Gossiping in a Multi-Channel Radio Network

Shlomi Dolev Seth Gilbert Rachid Guerraouï Calvin Newport
Malicious Adversary + Radio = Dangerous
Malicious Adversary + Radio = Dangerous
How to circumvent the adversary?

Assume adversary cannot jam the channel.

- No collisions, no spoofing (e.g., [Koo 04]).

Assume adversary is probabilistic.

- Byzantine transmission fault occurs with probability $p < 1$ (e.g., [Pelc, Peleg 05]).

Assume adversary has limited broadcast power.

- Adversary can only broadcast β times (e.g., [Gilbert, Guerraoui, Newport 06]).
Goal for Today

Remove restrictions on adversary:

1. Adversary can *jam* the channel.
3. *No bound* on adversarial broadcasts.
Byzantine Gossip in a Multi-Channel Radio Network

Multi-Channel Radio Network

Basic Model:

• n nodes
• c channels, synchronous
• Each can transmit or receive on 1 channel per round.
• Only 1 can transmit per channel per round.
• 1 adversary
• Adversary can disrupt 1 channel per round.
• If adversary disrupts channel, nothing is received.
Multi-Channel Radio Network

Example: $c = 2, \ n = 7$
Byzantine Gossip in a Multi-Channel Radio Network

Multi-Channel Radio Network

Example: \(c = 2, \ n = 7 \)
Example: $c = 2, \ n = 7$
Multi-Channel Radio Network

Example: $c = 2, \ n = 7$
Example: $c = 2, \; n = 7$
Gossip and ϵ-Gossip

Basic Problem:

- Each node begins round with value v_i.
- Eventually, every node learns all n values.

Gossip with ϵ error:

- All but ϵn of the values are successfully transmitted to $n - 1$ nodes.
Randomized Algorithm for gossip:

Channel 1

Channel 2
Randomized Algorithm for gossip:

for $i = 1$ to n:

$\Pr(1/2)$

v_i

$\Pr(1/2)$

Channel 1

Channel 2
Randomized Algorithm for gossip:

for $i = 1$ to n:

$Pr(1/2)$

Channel 1

$Pr(1/2)$

Channel 2
Randomized Algorithm for gossip:

for $i = 1$ to n:

$\Pr(1/2)$

Channel 1

$\Pr(1/2)$

$\Pr(1/2)$

Channel 2

$\Pr(1/2)$

$\Pr(1/2)$
Randomized Algorithm for gossip:

for $i = 1$ to n:

- $Pr(1/2)$

ν_i → Channel 1

$Pr(1/2)$

ν_i → Channel 2
Randomized Algorithm for gossip:

for $i = 1$ to n:

$\mathcal{P}r(1/2)$

Channel 1

$\mathcal{P}r(1/2)$

Channel 2

v_i
Randomized Algorithm for gossip:

for $i = 1$ to n:

- $\mathbb{P}r(1/2)$
 - v_i to Channel 1
 - $\mathbb{P}r(1/2)$
 - Channel 2
Randomized Algorithm for gossip:

\[
\text{for } i = 1 \text{ to } n:
\]

\[
\mathbb{P}(1/2) \rightarrow \text{Channel 1} \rightarrow v_i
\]

\[
\mathbb{P}(1/2) \rightarrow \text{Channel 2} \rightarrow \cdots
\]
Randomized Algorithm for gossip:

for $i = 1$ to n:

$\Pr(1/2) \quad \text{Channel 1}$

$\Pr(1/2)$

$\Pr(\text{node } j \text{ receives value } v_i) = 1/4$
Randomized Algorithm for gossip:

for \(i = 1 \) to \(n \):

\[Pr(1/2) \to \text{Channel 1} \]

\[Pr(1/2) \to \text{Channel 2} \]

\[Pr(\text{node } j \text{ receives value } v_i) = 1/4 \]

Repeat \(\Theta(\log n) \) times to achieve high probability.
Randomized Algorithm for gossip:

for $i = 1$ to n:

Channel 1

$Pr(1/2)$

$Pr(1/2)$

Channel 2

$Pr(node \ j \ receives \ value \ v_i) = 1/4$

Repeat $\Theta(\log n)$ times to achieve high probability.
Deterministic, Oblivious Algorithms
Deterministic, Oblivious Algorithms

Transmission pattern is determined prior to the beginning of the execution:

- Each node decides initially for each round r:
 a. whether to broadcast or receive in round r.
 b. which channel to use in round r.
Deterministic, Oblivious Algorithms
Deterministic, Oblivious Algorithms

Observation: 0-Gossip is impossible.
Deterministic, Oblivious Algorithms

Observation: 0-Gossip is *impossible*.

- Adversary blocks node 1 every time it broadcasts:
Observation: 0-Gossip is impossible.

- Adversary blocks node 1 every time it broadcasts:
Deterministic, Oblivious Algorithms

Observation: 0-Gossip is impossible.

• Adversary blocks node 1 every time it broadcasts:
Deterministic, Oblivious Algorithms

Observation: 0-Gossip is impossible.

• Adversary blocks node 1 every time it broadcasts:
Deterministic, Oblivious Algorithms

Observation: 0-Gossip is *impossible*.

- Adversary blocks node 1 every time it broadcasts:
Deterministic, Oblivious Algorithms

Observation: 0-Gossip is impossible.

- Adversary blocks node 1 every time it broadcasts:

Node 1 never succeeds in broadcasting!
Gossip and ϵ-Gossip

Basic Problem:

- Each node begins round with value v_i.
- Eventually, every node learns all n values.

Gossip with ϵ error:

- All but ϵn of the values are successfully transmitted to $n - 1$ nodes.
Outline

1. Introduction
2. Lower Bound
3. Algorithm for ϵ-Gossip
4. Extensions
5. Open Questions
Lower Bound

Theorem 1:

Every deterministic, oblivious algorithm for ϵ–Gossip requires at least

$$\Theta \left(\frac{n}{\epsilon c^2} \right)$$ rounds (for small ϵ).

n : number of nodes

c : number of channels

ϵ : all but ϵn values are successfully transmitted
Lower Bound

Theorem 1:

Every deterministic, oblivious algorithm for ϵ-Gossip requires at least

$\Theta \left(\frac{n}{\epsilon c^2} \right)$ rounds.

Example:

- Gossiping all but one value requires $\Theta \left(\frac{n^2}{c^2} \right)$ rounds.
Lower Bound

Key Idea: (example: $c = 2$)

- If two nodes a and b never broadcast in the same round, the adversary can always block both of them.
 - Adversary disrupts node a when a broadcasts.
 - Adversary disrupts node b when b broadcasts.
- Thus disseminating all but one rumor requires at least $\binom{n}{2}$ rounds.
- Generalize for other values of c, ϵ . . .
Lower Bound

Consider the graph G:

- There is an edge between i and j if (and only if) nodes i and j never broadcast in the same round.

- If there exists a clique of size k in G, then the adversary can prevent k nodes from broadcasting.
Lower Bound

Consider the graph \(G \):

- There is an edge between \(i \) and \(j \) if (and only if) nodes \(i \) and \(j \) never broadcast in the same round.

Claim: If algorithm \(A \) solves \(\epsilon \)-Gossip in \(r \) rounds, then:

1. graph \(G \) has no clique larger than \(\epsilon n \).
2. graph \(G \) is missing at most \(c^2 r \) edges.
Lower Bound

Turan’s Theorem:

If graph G has no clique of size $k+1$:
Then graph G has at most:

$$\left(1 - \frac{1}{k}\right) \frac{n^2}{2}$$

edges.
Lower Bound

Corollary:

If graph G has no clique of size ϵn:

Then graph G is missing at least:

$$\binom{n}{2} - \left(1 - \frac{1}{\epsilon n - 1}\right) \frac{n^2}{2} = \frac{n^2}{2\epsilon n - 2} - \frac{n}{2} = \Theta \left(\frac{n}{\epsilon}\right) \text{ edges.}$$
Lower Bound

Theorem 1:

Every deterministic, oblivious ϵ-Gossip algorithm requires at least $\Theta \left(\frac{n}{\epsilon c^2} \right)$ rounds.

Proof:

- Graph G has no clique of size ϵn and is missing at most $c^2 r \geq \Theta \left(\frac{n}{\epsilon} \right)$ edges, $r = \# \text{ of rounds}$.

Turan’s Theorem
Outline

1. Introduction
2. Lower Bound
3. Algorithm for ϵ-Gossip
4. Extensions
5. Open Questions
Upper Bound

Theorem 2:

There exists a deterministic, oblivious algorithm for ϵ–Gossip that terminates in $\Theta \left(\frac{n}{\epsilon c^2} \right)$ rounds (for small ϵ).

n : number of nodes
c : number of channels
ϵ : all but ϵn values are successfully transmitted
Upper Bound

Construct the algorithm in two steps:

1. Data Collection
 - aggregate data at a small number of nodes.

2. Data Dissemination
 - broadcast data from a small number to the rest.
Case 1: $\epsilon \geq 1/c$

Data Collection:

Partition the nodes into two sets:

1. Listeners:
 - $2c$ nodes, two per channel.

2. Broadcasters:
 - Divided into n/c groups of c nodes.
 - Each group broadcasts in one round.
 - End result:

 All but n/c are known to some pair of listeners.
Case 1: $\epsilon \geq 1/c$

Data Collection:

Partition the nodes into two sets:

1. Listeners:
 - $2c$ nodes, two per channel.

2. Broadcasters:
 - Divided into $\frac{(1-\epsilon)n}{c-1}$ groups of c nodes.
 - Each group broadcasts in one round.
 - End result:

 At least $(1 - \epsilon)n$ are known to some listeners.
Case 2: $\epsilon < 1/c$

Data Collection

Partition the nodes into two sets:

1. Listeners:
 - $2c$ nodes, two per channel.

2. Broadcasters:
 - Divide into ϵn sets of size $1/\epsilon$.
 - For each, all but 1 node succeeds in broadcasting.
 - End result: all but ϵn values are known to a listener.
Case 2: \(\epsilon < 1/c \)

Data Collection

- For each set of size \(1/\epsilon \):
 - Divide into \(2/\epsilon c \) subsets of size \(c/2 \).
 - For every pair of subsets, assign 1 round.

- Result:
 - Only one node in the set can be blocked.
 - Running time: \(\binom{2/\epsilon c}{2} = \Theta \left(\frac{1}{\epsilon^2 c^2} \right) \).
Case 2: $\epsilon < 1/c$

Data Collection

- Overall running time (so far):

$$\epsilon n \cdot \Theta \left(\frac{1}{\epsilon^2 c^2} \right) = \Theta \left(\frac{n}{\epsilon c^2} \right)$$

- number of subsets
- rounds per subset
Data Collection Phase

Result:

- All but ϵn are known to some pair of listeners.

Running time: $\Theta\left(\max\left(\frac{(1 - \epsilon)n}{c - 1}, \frac{n}{\epsilon c^2}\right)\right)$

Big ϵ Small ϵ
Data Dissemination

Three steps:

• Step 1: Divide the nodes into c sets, 1 per channel.
• Step 2: For each channel, disseminate data from 2 listeners to all the nodes in that channel’s set.
• Step 3: Merge channel sets pairwise.
Data Dissemination

Step 2:

- For each channel, disseminate data from 2 listeners to the nodes in that channel’s set.
Data Dissemination

Step 2:

- For each channel, disseminate data from 2 listeners to the nodes in that channel’s set.
Data Dissemination

Step 2:

- For each channel, disseminate data from 2 listeners to the nodes in that channel’s set.

\[\log n \text{ rounds} \]
Data Dissemination

Step 2:

- For each channel, disseminate data from 2 listeners to the nodes in that channel’s set.

- Results:

 All but 1 node in the set receives all the values from the listeners.

 We say that all but 1 of the nodes are **knowledgable**; 1 node is **unknowledgable**.
Data Dissemination

Three steps:

- Step 1: Divide the nodes into c sets, 1 per channel.
- Step 2: For each channel, disseminate data from 2 listeners to the nodes in that channel’s set.
- Step 3: Merge channel sets together.
Data Dissemination

Step 3:

- Merge channel sets together.
Data Dissemination

Step 3:

- Merge channel sets together.
Data Dissemination

Merge channel sets: $c \rightarrow c / 2$

- Choose 3 pairs (6 nodes) from each channel set.
 - At most 1 node in each channel set is unknowledgable.
 - For at least 1 pair of nodes, both are knowledgable.

- Pair the c channel sets into $c / 2$ groups.
- For each group, for each of the 3+3=6 pairs of listeners, run disseminate routine from Step 2.
Upper Bound

Data Dissemination

- Step 1: Divide the nodes into c sets, 1 per channel.
- Step 2: For each channel, disseminate data from 2 listeners to the nodes in that channel’s set.
 - Number of rounds: $\log n$

- Step 3: Merge channel sets together.
 - Number of rounds: $\log^2 n$
Upper Bound

Data Collection + Data Dissemination

- Running time (for small ϵ):

$$\Theta \left(\frac{n}{\epsilon c^2} + \log^2 n \right) = \Theta \left(\frac{n}{\epsilon c^2} \right)$$
Upper Bound

Data Collection + Data Dissemination

- Running time (for small ϵ):

$$\Theta \left(\frac{n}{\epsilon c^2} + \log^2 n \right) = \Theta \left(\frac{n}{\epsilon c^2} \right)$$

- Actual bound:

$$\max \left(\Theta \left(\frac{(1 - \epsilon)n}{c - 1} + \log_c n \right), \Theta \left(\frac{(1 - \epsilon)n}{\epsilon c^2} \right) \right)$$
Outline

1. Introduction
2. Lower Bound
3. Algorithm for ϵ-Gossip
4. Extensions
 - Multi-Channel Adversary
 - Byzantine Corruptions
5. Open Questions
Multi-Channel Adversary

Assume the adversary can jam $t < c$ channels.

- More listeners.
- More rounds of Data Collection.
- Generalized Data Dissemination.
Multi-Channel Adversary

More Listeners:

- $t + 1$ listeners per channel
Multi-Channel Adversary

More Data Collection:

- Subdivision 1: $\epsilon n / t$ sets of size t / ϵ.
- Subdivision 2: subsets of size $c / (t + 1)$.
- Schedule all \(\binom{t(t+1)}{\epsilon c} \) of the subsets to broadcast simultaneously.
Multi-Channel Adversary

More Data Collection:

• Running time:

\[O \left(\frac{ne^{t+1}}{ce^t} \right) \]
Multi-Channel Adversary

Generalized Data Dissemination:

- Every set of $t + 1$ nodes is scheduled to listen together in one round.
 - Note: not just a base-$(t + 1)$ representation.

- Key tool: $(n, k, 1)$-selectors
 - Recursive construction: assume solved for t.
 - For each set in $(n, t, 1)$-selector:
 - Schedule that set on channel $t + 1$.
 - Use recursive construction to schedule $[1..t]$
Multi-Channel Adversary

Generalized Data Dissemination:

• Every set of $t + 1$ nodes is scheduled to listen together in one round.
 - Note: not just a base-$(t + 1)$ representation.

• Disseminate running time: $(t + 1)^{t+1} \log^t n$
Multi-Channel Adversary

Generalized Data Dissemination:

- Every set of $t + 1$ nodes is scheduled to listen together in one round.
 - Note: not just a base-$(t + 1)$ representation.

- Disseminate running time: $(t + 1)^{t+1} \log^t n$

- Total Data Disseminate running time:
 $$\frac{c \log c}{t + 1} (t + 1)^{t+1} \log^t n$$
Multi-Channel Adversary

Total running time:

$$O\left(\frac{ne^{t+1}}{c\epsilon^t} + c(t + 1)^t \log^{t+1} n\right)$$

** (Bound is tight when $\epsilon = t/n$.)
Byzantine Corruptions

Adversary can corrupt t nodes.

- Not just jam channels.

- Main problem:
 - Some of the listeners may be corrupt.

- Solution:
 - More listeners: $(2t + 1)(t + 1)$
 - Run disseminate for each of the $(2t + 1)$ sets.
 - Only accept rumor if $(t + 1)$ listeners agree on it.
Open Questions and Ongoing Research

- Adaptive algorithms.
- Secure algorithms.
- Multi-hop networks.
- Energy efficiency and energy limited adversary.