object prediction is produced by obtaining the weighted
average of activations on the corresponding output layer, as
indicated in red in Figure 4. Minimizing this distance error
lets the network converge faster and to a lower error, as
Figure 5 demonstrates. However, low-frequency filters appear
to dominate the output, in turn leading to activations being
spread over the greater part of the image, as opposed to
tightly localized around the desired position. Figure 6 shows
this behavior. The distinction between multiple objects on
the same layer using clustering is therefore impossible. As
the IoU measure produces strongly localized activations, but
the distance error converges much faster, we hypothesize that
a combination of both can produce superior results.

An inherent weakness of the distance error in pixels
or centimeters is its lack of expressiveness. Although it
does describe the visual offset between prediction and label,
it fails to capture the quality of this prediction: While
halving an error from e.g. 0.8 cm to 0.4 cm will not result
in any increased chance of a successful pick-up operation,
halving the error from 2 cm to 1 cm will greatly increase the
probability. The relation between a successful pickup and the
distance error is therefore not linear. During empirical testing
of the picking operation, we observed that for small objects,
a distance error of 1 cm results in a failed grasp 50% of the
time; for a distance offset of 3 cm, the probability of failure
rises to 90%. We thus model the pickup error by applying a
negative exponent power function to the error in centimeters,
coinciding in EDistance(0) = EPickup(0) = 0, and EPickup
asymptotically approaching 1 for EDistance →∞, resulting
in Equation 4.



EPickup =
−1

(EDistance)2 + 1
+ 1 (4)

Figure 7 plots the distance error metric versus the pickup
error in the usually occurring range. Using the pickup error
metric readily scales the distance error in the same range
as the IoU, between 0 and 1. Early results showed that
training on pickup error directly was unsuccessful, due to
the gradient of the function being too low for higher error
values. However, we will use the pickup error and the pickup
rate, defined as 1−EPickup, as an accurate scaling method
when comparing or adding pickup and IoU errors.

IV. EXPERIMENTS

To measure the convergence speed and resulting quality
of employing different error functions and combinations
thereof, each setup was trained for 100000 steps (≈ 67
epochs) with a batch size of 8. An Adam optimizer [17]
was used to minimize the loss term, with a learning rate of
1× 10−5, β1 = 0.9, β2 = 0.999, and ε = 1× 10−8. Initial
tests showed that all methods tested could train and converge
with these values, so the hyperparameters for the neural
networks to be trained were frozen at these values. In order
to achieve statistical significance, 20 networks were trained
for every method. A full training run with 100000 iterations
takes about 10 hours to complete on an NVIDIA Titan X
graphics card, regardless which of the methods we present
is used. Every 500 iterations during training, the networks
were tested on the entire validation set to get an accurate
estimate of their performance on unknown data. This data
forms the basis for all results to be presented.

A. Dataset

Employing the RoboCup@Work challenge as a Fac-
tory of the Future simulation, the up-to-date version of
team smARTLab@Work’s previously world-cup winning [18]
hard- and software was used to produce a dataset. More
than 35000 RGBD 3D images were taken with an Intel
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Fig. 5. Training directly on the distance error metric (blue) leads to faster
convergence and lower error than training on cross entropy (green) or IoU
(red). Averaged from 20 runs with equal hyperparameters.

Fig. 6. Left: The input image leading to the activations shown right. Middle:
Activations on the “Bearing” layer for a network trained on IoU. Right:
Activations when trained on distance error alone. The object position is
predicted accurately by constructing the weighted average of the activations,
however, the majority of the filter weights are zero, and most of the
activations are not close to or within the object. Note that the size of the
activated pixels was increased for better visibility.

SR300 3D camera, and over 14000 images were manually
labeled for object detection. Alternative RGBD benchmark
datasets containing RoboCup@Work objects are scarse. Dis-
tinct training and evaluation sets were recorded, mimicking
the Industry 4.0 requirements such that both are compar-
atively small with about 12000 images for training, and
2000 images for validation. Each of the 13 RoboCup@Work
object types is recorded from multiple angles, placed on
platforms as defined in the official rule book2. Figure 8
shows an example. The training and validation sets were
manually labeled with the center of gravity, or “pickup
point”, of each object. The dataset can be retrieved from
https://airesearch.de/ObjectDetection@Work/.

V. RESULTS

The results of the experiments conducted are split into an-
alyzing how and which weights are derived by the available
methods to weight error functions, and their respective per-
formance regarding convergence speed and error reduction.

A. Optimal Weight Learning

In order to compare KGC-weighting to the weighting
learned by the auxiliary task network AUXNET, we are test-
ing both methods to empirically evaluate their respectively
derived combinations of the distance error and IoU error

2Available on http://www.robocupatwork.org/
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blue) plotted in a range of 0 to 14 cm of distance error.



Fig. 8. Left: An example image from the dataset, displaying multiple
RoboCup@Work objects. Center: The corresponding depth image. Right:
Imperfect segmentation mask obtained by the current RoboCup@Work
software. Manually labeled pickup positions marked in red.

measures. To produce a valid KGC-weighting, scaling the
error functions between 0 and 1 is required. The IoU error
is produced in this range by design, but the pixel distance
error may range from 0 to 320 pixels, i.e. the diagonal of
the image. In practice however, distances over 70 pixels do
not occur. As a compromise, we divide the pixel distance
by 100 in order to scale it in the required range. Tests using
the pickup error as scaled distance error term during training
were unsuccessful, evidently due to the lack of slope of the
error function throughout most of its range.

Training the network on the KGC-weighted downscaled
pixel distance and IoU posed another challenge, as fre-
quently, the network would irrecoverably die out, most
certainly due to the ReLU activation functions getting stuck
with negative weights, a well known problem with ReLU
activation function and steep gradients [19]. In order to get
20 successful training runs, 30 networks had to be trained,
as one third of them did not converge. A contributing factor
to the dying ReLUs appears to be the extreme weights
derived from the task variance. Dividing by the very low
values of initial IoU variance leads to extreme weights,
which in turn can lead to a gradient explosion. Adding an
epsilon of 1× 10−3 to both variances mitigated the neuron
decay, however, with a detrimental effect on the prediction
performance. We call this method KGC+ε-weighting.

Another way to combat exploding gradients is to divide
the error variance by the error mean, assuming that an error
function with a higher error in general will also feature
a higher absolute variance. This KGC/Mean-weighting per-
forms comparable to regular KGC-weighting, and does not
require explicit scaling of the error functions to a 0 to 1
range. It also appears to generate more sensible weights, as
the network converged in all 20 out of 20 runs. Table I shows
the extreme values of the learned weights. Figure 9 presents
the weight history over a full training episode. For these
charts, the weights were normalized and inverted, so a larger
area means a higher contribution of the weight to the loss
term. As KGC/Mean and AUXNET are trained on the raw
pixel distance rather than a scaled distance between 0 and
1, their weights are scaled accordingly by 100. Figure 10
shows the effect of the different weight learning methods on
error reduction during training.

B. Convergence Speed and Accuracy

To compare the trained classifiers, convergence speed
and error after convergence are measured separately, as in

Learning method WDistance WIoU

KGC-weighting
min 6.14× 10−6 2.26× 10−7

max 8.57× 10−2 2.18× 10−1

KGC+ε-weighting
min 2.25× 10−1 1.00× 10−3

max 8.29× 102 2.19× 10−1

KGC/Mean-weighting
min 7.98× 10−1 3.98× 10−5

max 6.44× 101 2.92× 10−2

AUXNET
min 2.71× 10−4 4.95× 10−3

max 7.76× 10−3 5.17× 10−2

TABLE I
EXTREME VALUES FOR THE ERROR FUNCTION WEIGHTS LEARNED BY

DIFFERENT METHODS. KGC-weighting CAN PRODUCE THE MOST

EXTREME GRADIENTS, DIVIDING THE LOSSES BY THE SMALLEST

WEIGHTS. AUXNET APPEARS TO PROVIDE THE MOST STABLE WEIGHTS.

KGC KGC+ε
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Fig. 9. Normalized and inverted weights derived from the different meth-
ods. Positive contribution to distance error is shown in blue, contribution to
the IoU error is shown in red. All KGC-measures start off with training
almost exclusively on IoU. Adding an epsilon balances the weights more.
AUXNET features more balanced weights from the start, explaining the fast
early convergence. The weights appear to be more stable than KGC’s.

different scenarios, users may value time and quality con-
straints differently. Using dropout regularization effectively
prevented our networks from overtraining; however, it also
introduced fluctuations of the error value after convergence.
These fluctuations prohibit the use of an epsilon threshold on
the discrete derivative of the error as convergence measure, as
the relation between selected epsilon and the resulting con-
vergence point is highly nonlinear, and varies for networks
trained on different error functions. For our convergence
point determination method, we instead assume a normal dis-
tribution of errors around the mean error after convergence.
Further, we assume that the longer we train a network, the
more it converges, i.e., that it does not diverge and also that it
always reaches convergence within 100000 iterations. Visual
analysis of the error charts supports these assumptions, as
hinted by 15 randomly selected charts all converging, shown
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Fig. 10. Charts comparing the reduction of different error measures
for (blue) KGC-weighting, (red) KGC+ε-weighting, (green) KGC/Mean-
weighting and (black) weighting by AUXNET. The first chart plots the
distance error in cm, the second shows the reduction of an added pickup-
and IoU error measure. Charts are averaged from all 20 runs and obtained
on the entire evaluation set during training.

Fig. 11. All test runs were examined for proper convergence. 15 randomly
selected, successfully converging charts are shown here for convenience.

in Figure 11. We then iteratively remove the earliest data
points that do not fit a normal distribution around the mean
error with regards to the standard deviation, and shrink the
acceptance window to the newly obtained mean and standard
deviation. Figure 12 illustrates this process. The first entry of
the remaining data is considered to be the convergence point,
and the average of the remaining data can be considered the
average error after convergence.

Figure 13 displays the convergence speed and resulting
error after convergence in a double box plot. This plot
shows that training on the distance error alone yields the

AUXNET vs. Convergence Time Pickup Rate IoU
Distance Error +0.48% +11.83% +35.31%
IoU Error −42.48% +39.90% +3.31%
Distance+IoU −16.90% +21.53% +24.41%
KGC-weighting −24.53% +15.85% +10.48%

TABLE II
RELATIVE IMPROVEMENTS OF AUXNET OVER SELECTED OTHER

METHODS. DATA IS AVERAGED FROM 20 RUNS. AUXNET CONVERGES

FASTER AND PRODUCES A HIGHER PICKUP RATE AND IOU THAN THE

OTHER TESTED METHODS, AN EXCEPTION BEING THE DISTANCE ERROR

CONVERGING MARGINALLY FASTER.

highest error, although it trains comparatively fast. Train-
ing on IoU error alone converges very slowly, but to a
lower error compared to the distance error metric. This is
due to the fact that training on IoU error reduces both
the IoU and distance error, but training on the distance
error does not lower the IoU error. Training on a simple
addition of distance error and IoU results in reduced error
compared to either. Both KGC-weighting and KGC/Mean-
weighting significantly reduce the combined error, but do
not improve the convergence time. While AUXNET features
a higher deviation in both convergence speed and quality,
the majority of the runs perform significantly better than
any other combination method, reducing the average summed
error by 15.85% compared to KGC-weighting; it also proved
to be more stable, as all 20 test runs converged. AUXNET
manages to weight the error terms such that the network
can converge on average in 26800 iterations, much faster
than KGC-weighting with an average of 34850 iterations
– reducing it by nearly 25%, or saving about one hour of
training on an Nvidia Titan X. Table II shows the relative
improvement of AUXNET compared to just training on the
distance error, IoU error, on a simple addition of IoU and
Distance Error, and KGC-weighting.

The high variation of quality and convergence can be ex-
plained by analyzing the charts of the more slowly converg-
ing outliers. Figure 14 shows that these network experienced
near-death scenarios, in which part of the network died out,
from which they never fully recovered. It shall be noted
that optimal weights for error functions will automatically
also pose a higher threat of neuron death for the network,
as optimal weights will produce steeper gradients, which
in combination with Adam’s learned momenta may lead to
ReLU neurons getting stuck with negative activations and
dying. An obvious solution may be converting the DCNN to
leaky ReLUs.

C. Significance

The distributions of error values and convergence
points were tested against each other with a two-sample
Kolmogorov-Smirnov (KS) test, using α = 0.05, the null
hypothesis being that the different sources can not be distin-
guished. All error distributions were statistically significantly
different. Table III shows the results of the convergence tests.
With distributions too similar or variations too high in either
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Fig. 12. The convergence point determining process in detail. Left: An acceptance window (green) is created from the average error and the standard
deviation. Middle: While rejecting points (red), the acceptance window shrinks. Right: The leftmost point within the acceptance window becomes the
convergence point. For the amount of noise present in our data, a window of ±σ/2 produced best results.
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Fig. 13. A double box plot showing the median and quartiles from twenty
networks trained on each error function or combination thereof. Extents
along the X-Axis describe variation in convergence speed, while the Y-Axis
shows the summed pickup- and IoU error. The median convergence and
error measures for AUXNET are significantly better than for any compared
method.

sample, some of the null hypotheses could not be rejected
for the number of test runs.

VI. CONCLUSION

We have shown that error functions do not have to be
independent in order to speed up convergence and produce
lower error. We have introduced the CONVERGE-FAST-
AUXNET approach, a method to learn a weighting between
these error functions in a manner that improves convergence
and the reduction of error even more. Repeated test runs
have shown that improvements on state-of-the-art methods
to derive optimal weightings are significant. In conclusion,
object detection tasks can be improved in accuracy and
training times by further constraining the network using a
combination of available error metrics, and using approaches
such as AUXNET to learn optimal weights between them.
The Factory of the Future benefits especially from the faster
convergence, enabling it to train object detectors for each
new task in near real time.

Future work includes extending CONVERGE-FAST-
AUXNET to a recurrent network that can learn the decrease
along the gradients of the network, and modify the output
weights in accordance. We also plan to test our approach
on common datasets such as the Pascal VOC Challenge or
the Cityscapes Dataset [20]. As the use of ReLU neurons
appeared to pose problems to the combination of weight
learning (as in KGC-weighting or AUXNET) and the Adam
optimizer, a next logical step would be to test other activation
functions for the DCNN, such as leaky ReLUs. Lastly, we
are planning to investigate further why training on the pickup
error was unsuccessful, and aim to modify the function such
that it still reflects pickup probabilities, but can also be used
as a better scaled version of the distance error for KGC-
weighting.
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Fig. 14. Convergence plots of the fastest (left) and slowest (right) converging networks trained using AUXNET. Distance error (red) is converted to a
pickup error and added to the IoU error (blue) to form the combined error (green). The dark green box indicates the converged region, its average error,
and standard deviation. The distance error plot on the right side shows that the network suffered traumatic experiences during early training, from which
it could never fully recover, resulting in overall higher error and slower convergence.
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