Grouping Techniques For Scheduling Problems

Tim Hartnack

Theory of Parallelism
Institute of Computer Science
Christian-Albrechts-University of Kiel

October 11, 2007
Overview

1. Introduction
 - Overview

2. Unrelated parallel machines with costs
 - Basic ideas
 - Rounding and profiling jobs
 - Grouping jobs
 - Dynamic programming

3. Outlook and discussion
Problem

- $0 < \varepsilon < 1$ fixed
- $m \geq 2$ fixed
- Given:
 - n independent jobs
 - m unrelated parallel machines
 - jobs without interruption
 - each machine: one job at a moment
 - job J_j on machine i requires $p_{ij} \geq 0$
 - and incurs $c_{ij} \geq 0$ costs, $i = 1, \ldots, m, j = 1, \ldots, n$
Problem

- $0 < \varepsilon < 1$ fixed
- $m \geq 2$ fixed
- Given:
 - n independent jobs
 - m unrelated parallel machines
 - jobs without interruption
 - each machine: one job at a moment
 - job J_j on machine i requires $p_{ij} \geq 0$
 - and incurs $c_{ij} \geq 0$ costs, $i = 1, \ldots, m$, $j = 1, \ldots, n$
Problem

- $0 < \varepsilon < 1$ fixed
- $m \geq 2$ fixed
- Given:
 - n independent jobs
 - m unrelated parallel machines
- jobs without interruption
- each machine: one job at a moment
- job J_j on machine i requires $p_{ij} \geq 0$
- and incurs $c_{ij} \geq 0$ costs, $i = 1, \ldots, m$, $j = 1, \ldots, n$
Problem

- $0 < \varepsilon < 1$ fixed
- $m \geq 2$ fixed

Given:
- n independent jobs
- m unrelated parallel machines
- jobs without interruption
- each machine: one job at a moment
- job J_j on machine i requires $p_{ij} \geq 0$
- and incurs $c_{ij} \geq 0$ costs, $i = 1, \ldots, m, j = 1, \ldots, n$
Problem

- $0 < \varepsilon < 1$ fixed
- $m \geq 2$ fixed
- Given:
 - n independent jobs
 - m unrelated parallel machines
- jobs without interruption
- each machine: one job at a moment
- job J_j on machine i requires $p_{ij} \geq 0$
- and incurs $c_{ij} \geq 0$ costs, $i = 1, \ldots, m, j = 1, \ldots, n$
Problem

- $0 < \varepsilon < 1$ fixed
- $m \geq 2$ fixed
- Given:
 - n independent jobs
 - m unrelated parallel machines
- jobs without interruption
- each machine: one job at a moment
- job J_j on machine i requires $p_{ij} \geq 0$
- and incurs $c_{ij} \geq 0$ costs, $i = 1, \ldots, m, j = 1, \ldots, n$
Problem

- $0 < \varepsilon < 1$ fixed
- $m \geq 2$ fixed
- Given:
 - n independent jobs
 - m unrelated parallel machines
- jobs without interruption
- each machine: one job at a moment
- job J_j on machine i requires $p_{ij} \geq 0$
- and incurs $c_{ij} \geq 0$ costs, $i = 1, \ldots, m, j = 1, \ldots, n$
Unrelated parallel machines with costs

Problem

- $0 < \varepsilon < 1$ fixed
- $m \geq 2$ fixed
- Given:
 - n independent jobs
 - m unrelated parallel machines
- Jobs without interruption
- Each machine: one job at a moment
- Job J_j on machine i requires $p_{ij} \geq 0$
- And incurs $c_{ij} \geq 0$ costs, $i = 1, \cdots, m, j = 1, \cdots, n$
Problem

- $0 < \varepsilon < 1$ fixed
- $m \geq 2$ fixed
- Given:
 - n independent jobs
 - m unrelated parallel machines
- Jobs without interruption
- Each machine: one job at a moment
- Job J_j on machine i requires $p_{ij} \geq 0$
- And incurs $c_{ij} \geq 0$ costs, $i = 1, \ldots, m, j = 1, \ldots, n$
Objective function of unrelated parallel machines with costs

- Objective function

\[T + \mu \sum_{j=1}^{n} \sum_{i=1}^{n} x_{ij} c_{ij} \] \hspace{1cm} (1)

- with \(x_{ij} = \begin{cases} 1, & \text{if job } J_j \text{ runs on machine } i \\ 0, & \text{else} \end{cases} \)

- \(T \) makespan, and \(\mu \geq 0 \)

- By multiplying each cost value by \(\mu \) we may assume, w.l.o.g. that \(\mu = 1 \)
Objective function of unrelated parallel machines with costs

- Objective function

\[T + \mu \sum_{j=1}^{n} \sum_{i=1}^{n} x_{ij} c_{ij} \]

(1)

- with \(x_{ij} = \begin{cases}
1, & \text{if job } J_j \text{ runs on machine } i \\
0, & \text{else}
\end{cases} \)

- \(T \) makespan, and \(\mu \geq 0 \)

- By multiplying each cost value by \(\mu \) we may assume, w.l.o.g. that \(\mu = 1 \)
Objective function of unrelated parallel machines with costs

- Objective function
 \[T + \mu \sum_{j=1}^{n} \sum_{i=1}^{n} x_{ij} c_{ij} \] \hspace{1cm} (1)

- with \(x_{ij} = \begin{cases}
1, & \text{if job } J_j \text{ runs on machine } i \\
0, & \text{else}
\end{cases} \)

- \(T \) makespan, and \(\mu \geq 0 \)

- By multiplying each cost value by \(\mu \) we may assume, w.l.o.g. that \(\mu = 1 \)
Objective function of unrelated parallel machines with costs

- Objective function

\[T + \mu \sum_{j=1}^{n} \sum_{i=1}^{n} x_{ij} c_{ij} \] \hspace{1cm} (1)

- with \(x_{ij} = \begin{cases}
1, & \text{if job } J_j \text{ runs on machine } i \\
0, & \text{else}
\end{cases} \)

- \(T \) makespan, and \(\mu \geq 0 \)

- By multiplying each cost value by \(\mu \) we may assume, w.l.o.g. that \(\mu = 1 \)
Notation and scaling factors

Definition (scaling factor)

Define for each job $J_j \in \mathcal{J}$

1. $d_j = \min_{i=1, \ldots, m} (p_{ij} + c_{ij})$
2. $D = \sum_{j=1}^{n} d_j$
Upper and lower bound of the objective function

Lemma
For the objective function, the following inequality holds: \(D \leq \text{OPT} \leq m \)

Proof.

\[
D = \sum_{j=1}^{n} d_j \leq \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}^* c_{ij} + \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}^* p_{ij} \\
\leq C^* + T^* \leq m (C^* + T^*) = m \cdot \text{OPT}
\]
Upper and lower bound of the objective function

- Let m_j indicate a machine such that $d_j = p_{m_j,j} + c_{m_j,j}$
- Assign each job J_j to machine m_j
- The objective function is bounded by
 \[
 \sum_{j \in J} c_{m_j,j} + \sum_{j \in J} p_{m_j,j} = D
 \]
- $OPT \in \left[\frac{D}{m}, D\right]$
- By dividing all times and costs by $\frac{D}{m}$ we get:
 \[
 1 \leq OPT \leq m
 \]
Let m_j indicate a machine such that $d_j = p_{m_j,j} + c_{m_j,j}$

Assign each job J_j to machine m_j

The objective function is bounded by

$$\sum_{j \in J} c_{m_j,j} + \sum_{j \in J} p_{m_j,j} = D$$

$OPT \in \left[\frac{D}{m}, D \right]$

By dividing all times and costs by $\frac{D}{m}$ we get:

$$1 \leq OPT \leq m$$
Upper and lower bound of the objective function

- Let m_j indicate a machine such that $d_j = p_{m,j} + c_{m,j}$
- Assign each job J_j to machine m_j
- The objective function is bounded by
 \[
 \sum_{j \in J} c_{m,j} + \sum_{j \in J} p_{m,j} = D
 \]
- $OPT \in \left[\frac{D}{m}, D \right]$
- By dividing all times and costs by $\frac{D}{m}$ we get:
 \[1 \leq OPT \leq m\]
Unrelated parallel machines with costs

Upper and lower bound of the objective function

- Let m_j indicate a machine such that $d_j = p_{m_j,j} + c_{m_j,j}$
- Assign each job J_j to machine m_j
- The objective function is bounded by

$$\sum_{j \in J} c_{m_j,j} + \sum_{j \in J} p_{m_j,j} = D$$

- $OPT \in \left[\frac{D}{m}, D\right]$
- By dividing all times and costs by $\frac{D}{m}$ we get:

$$1 \leq OPT \leq m$$
Upper and lower bound of the objective function

- Let m_j indicate a machine such that $d_j = p_{m_j,j} + c_{m_j,j}$
- Assign each job J_j to machine m_j
- The objective function is bounded by

$$\sum_{j \in J} c_{m_j,j} + \sum_{j \in J} p_{m_j,j} = D$$

- $OPT \in \left[\frac{D}{m}, D \right]$
- By dividing all times and costs by $\frac{D}{m}$ we get:

$$1 \leq OPT \leq m$$
Overview of the algorithm

1. **Rounding** and **profiling** of jobs creates *profiles*
 - constant number of profiles

2. **Grouping** of jobs
 - constant number of jobs

3. Schedule constant number of jobs with dynamic programming
Overview of the algorithm

1. **Rounding** and **profiling** of jobs creates *profiles*
 - constant number of profiles

2. **Grouping** of jobs
 - constant number of jobs

3. Schedule constant number of jobs with **dynamic programming**
Overview of the algorithm

1. **Rounding** and **profiling** of jobs creates *profiles*
 - constant number of profiles

2. **Grouping** of jobs
 - constant number of jobs

3. Schedule constant number of jobs with **dynamic programming**

Observation (Transformation)

We say that a transformation produces $1 + O(\varepsilon)$ loss at the objective function.
Overview of the algorithm

1. **Rounding** and **profiling** of jobs creates *profiles*
 - constant number of profiles

2. **Grouping** of jobs
 - constant number of jobs

3. Schedule constant number of jobs with **dynamic programming**

Observation (Transformation)

We say that a transformation produces $1 + O(\varepsilon)$ loss at the objective function.
Overview of the algorithm

1. **Rounding** and **profiling** of jobs creates *profiles*
 - constant number of profiles

2. **Grouping** of jobs
 - constant number of jobs

3. Schedule constant number of jobs with **dynamic programming**

Observation (Transformation)

We say that a transformation produces $1 + O(\varepsilon)$ *loss at the objective function*
Overview of the algorithm

1. **Rounding** and **profiling** of jobs creates *profiles*
 - constant number of profiles

2. **Grouping** of jobs
 - constant number of jobs

3. Schedule constant number of jobs with **dynamic programming**

Observation (Transformation)

We say that a transformation produces $1 + O(\varepsilon)$ *loss at the objective function*
Sets of machines

For every J_j define:

fast machines $p_{ij} \leq \frac{\varepsilon}{m} d_j$

cheap machines $c_{ij} \leq \frac{\varepsilon}{m} d_j$

slow machines $p_{ij} \geq \frac{m}{\varepsilon} d_j$

expensive machines $c_{ij} \geq \frac{d_j}{\varepsilon}$
Sets of machines

For every J_j define:

- **fast machines** $p_{ij} \leq \frac{\varepsilon}{m} d_j$
- **cheap machines** $c_{ij} \leq \frac{\varepsilon}{m} d_j$
- **slow machines** $p_{ij} \geq \frac{m}{\varepsilon} d_j$
- **expensive machines** $c_{ij} \geq \frac{d_i}{\varepsilon}$
For every J_j define:

- **Fast machines** $p_{ij} \leq \frac{\epsilon}{m} d_j$
- **Cheap machines** $c_{ij} \leq \frac{\epsilon}{m} d_j$
- **Slow machines** $p_{ij} \geq \frac{m}{\epsilon} d_j$
- **Expensive machines** $c_{ij} \geq \frac{d_j}{\epsilon}$
Sets of machines

For every J_j define:

- **fast machines** $p_{ij} \leq \frac{\varepsilon}{m} d_j$
- **cheap machines** $c_{ij} \leq \frac{\varepsilon}{m} d_j$
- **slow machines** $p_{ij} \geq \frac{m}{\varepsilon} d_j$
- **expensive machines** $c_{ij} \geq \frac{d_j}{\varepsilon}$
Rounding Jobs

fast machine i of $J_j : p_{ij} = 0$

cheap machine i of $J_j : c_{ij} = 0$

slow machine i of $J_j : p_{ij} = +\infty$

expensive machine $i \in$ of $J_j : c_{ij} = +\infty$

other machine i of J_j round p_{ij}, c_{ij} to the nearest lower value of $\frac{\varepsilon}{m} d_j (1 + \epsilon)^h$, for some $h \in \mathbb{N}$
Rounding Jobs

fast machine \(i \) of \(J_j \) : \(p_{ij} = 0 \)

cheap machine \(i \) of \(J_j \) : \(c_{ij} = 0 \)

slow machine \(i \) of \(J_j \) : \(p_{ij} = +\infty \)

expensive machine \(i \in \) of \(J_j \) : \(c_{ij} = +\infty \)

other machine \(i \) of \(J_j \) round \(p_{ij}, c_{ij} \) to the nearest lower value of \(\frac{\varepsilon}{m} d_j (1 + \varepsilon)^h \), for some \(h \in \mathbb{N} \)
Rounding Jobs

- **fast machine** i of J_j: $p_{ij} = 0$
- **cheap machine** i of J_j: $c_{ij} = 0$
- **slow machine** i of J_j: $p_{ij} = +\infty$
- **expensive machine** $i \in J_j$: $c_{ij} = +\infty$
- **other machine** i of J_j round p_{ij}, c_{ij} to the nearest lower value of $\frac{\varepsilon}{m} d_j (1 + \varepsilon)^h$, for some $h \in \mathbb{N}$

Observation

For each job $J_j \in \mathcal{J}$, there is always a machine with is neither expensive nor slow.
Rounding Jobs

fast machine \(i \) of \(J_j : p_{ij} = 0 \)

cheap machine \(i \) of \(J_j : c_{ij} = 0 \)

slow machine \(i \) of \(J_j : p_{ij} = +\infty \)

expensive machine \(i \in J_j : c_{ij} = +\infty \)

other machine \(i \) of \(J_j \) round \(p_{ij}, c_{ij} \) to the nearest lower value of \(\frac{\varepsilon}{m} d_j (1 + \varepsilon)^h \), for some \(h \in \mathbb{N} \)

Observation

For each job \(J_j \in J \) there is always a machine which is neither expensive nor slow.
Rounding Jobs

- Fast machine i of J_j: $p_{ij} = 0$
- Cheap machine i of J_j: $c_{ij} = 0$
- Slow machine i of J_j: $p_{ij} = +\infty$
- Expensive machine $i \in J_j$: $c_{ij} = +\infty$
- Other machine i of J_j round p_{ij}, c_{ij} to the nearest lower value of $\varepsilon d_j (1 + \varepsilon)^h$, for some $h \in \mathbb{N}$

Observation

For each job $J_j \in J$ there is always a machine which is neither expensive nor slow
Rounding Jobs

fast machine \(i \) of \(J_j \): \(p_{ij} = 0 \)
cheap machine \(i \) of \(J_j \): \(c_{ij} = 0 \)
slow machine \(i \) of \(J_j \): \(p_{ij} = +\infty \)
expensive machine \(i \in \) of \(J_j \): \(c_{ij} = +\infty \)
other machine \(i \) of \(J_j \) round \(p_{ij}, c_{ij} \) to the nearest lower value of \(\frac{\varepsilon}{m} d_j (1 + \varepsilon)^h \), for some \(h \in \mathbb{N} \)

Observation

For each job \(J_j \in \mathcal{J} \) there is always a machine which is neither expensive nor slow
Results of rounding

Lemma

Rounding produces $1 + 4\varepsilon$ *loss*

Proof.

- Start by considering rounding to zero the times and costs of jobs on fast and cheap machines, respectively
 - Let A be an optimal schedule of this
 - The objective function value of $A \leq \text{OPT}$

- F and C denote sets of jobs, which are processed on fast and cheap machines according to A
- Replace times and costs of the transformed instance by the originals

$$\sum_{j \in F} t_j + \sum_{j \in C} t_j \leq 2 \sum_{j = 1}^{2\varepsilon m} t_j = 2\varepsilon P_m = 2\varepsilon$$
Results of rounding

Lemma

Rounding produces $1 + 4\varepsilon$ *loss*

Proof.

- Start by considering rounding to zero the times and costs of jobs on fast and cheap machines, respectively
 - Let A be an optimal schedule of this
 - The objective function value of $A \leq \text{OPT}$
 - we just reduced times and costs
 - F and C denote sets of jobs, which are processed on fast and cheap machines according to A
 - Replace times and costs of the transformed instance by the originals

$$
\sum_{j \in F} \frac{\varepsilon}{m} d_j + \sum_{j \in C} \frac{\varepsilon}{m} d_j \leq 2 \sum_{j=1}^{n} \frac{\varepsilon}{m} d_j = 2 \varepsilon \frac{D}{m} = 2\varepsilon
$$
Results of rounding

Lemma

Rounding produces $1 + 4\varepsilon$ *loss*

Proof.

- Start by considering rounding to zero the times and costs of jobs on fast and cheap machines, respectively
 - Let A be an optimal schedule of this
 - The objective function value of $A \leq \text{OPT}$
 - we just reduced times and costs
 - F and C denote sets of jobs, which are processed on fast and cheap machines according to A
 - Replace times and costs of the transformed instance by the originals
 \[
 \sum_{j \in F} \frac{\varepsilon}{m} d_j + \sum_{j \in C} \frac{\varepsilon}{m} d_j \leq 2 \sum_{j=1}^{n} \frac{\varepsilon}{m} d_j = 2 \varepsilon \frac{D}{m} = 2\varepsilon
 \]
Results of rounding

Lemma

Rounding produces $1 + 4\varepsilon$ *loss*

Proof.

- Start by considering rounding to zero the times and costs of jobs on fast and cheap machines, respectively
 - Let A be an optimal schedule of this
 - The objective function value of $A \leq \text{OPT}$
 - we just reduced times and costs
 - F and C denote sets of jobs, which are processed on fast and cheap machines according to A
 - Replace times and costs of the transformed instance by the originals

$$
\sum_{J_j \in F} \frac{\varepsilon}{m} d_j + \sum_{J_j \in C} \frac{\varepsilon}{m} d_j \leq 2 \sum_{j=1}^{n} \frac{\varepsilon}{m} d_j = 2\varepsilon \frac{D}{m} = 2\varepsilon
$$
Results of rounding

Lemma

Rounding produces 1 + 4\(\epsilon\) loss

Proof.

- Start by considering rounding to zero the times and costs of jobs on fast and cheap machines, respectively
 - Let \(A\) be an optimal schedule of this
 - The objective function value of \(A \leq OPT\)
 - we just reduced times and costs
 - \(F\) and \(C\) denote sets of jobs, which are processed on fast and cheap machines according to \(A\)
 - Replace times and costs of the transformed instance by the originals

\[
\sum_{J_j \in F} \frac{\epsilon}{m} d_j + \sum_{J_j \in C} \frac{\epsilon}{m} d_j \leq 2 \sum_{j=1}^{n} \frac{\epsilon}{m} d_j = 2\epsilon \frac{D}{m} = 2\epsilon
\]
Results of rounding

Lemma

Rounding produces $1 + 4\varepsilon$ loss

Proof.

- Start by considering rounding to zero the times and costs of jobs on fast and cheap machines, respectively
 - Let A be an optimal schedule of this
 - The objective function value of $A \leq OPT$
 - we just reduced times and costs
 - F and C denote sets of jobs, which are processed on fast and cheap machines according to A
 - Replace times and costs of the transformed instance by the originals

\[
\sum_{J_j \in F} \frac{\varepsilon}{m} d_j + \sum_{J_j \in C} \frac{\varepsilon}{m} d_j \leq 2 \sum_{j=1}^{n} \frac{\varepsilon}{m} d_j = 2\varepsilon \frac{D}{m} = 2\varepsilon
\]
Results of rounding II

Proof.

- Show: there exists an approximate schedule where jobs are scheduled neither on slow nor on expensive machines

 \(p_{ij}, c_{ij} := +\infty \)

- Let \(A \) be an optimal schedule, \(T^* \) Makespan \(C^* \) total costs

- \(S \) and \(E \) sets,

- Assign \(J_j \in S \cup E \) \(m_j \)

- This may increase the objective function value by at most

\[
\sum_{J_j \in S \cup E} d_j \leq \frac{\epsilon}{m} \sum_{J_j \in S} p_{A(j),j} + \epsilon \sum_{J_j \in E} c_{A(j),j} \leq \epsilon T^* + \epsilon C^*
\]

since \(p_{A(j),j} \geq \frac{m}{\epsilon} d_j \) for \(J_j \in S \) and \(c_{A(j),j} \geq \frac{d_j}{\epsilon} \) for \(J_j \in E \)
Results of rounding II

Proof.

- Show: there exists an approximate schedule where jobs are scheduled neither on slow nor on expensive machines
 - \(p_{ij}, c_{ij} := +\infty \)
- Let \(A \) be an optimal schedule, \(T^* \) Makespan \(C^* \) total costs
- \(S \) and \(E \) sets,
 - containing jobs, running on slow and expensive machines
- Assign \(J_j \in S \cup E \ m_j \)
- This may increase the objective function value by at most

\[
\sum_{J_j \in S \cup E} d_j \leq \frac{\varepsilon}{m} \sum_{J_j \in S} p_{A(j),j} + \varepsilon \sum_{J_j \in E} c_{A(j),j} \leq \varepsilon T^* + \varepsilon C^*
\]

since \(p_{A(j),j} \geq \frac{m}{\varepsilon} d_j \) for \(J_j \in S \) and \(c_{A(j),j} \geq \frac{d_j}{\varepsilon} \) for \(J_j \in E \)
Results of rounding II

Proof.

- Show: there exists an approximate schedule where jobs are scheduled neither on slow nor on expensive machines
 - \(p_{ij}, c_{ij} := +\infty \)
- Let \(A \) be an optimal schedule, \(T^* \) Makespan \(C^* \) total costs
- \(S \) and \(E \) sets, containing jobs, running on slow and expensive machines
- Assign \(J_j \in S \cup E \ m_j \)
- This may increase the objective function value by at most

\[
\sum_{J_j \in S \cup E} d_j \leq \frac{\varepsilon}{m} \sum_{J_j \in S} p_{A(j), j} + \varepsilon \sum_{J_j \in E} c_{A(j), j} \leq \varepsilon T^* + \varepsilon C^*
\]

since \(p_{A(j), j} \geq \frac{m}{e} d_j \) for \(J_j \in S \) and \(c_{A(j), j} \geq \frac{d_j}{e} \) for \(J_j \in E \)
Results of rounding II

Proof.

- Show: there exists an approximate schedule where jobs are scheduled neither on slow nor on expensive machines
 - \(p_{ij}, c_{ij} := +\infty \)
- Let \(A \) be an optimal schedule, \(T^* \) Makespan \(C^* \) total costs
- \(S \) and \(E \) sets,
 - containing jobs, running on slow and expensive machines
- Assign \(J_j \in S \cup E \) \(m_j \)
- This may increase the objective function value by at most

\[
\sum_{J_j \in S \cup E} d_j \leq \frac{\varepsilon}{m} \sum_{J_j \in S} p_{A(j), j} + \varepsilon \sum_{J_j \in E} c_{A(j), j} \leq \varepsilon T^* + \varepsilon C^*
\]

since \(p_{A(j), j} \geq \frac{m}{\varepsilon} d_j \) for \(J_j \in S \) and \(c_{A(j), j} \geq \frac{d_j}{\varepsilon} \) for \(J_j \in E \)
Results of rounding II

Proof.

- Show: there exists an approximate schedule where jobs are scheduled neither on slow nor on expensive machines
 - \(p_{ij}, c_{ij} := +\infty \)
- Let \(A \) be an optimal schedule, \(T^* \) Makespan \(C^* \) total costs
- \(S \) and \(E \) sets,
 - containing jobs, running on slow and expensive machines
- Assign \(J_j \in S \cup E \ m_j \)
- This may increase the objective function value by at most

\[
\sum_{J_j \in S \cup E} d_j \leq \frac{\varepsilon}{m} \sum_{J_j \in S} p_{A(j),j} + \varepsilon \sum_{J_j \in E} c_{A(j),j} \leq \varepsilon T^* + \varepsilon C^*
\]

since \(p_{A(j),j} \geq \frac{m}{\varepsilon} d_j \) for \(J_j \in S \) and \(c_{A(j),j} \geq \frac{d_j}{\varepsilon} \) for \(J_j \in E \)
Results of rounding II

Proof.

- Show: there exists an approximate schedule where jobs are scheduled neither on slow nor on expensive machines

 \[p_{ij}, c_{ij} := +\infty \]

- Let \(A \) be an optimal schedule, \(T^* \) Makespan \(C^* \) total costs

- \(S \) and \(E \) sets,

 containing jobs, running on slow and expensive machines

- Assign \(J_j \in S \cup E \ m_j \)

- This may increase the objective function value by at most

\[
\sum_{J_j \in S \cup E} d_j \leq \frac{\varepsilon}{m} \sum_{J_j \in S} p_{A(j),j} + \varepsilon \sum_{J_j \in E} c_{A(j),j} \leq \varepsilon T^* + \varepsilon C^*
\]

since \(p_{A(j),j} \geq \frac{m}{\varepsilon} d_j \) for \(J_j \in S \) and \(c_{A(j),j} \geq \frac{d_j}{\varepsilon} \) for \(J_j \in E \)
Results of rounding II

Proof.

- Show: there exists an approximate schedule where jobs are scheduled neither on slow nor on expensive machines

 \[p_{ij}, c_{ij} := +\infty \]

- Let \(A \) be an optimal schedule, \(T^* \) Makespan \(C^* \) total costs
- \(S \) and \(E \) sets,

 containing jobs, running on slow and expensive machines
- Assign \(J_j \in S \cup E \) \(m_j \)
- This may increase the objective function value by at most

\[
\sum_{J_j \in S \cup E} d_j \leq \frac{\varepsilon}{m} \sum_{J_j \in S} p_{A(j),j} + \varepsilon \sum_{J_j \in E} c_{A(j),j} \leq \varepsilon T^* + \varepsilon C^*
\]

since \(p_{A(j),j} \geq \frac{m}{\varepsilon} d_j \) for \(J_j \in S \) and \(c_{A(j),j} \geq \frac{d_j}{\varepsilon} \) for \(J_j \in E \)
Summary & Outlook

- up to now
 - All jobs rounded
- next
 - Create profiles of jobs
Summary & Outlook

- up to now
 - All jobs rounded
- next
 - Create profiles of jobs
Summary & Outlook

- **up to now**
 - All jobs rounded
- **next**
 - Create profiles of jobs
Summary & Outlook

- up to now
 - All jobs rounded
- next
 - Create profiles of jobs
Profiles for jobs

Definition (Execution profile)
The execution profile of a job \(J_j \) is a \(m \)-tuple

\[
\langle \Pi_{1,j}, \ldots, \Pi_{m,j} \rangle,
\]

so that \(p_{ij} = \frac{\varepsilon}{m} d_j (1 + \varepsilon)^{\Pi_{i,j}} \)

Definition (Cost profile)
The cost profile of a job \(J_j \) is a \(m \)-tuple

\[
\langle \Gamma_{1,j}, \ldots, \Gamma_{m,j} \rangle,
\]

so that \(c_{ij} = \frac{\varepsilon}{m} d_j (1 + \varepsilon)^{\Gamma_{i,j}} \)
Profiles for jobs

Definition (Execution profile)
The execution profile of a job J_j is a m-tuple

$$\langle \Pi_{1,j}, \ldots, \Pi_{m,j} \rangle,$$

so that $p_{ij} = \frac{\epsilon m d_j}{m} (1 + \epsilon)^{\Pi_{i,j}}$

Definition (Cost profile)
The cost profile of a job J_j is a m-tuple

$$\langle \Gamma_{1,j}, \ldots, \Gamma_{m,j} \rangle,$$

so that $c_{ij} = \frac{\epsilon m d_j}{m} (1 + \epsilon)^{\Gamma_{i,j}}$
Special cases in the profile

- For $p_{ij} = +\infty$ put $\Pi_{i,j} := +\infty$
- For $p_{ij} = 0$ put $\Pi_{i,j} := -\infty$
- For $c_{ij} = +\infty$ put $\Gamma_{i,j} := +\infty$
- For $c_{ij} = 0$ put $\Gamma_{i,j} := -\infty$
Special cases in the profile

- For $p_{ij} = +\infty$ put $\Pi_{i,j} := +\infty$
- For $p_{ij} = 0$ put $\Pi_{i,j} := -\infty$
- For $c_{ij} = +\infty$ put $\Gamma_{i,j} := +\infty$
- For $c_{ij} = 0$ put $\Gamma_{i,j} := -\infty$

Observation
Two jobs have the same profile, if they have the same execution profile as well as the same cost profile.
Special cases in the profile

- For $p_{ij} = +\infty$ put $\Pi_{i,j} := +\infty$
- For $p_{ij} = 0$ put $\Pi_{i,j} := -\infty$
- For $c_{ij} = +\infty$ put $\Gamma_{i,j} := +\infty$
- For $c_{ij} = 0$ put $\Gamma_{i,j} := -\infty$

Observation

Two jobs have the same profile, if they have the same execution profile as well as the same cost profile.
Special cases in the profile

- For $p_{ij} = +\infty$ put $\Pi_{i,j} := +\infty$
- For $p_{ij} = 0$ put $\Pi_{i,j} := -\infty$
- For $c_{ij} = +\infty$ put $\Gamma_{i,j} := +\infty$
- For $c_{ij} = 0$ put $\Gamma_{i,j} := -\infty$

Observation

Two jobs have the same profile, if they have the same execution profile as well as the same cost profile.
Special cases in the profile

- For $p_{ij} = +\infty$ put $\Pi_{i,j} := +\infty$
- For $p_{ij} = 0$ put $\Pi_{i,j} := -\infty$
- For $c_{ij} = +\infty$ put $\Gamma_{i,j} := +\infty$
- For $c_{ij} = 0$ put $\Gamma_{i,j} := -\infty$

Observation

Two jobs have the same profile, if they have the same execution profile as well as the same cost profile
Number of profiles

Lemma

The number of different profiles is at most

\[l := \left(3 + 2 \log_{1+\varepsilon} \frac{m}{\varepsilon} \right)^{2m} \]
Summary & Outlook

- up to now
 - All jobs rounded
 - Every job has a profile
 - Number of profiles is constant

next: Group jobs \implies Number of jobs constant
Summary & Outlook

- up to now
 - All jobs rounded
 - Every job has a profile
 - Number of profiles is constant

next: Group jobs \implies Number of jobs constant
Summary & Outlook

- **up to now**
 - All jobs rounded
 - Every job has a profile
 - Number of profiles is constant

 next: Group jobs ⇒ Number of jobs constant
Summary & Outlook

- up to now
 - All jobs rounded
 - Every job has a profile
 - Number of profiles is constant

- next: Group jobs \implies Number of jobs constant
Summary & Outlook

- up to now
 - All jobs rounded
 - Every job has a profile
 - Number of profiles is constant

- next: Group jobs \implies Number of jobs constant
Grouping Jobs

1. Make a partition of the jobs

\[L = \{ J_j : d_j > \frac{\varepsilon}{m} \} \]

and

\[S = \{ J_j : d_j \leq \frac{\varepsilon}{m} \} \]

2. \(L \) set of big jobs
3. \(S \) set of small jobs
4. Partition \(S \) in \(S_i, i = 1, \cdots, l \) based on the profile

5. Use the above grouping on all \(S_i \) of \(S \)
Grouping Jobs

1. Make a partition of the jobs

\[L = \{ J_j : d_j > \frac{\varepsilon}{m} \} \]

and

\[S = \{ J_j : d_j \leq \frac{\varepsilon}{m} \} \]

2. \(L \) set of big jobs

3. \(S \) set of small jobs

4. Partition \(S \) in \(S_i, i = 1, \ldots, l \) based on the profile

\[\text{Create } J_c \text{ from } J_a \text{ and } J_b \]

Continue this step until there is only one job \(J_j \in S_i \) with \(d_j \leq \frac{\varepsilon}{m} \) left

5. use the above grouping on all \(S_i \) of \(S \)
Grouping Jobs

1. Make a partition of the jobs

\[L = \{ J_j : d_j > \frac{\varepsilon}{m} \} \]

and

\[S = \{ J_j : d_j \leq \frac{\varepsilon}{m} \} \]

2. \(L \) set of big jobs

3. \(S \) set of small jobs

4. Partition \(S \) in \(S_i, i = 1, \cdots, l \) based on the profile

 - \(J_a, J_b \in S_i \) with \(d_a, d_b \leq \frac{\varepsilon}{2} \)
 - Create \(J_c \) from \(J_a \) and \(J_b \)
 - Continue this step until there is only one job \(J_j \in S_i \) with \(d_j \leq \frac{\varepsilon}{2} \) left

5. Use the above grouping on all \(S_i \) of \(S \)
Grouping Jobs

1. Make a partition of the jobs

\[L = \{ J_j : d_j > \frac{\varepsilon}{m} \} \]

and

\[S = \{ J_j : d_j \leq \frac{\varepsilon}{m} \} \]

2. L set of big jobs

3. S set of small jobs

4. Partition S in $S_i, i = 1, \ldots, l$ based on the profile
 - $J_a, J_b \in S_i$ with $d_a, d_b \leq \frac{\varepsilon}{m}$
 - Create J_c from J_a and J_b
 - Continue this step until there is only one job $J_j \in S_i$ with $d_j \leq \frac{\varepsilon}{m}$ left

5. Use the above grouping on all S_i of S
Grouping Jobs

1. Make a partition of the jobs

\[L = \{ J_j : d_j > \frac{\varepsilon}{m} \} \]

and

\[S = \{ J_j : d_j \leq \frac{\varepsilon}{m} \} \]

2. \(L \) set of big jobs
3. \(S \) set of small jobs
4. Partition \(S \) in \(S_i, i = 1, \cdots, l \) based on the profile

- \(J_a, J_b \in S_i \) with \(d_a, d_b \leq \frac{\varepsilon}{m^2} \)
- Create \(J_c \) from \(J_a \) and \(J_b \)
- Continue this step until there is only one job \(J_j \in S_i \) with \(d_j \leq \frac{\varepsilon}{m^2} \) left

5. Use the above grouping on all \(S_i \) of \(S \)
Grouping Jobs

1. Make a partition of the jobs

\[L = \{ J_j : d_j > \frac{\varepsilon}{m} \} \]

and

\[S = \{ J_j : d_j \leq \frac{\varepsilon}{m} \} \]

2. \(L \) set of big jobs

3. \(S \) set of small jobs

4. Partition \(S \) in \(S_i, i = 1, \cdots, l \) based on the profile

- \(J_a, J_b \in S_i \) with \(d_a, d_b \leq \frac{\varepsilon}{m} \)
- Create \(J_c \) from \(J_a \) and \(J_b \)
- Continue this step until there is only one job \(J_j \in S_i \) with \(d_j \leq \frac{\varepsilon}{m} \) left

5. Use the above grouping on all \(S_i \) of \(S \)
Grouping Jobs

1. Make a partition of the jobs

\[L = \{ J_j : d_j > \frac{\varepsilon}{m} \} \]

and

\[S = \{ J_j : d_j \leq \frac{\varepsilon}{m} \} \]

2. \(L \) set of big jobs

3. \(S \) set of small jobs

4. Partition \(S \) in \(S_i, i = 1, \ldots, l \) based on the profile

 \(J_a, J_b \in S_i \) with \(d_a, d_b \leq \frac{m}{2} \)

 Create \(J_c \) from \(J_a \) and \(J_b \)

 Continue this step until there is only one job \(J_j \in S_i \) with \(d_j \leq \frac{m}{2} \) left

5. use the above grouping on all \(S_i \) of \(S \)
Grouping Jobs

1. Make a partition of the jobs

\[L = \{ J_j : d_j > \frac{\varepsilon}{m} \} \]

and

\[S = \{ J_j : d_j \leq \frac{\varepsilon}{m} \} \]

2. \(L \) set of big jobs

3. \(S \) set of small jobs

4. Partition \(S \) in \(S_i, i = 1, \ldots, l \) based on the profile

 - \(J_a, J_b \in S_i \) with \(d_a, d_b \leq \frac{m}{2} \)
 - Create \(J_c \) from \(J_a \) and \(J_b \)
 - Continue this step until there is only one job \(J_j \in S_i \) with \(d_j \leq \frac{m}{2} \) left

5. Use the above grouping on all \(S_i \) of \(S \)
Results of grouping

Lemma

With a loss of $1 + \varepsilon$ the number of jobs can be reduced to

$k := \min\{n, \left(\log\frac{m}{\varepsilon}\right)^{O(m)}\}$

Proof.

- After the grouping there are at most l jobs, one from each subset S_i, with $d_j \leq \frac{\varepsilon m}{2}$
- Therefore the number of jobs is bounded to:

$$\frac{2D}{\varepsilon} + l \leq \frac{2m^2}{\varepsilon} + l = \left(\log\frac{m}{\varepsilon}\right)^{O(m)}$$

- Proof of loss will be omitted
Results of grouping

Lemma

With a loss of $1 + \varepsilon$ the number of jobs can be reduced to

$$k := \min\{n, \left(\log \frac{m}{\varepsilon}\right)^{O(m)}\}$$

Proof.

- After the grouping there are at most l jobs, one from each subset S_i, with
 $$d_j \leq \frac{\varepsilon}{m}$$
- Therefore the number of jobs is bounded to:
 $$\frac{2D}{\varepsilon} + l \leq \frac{2m^2}{\varepsilon} + l = \left(\log \frac{m}{\varepsilon}\right)^{O(m)}$$

- Proof of loss will be omitted
Results of grouping

Lemma

With a loss of $1 + \varepsilon$ the number of jobs can be reduced to

$$k := \min\{n, \left(\log \frac{m}{\varepsilon}\right)^{O(m)}\}$$

Proof.

- After the grouping there are at most l jobs, one from each subset S_i, with
 $$d_j \leq \frac{\varepsilon}{m}$$
- Therefore the number of jobs is bounded to:
 $$\frac{2D}{\varepsilon} + l \leq \frac{2m^2}{\varepsilon} + l = \left(\log \frac{m}{\varepsilon}\right)^{O(m)}$$
- Proof of loss will be omitted
Summary & Outlook

up to now
- All jobs rounded
- Every job has a profile
- Number of profiles constant
- Grouping \(\implies\) Number of jobs constant

next: Create a schedule with dynamic programming
Summary & Outlook

- up to now
 - All jobs rounded
 - Every job has a profile
 - Number of profiles constant
 - Grouping \rightarrow Number of jobs constant

- next: Create a schedule with dynamic programming
Summary & Outlook

- up to now
 - All jobs rounded
 - Every job has a profile
 - Number of profiles constant
 - Grouping \implies Number of jobs constant

- next: Create a schedule with dynamic programming
Summary & Outlook

- **up to now**
 - All jobs rounded
 - Every job has a profile
 - Number of profiles constant
 - Grouping \implies Number of jobs constant

- **next:** Create a schedule with dynamic programming
Summary & Outlook

up to now
- All jobs rounded
- Every job has a profile
- Number of profiles constant
- Grouping \implies Number of jobs constant

next: Create a schedule with dynamic programming
Summary & Outlook

- up to now
 - All jobs rounded
 - Every job has a profile
 - Number of profiles constant
 - Grouping \implies Number of jobs constant

- next: Create a schedule with dynamic programming
Dynamic Programming

1. J_1, \cdots, J_k jobs of the transformed instance
2. A schedule configuration $s = (t_1, \cdots, t_m, c)$ is a $(m+1)$-tuple
 - t_i completion time of machine i
 - c total cost
3. V_j a set of these tuples (f.a. $j = 1, \cdots, n$)
4. $T(j, s)$ denote the truth value of: There is a schedule for J_1, \cdots, J_j, for which s is the corresponding configuration
Dynamic Programming

1. J_1, \cdots, J_k jobs of the transformed instance
2. A schedule configuration $s = (t_1, \cdots, t_m, c)$ is a $(m + 1)$-tuple
 - t_i completion time of machine i
 - c total cost
3. V_j a set of these tuples (f.a. $j = 1, \cdots, n$)

$T(j, s)$ denote the truth value of: There is a schedule for J_1, \cdots, J_j, for which s is the corresponding configuration
Dynamic Programming

1. J_1, \cdots, J_k jobs of the transformed instance
2. A schedule configuration $s = (t_1, \cdots, t_m, c)$ is a $(m + 1)$-tuple
 - t_i completion time of machine i
 - c total cost
3. V_j a set of these tuples (f.a. $j = 1, \cdots, n$)
 - for every $j = 1, \cdots, n$ there is a tuple $v \in V_j$ whose entries are 0
4. $T(j, s)$ denote the truth value of: There is a schedule for J_1, \cdots, J_j, for which s is the corresponding configuration
Dynamic Programming

1. J_1, \ldots, J_k jobs of the transformed instance

2. A schedule configuration $s = (t_1, \ldots, t_m, c)$ is a $(m+1)$-tuple
 - t_i completion time of machine i
 - c total cost

3. V_j a set of these tuples (f.a. $j = 1, \ldots, n$)
 - for every $i = 1, \ldots, m$ there is a tuple $v \in V_j$ whose entries are 0

4. $T(j,s)$ denote the truth value of: There is a schedule for J_1, \ldots, J_j, for which s is the corresponding configuration
Dynamic Programming

1. J_1, \cdots, J_k jobs of the transformed instance

2. A schedule configuration $s = (t_1, \cdots, t_m, c)$ is a $(m+1)$-tuple
 - t_i completion time of machine i
 - c total cost

3. V_j a set of these tuples (f.a. $j = 1, \cdots, n$)
 - for every $i = 1, \cdots, m$ there is a tuple $v \in V_j$ whose entries are 0
 - Exception: the ith component, which is p_{ij},
 - the $(m+1)$th component, which is c_j

4. $T(j, s)$ denote the truth value of: There is a schedule for J_1, \cdots, J_j, for which s is the corresponding configuration
Dynamic Programming

1. J_1, \cdots, J_k jobs of the transformed instance

2. A schedule configuration $s = (t_1, \cdots, t_m, c)$ is a $(m+1)$-tuple
 - t_i completion time of machine i
 - c total cost

3. V_j a set of these tuples (f.a. $j = 1, \cdots, n$)
 - for every $i = 1, \cdots, m$ there is a tuple $v \in V_j$ whose entries are 0
 - Exception: the ith component, which is p_{ij},
 - the $(m+1)$th component, which is c_{ij}

4. $T(j, s)$ denote the truth value of: There is a schedule for J_1, \cdots, J_j, for which s is the corresponding configuration
Dynamic Programming

1. J_1, \cdots, J_k jobs of the transformed instance
2. A schedule configuration $s = (t_1, \cdots, t_m, c)$ is a $(m+1)$-tuple
 - t_i completion time of machine i
 - c total cost
3. V_j a set of these tuples (f.a. $j = 1, \cdots, n$)
 - for every $i = 1, \cdots, m$ there is a tuple $v \in V_j$ whose entries are 0
 - Exception: the ith component, which is p_{ij},
 - the $(m+1)$th component, which is c_{ij}
4. $T(j, s)$ denote the truth value of: There is a schedule for J_1, \cdots, J_j, for which s is the corresponding configuration
 - Calculate all $T(j, s)$:
 \[
 T(j, v) = \begin{cases}
 \text{true} & \text{if } v \in V_j \\
 \text{false} & \text{if } v \notin V_j
 \end{cases}

 T(j, s) = \bigvee_{v \in V_j} T(j-1, s-v) \text{ for } j = 2, \cdots, k
Dynamic Programming

1. J_1, \cdots, J_k jobs of the transformed instance
2. A schedule configuration $s = (t_1, \cdots, t_m, c)$ is a $(m + 1)$-tuple
 - t_i completion time of machine i
 - c total cost
3. V_j a set of these tuples (f.a. $j = 1, \cdots, n$)
 - for every $i = 1, \cdots, m$ there is a tuple $v \in V_j$ whose entries are 0
 - Exception: the ith component, which is p_{ij},
 - the $(m + 1)$th component, which is c_{ij}
4. $T(j, s)$ denote the truth value of: There is a schedule for J_1, \cdots, J_j, for which s is the corresponding configuration
 - Calculate all $T(j, s)$:
 - $T(1, v) = \begin{cases} true, & \text{if } v \in V_1 \\ false, & \text{if } v \not\in V_1 \end{cases}$
 - $T(j, s) = \bigvee_{v \in V_j} T(j-1, s-v)$ for $j = 2, \cdots, k$
1. J_1, \cdots, J_k jobs of the transformed instance

2. A schedule configuration $s = (t_1, \cdots, t_m, c)$ is a $(m + 1)$-tuple
 - t_i completion time of machine i
 - c total cost

3. V_j a set of these tuples (f.a. $j = 1, \cdots, n$)
 - for every $i = 1, \cdots, m$ there is a tuple $v \in V_j$ whose entries are 0
 - Exception: the ith component, which is p_{ij},
 - the $(m + 1)$th component, which is c_{ij}

4. $T(j, s)$ denote the truth value of: There is a schedule for J_1, \cdots, J_j, for which s is the corresponding configuration
 - Calculate all $T(j, s)$:
 - $T(1, v) = \begin{cases}
 \text{true}, & \text{if } v \in V_j \\
 \text{false}, & \text{if } v \notin V_j
 \end{cases}$
 - $T(j, s) = \bigvee_{v \in V_j; v \leq s} T(j - 1, s - v)$ for $j = 2, \cdots, k$
Dynamic Programming

1. J_1, \cdots, J_k jobs of the transformed instance

2. A schedule configuration $s = (t_1, \cdots, t_m, c)$ is a $(m + 1)$-tuple
 - t_i completion time of machine i
 - c total cost

3. V_j a set of these tuples (f.a. $j = 1, \cdots, n$)
 - for every $i = 1, \cdots, m$ there is a tuple $v \in V_j$ whose entries are 0
 - Exception: the ith component, which is p_{ij},
 - the $(m + 1)$th component, which is c_{ij}

4. $T(j, s)$ denote the truth value of: There is a schedule for J_1, \cdots, J_j, for which s is the corresponding configuration
 - Calculate all $T(j, s)$:
 - $T(1, v) = \begin{cases} \text{true}, & \text{if } v \in V_j \\ \text{false}, & \text{if } v \notin V_j \end{cases}$
 - $T(j, s) = \bigvee_{v \in V_j; v \leq s} T(j - 1, s - v)$ for $j = 2, \cdots, k$
Dynamic Programming

1. J_1, \cdots, J_k jobs of the transformed instance
2. A schedule configuration $s = (t_1, \cdots, t_m, c)$ is a $(m + 1)$-tuple
 - t_i completion time of machine i
 - c total cost
3. V_j a set of these tuples (f.a. $j = 1, \cdots, n$)
 - for every $i = 1, \cdots, m$ there is a tuple $v \in V_j$ whose entries are 0
 - Exception: the ith component, which is p_{ij},
 - the $(m + 1)$th component, which is c_{ij}
4. $T(j, s)$ denote the truth value of: There is a schedule for J_1, \cdots, J_j, for which s is the corresponding configuration
 - Calculate all $T(j, s)$:
 - $T(1, v) = \begin{cases}
 \text{true}, & \text{if } v \in V_j \\
 \text{false}, & \text{if } v \notin V_j
 \end{cases}$
 - $T(j, s) = \vee_{v \in V_j; v \leq s} T(j - 1, s - v)$ for $j = 2, \cdots, k$
Dynamic Programming

1. J_1, \cdots, J_k jobs of the transformed instance
2. A schedule configuration $s = (t_1, \cdots, t_m, c)$ is a $(m + 1)$-tuple
 - t_i completion time of machine i
 - c total cost
3. V_j a set of these tuples (f.a. $j = 1, \cdots, n$)
 - for every $i = 1, \cdots, m$ there is a tuple $v \in V_j$ whose entries are 0
 - Exception: the ith component, which is p_{ij},
 - the $(m + 1)$th component, which is c_{ij}
4. $T(j, s)$ denote the truth value of: There is a schedule for J_1, \cdots, J_j, for which s is the corresponding configuration
 - Calculate all $T(j, s)$:
 - $T(1, v) = \begin{cases}
 \text{true}, & \text{if } v \in V_j \\
 \text{false}, & \text{if } v \notin V_j
 \end{cases}$
 - $T(j, s) = \bigvee_{v \in V_j; v \leq s} T(j - 1, s - v)$ for $j = 2, \cdots, k$
Summary

- **up to now**
 - All jobs rounded
 - Every job has a profile
 - Number of profile constant
 - Grouping \Rightarrow number of jobs constant
 - Schedule per dynamic programming
Summary

- up to now
 - All jobs rounded
 - Every job has a profile
 - Number of profile constant
 - Grouping \rightarrow number of jobs constant
 - Schedule per dynamic programming
Summary

- up to now
 - All jobs rounded
 - Every job has a profile
 - Number of profile constant
 - Grouping \implies number of jobs constant
 - Schedule per dynamic programming
Summary

- up to now
 - All jobs rounded
 - Every job has a profile
 - Number of profile constant
 - Grouping \Rightarrow number of jobs constant
 - Schedule per dynamic programming
Summary

- up to now
 - All jobs rounded
 - Every job has a profile
 - Number of profile constant
 - Grouping \implies number of jobs constant
 - Schedule per dynamic programming
Summary

- up to now
 - All jobs rounded
 - Every job has a profile
 - Number of profile constant
 - Grouping \implies number of jobs constant
 - Schedule per dynamic programming
Lemma

For the problem Unrelated Parallel Machines with Costs there is a FPTAS that runs in $O(n) + (\log \frac{m}{\varepsilon})^{O(m^2)}$.

Without proof
Outlook and Discussion

- Implementing the algorithm in Java (quite slow)
- For which other problem would this algorithm match?
- Could the running time be better?
Outlook and Discussion

- Implementing the algorithm in Java (quite slow)
- For which other problem would this algorithm match?
- Could the running time be better?
Outlook and Discussion

- Implementing the algorithm in Java (quite slow)
- For which other problem would this algorithm match?
- Could the running time be better?
Thanks for your attention