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Outline
• Why cluster data? 

• Clustering as unsupervised learning 

• Clustering algorithms 

• k-means, k-medoids 

• agglomerative clustering 

• Brown’s clustering 

• Spectral clustering 

• Cluster evaluation measures 

• Purity 

• Normalised Mutual Information 

• Rand Index 

• B-CUBED  

• Precision, Recall, F-score 

• Supervised clustering
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Why cluster data?
• Data Mining has two main objectives 

• Prediction: classification, regression etc. 

• Description: pattern mining, rule extraction, visualisation clustering 

• Clustering is: 

• Unsupervised learning 

• no label data is required (consider classification algorithms we 
discussed so far in the lecture which are supervised algorithms) 

• Generalisation / Abstraction of concepts 

• Topic detection 

• Visualisation 

• Outlier detection
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Unsupervised Learning
• Supervised learning 

• labels for training instances are provided 

• Unsupervised learning 

• No labels for training instances are provide 

• Semi-supervised learning 

• Both labeled and unlabeled training instances are provided 

• What can we learn about training data if we do not have any labels? 

• The similarity and distribution of the features can still be 
learnt and this can be used to create rich feature spaces for 
supervised learning (if required)
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Quiz: Cluster the Following Data
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Quiz: Cluster the Following Data

 6



Quiz: Cluster the Following Data
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Quiz: Cluster the Following Data
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How many clusters?



General Remarks 
• A single dataset can be clustered into several ways 

• There is no single right or wrong clustering 

• Simply different views on the same data 

• If so how can we measure the quality of a clustering algorithm? 

• Two ways 

• Compare the clusters produced by a clustering algorithm 
against some reference (gold standard) set of clusters 
(direct evaluation) 

• Use the clusters as features for some other (eg. supervised 
learning) task and measure the difference in the 
performance of the second task  (indirect evaluation)
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Clustering as Optimisation
• Given a dataset {x1, ..., xN} of N instances represented as d 

dimensional real vectors (xi ∈ Rd), partition these N instances into k 
clusters S1,...,Sk such that some objective function f(S1,...,Sk) is 
minimised. 

• Observations 

• k and f are given 

• f  can be the similarity between the clusters (good to create 
dissimilar clusters as much as possible), information gain, 
correlation and various other such goodness measures (heuristics) 

• Often clustering is an NP hard and a non-convex problem 

• http://rangevoting.org/VattaniKmeansNPC.pdf 

• approximations, relaxations are required in practice
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Convex Functions
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56 1. INTRODUCTION

Figure 1.31 A convex function f(x) is one for which ev-
ery chord (shown in blue) lies on or above
the function (shown in red).

xa bxλ

chord

xλ

f(x)

and the corresponding value of the function is f (λa + (1 − λ)b). Convexity then
implies

f(λa + (1 − λ)b) ! λf(a) + (1 − λ)f(b). (1.114)

This is equivalent to the requirement that the second derivative of the function be
everywhere positive. Examples of convex functions are x ln x (for x > 0) and x2. AExercise 1.36
function is called strictly convex if the equality is satisfied only for λ = 0 and λ = 1.
If a function has the opposite property, namely that every chord lies on or below the
function, it is called concave, with a corresponding definition for strictly concave. If
a function f(x) is convex, then −f(x) will be concave.

Using the technique of proof by induction, we can show from (1.114) that aExercise 1.38
convex function f(x) satisfies

f

(
M∑

i=1

λixi

)
!

M∑

i=1

λif(xi) (1.115)

where λi " 0 and
∑

i λi = 1, for any set of points {xi}. The result (1.115) is
known as Jensen’s inequality. If we interpret the λi as the probability distribution
over a discrete variable x taking the values {xi}, then (1.115) can be written

f (E[x]) ! E[f(x)] (1.116)

where E[·] denotes the expectation. For continuous variables, Jensen’s inequality
takes the form

f

(∫
xp(x) dx

)
!

∫
f(x)p(x) dx. (1.117)

We can apply Jensen’s inequality in the form (1.117) to the Kullback-Leibler
divergence (1.113) to give

KL(p∥q) = −
∫

p(x) ln
{

q(x)
p(x)

}
dx " − ln

∫
q(x) dx = 0 (1.118)
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Clustering Algorithms
• Partitioning 

• Construct k partitions and iteratively update the partitions 

• k-Means, k-Medoids 

• Hierarchical 

• Create a hierarchy of clusters (dendrogram) 

• Agglomerative clustering (bottom-up) 

• Conglomerative clustering (top-down) 

• Graph-based clustering 

• Graph-cut algorithms (Spectral Clustering) 

• Model-based clustering 

• Mixture of Gaussians  

• Other types: Non-parametric Bayesian (Latent Dirichlet Allocation), Expectation 
Maximisation (EM) algorithm, and many more ...
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k-Means Derivation
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arg min
S1,...,Sk

kX

i=1

X

xj2Si

||xj � µi||
2

We want to minimize the distance between 
data instances (xj) and some cluster centres (μi)

f(S1, . . . , Sk) =
kX

i=1

X

xj2Si

||xj � µi||
2

This objective function is called the within 
cluster sum of squares (WCSS) objective
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@f(S1, . . . , Sk)

@µi
=

X

xj2Si

2(xj � µi)

@f(S1, . . . , Sk)

@µi
= 0

µi =
1

|Si|
X

xj2Si

xj

Just compute the centroid (mean) of each cluster 
and that will give you the cluster centers



k-Means Clustering
• INPUT 

• The number of clusters k 

• Dataset {x1, ..., xN} of N instances represented as d dimensional 
real vectors (xi ∈ Rd) 

1. Set k instances from the dataset randomly. (initial cluster means/
centers) 

2. Assign all other instances to the closest cluster centre. 

3. Compute the mean of each cluster 

4.  until convergence repeat between steps 2 and 3 

convergence = no instances have moved among clusters 

(often after a fixed number of iterations specified by the user)
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Issues with k-Means
• Results can vary depending on the initial random choices 

• Can get trapped in a local minimum that isn’t the global optimal 
solution 

• Repeat the clustering procedure multiple times with different 
initialisations and select the best final clustering 

• best? according to what? many heuristics exist. 

• smallest number of iterations before convergence 

• largest total distance between the final cluster means 

• Outliers have a larger effect on the mean value, hence cluster centre 
and the cluster 

• cluster centres (means) are not actual instances in the cluster 

• We could pick actual instances as initial cluster centroids.
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Evaluating Clustering — Purity

• Let us assume that we have a set Ω = {ω1,…,ωK} 
clusters for a set of classes C = {c1,…,cJ} 

• Purity measures the ratio of the items that are in 
the cluster with the same class as its own. 

• Here, N is the total number of items.
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purity(Ω, C) = 1
N

max
jk

∑ ω k cj∩
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Quiz: Compute purity for this clustering.
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purity = (5 + 4 + 3) / 17 = 12/17 = 0.71

Labels

Purity achieves its maximum value of 1 for singletons (each 
item is in a cluster containing only that single item)! 
Obviously this is not good “clustering” and purity does not 
recognise this.



Evaluating Clustering — NMI
• Let us assume that we have a set Ω = {ω1,…,ωK} clusters 

for a set of classes C = {c1,…,cJ} 

• Normalised Mutual Information (NMI) computes the 
ratio of information that we can know about the classes 
C given the clusters Ω to the averaged information that 
is contained in C and Ω.

 24Mutual Information (MI) Entropy



Why we do we normalise by the average?

• I(X,Y) ≤ [H(X) + H(Y)]/2 

• Proof (sketch): 

• I(X,Y) = H[X] - H[X|Y] = H[Y] - H[Y|X] 

• Add those two and use the fact that 
(conditional) entropy is nonnegative 

• H[X|Y] + H[Y|X] ≥0
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Quiz: Compute NMI for this clustering.
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Evaluating Clustering — Rand Index (RI) 
• Build a contingency table considering pairs of items in each cluster  

• Positive = same cluster 

• Negative = different clusters 

• True = same class 

• False = different classes 

• TP = No. of item pairs that are in the same cluster and belong to the same class 

• FP = No. of item pairs that are in the same cluster but belong to different classes 

• TN = No. of item pairs that are in different clusters and belong to different classes 

• FN = No. of item pairs that are in different clusters but belong to the same class 

•
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same cluster different 
clusters

same class TP FN

different 
classes FP TN

contingency 
table

RI = TP + TN
TP + FP + TN + FN

(accuracy of 
the clustering)
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Quiz: Compute RI for this clustering.
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same cluster different 
clusters

same class 20 24

different 
classes 20 72

RI = (20+72) / (20+24+20+72)
    = 0.676



Evaluating Clustering — P/R/F 

• We can use Precision (P), Recall (R), and F-measure 
(F) at to evaluate the accuracy of a clustering.  

• For this purpose we must first create the 
contingency table as we did for RI and then 
compute P, R, F as follows
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P = TP / (TP + FP)

R = TP / (TP + FN)

F = 2PR / (P + R)

Ref: https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
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Quiz: Compute P/R/F for this clustering.
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same cluster different 
clusters

same class TP=20 FN=24

different 
classes FP=20 TN=72

P = TP / (TP + FP) = 20 /  (20+20) = 0.5

R = TP / (TP + FN) = 20 / (20 + 24) = 0.45

F = 2PR / (P + R) = 0.47



B-CUBED Measure
• Proposed in (Bagga B. Baldwin = B3) 

• A. Bagga and B. Baldwin. Entity-based cross document 
coreference resolution using the vector space model, In Proc. of 
36th COLING-ACL, pages 79--85, 1998. 

• We would like to evaluate clustering without labelling any clusters.

 34

precision(x) =
No. of items in C(x) with A(x)

No. of items in C(x)

recall(x) =
No. of items in C(x) with A(x)

Total no. of items with A(x)

C(x): The ID of the cluster that x belongs to

A(x): label of x



B-CUBED Measure
• Compute the average over all the items 

(instances) that appear in all clusters (N)
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Figure 7: Correlation vs. No of positive and nega-

tive training instances

4.7 Community Mining
Measuring semantic similarity between named entities is

vital in many applications such as query expansion [36], en-
tity disambiguation (e.g. namesake disambiguation) and
community mining [19]. Because most named entities are
not covered by WordNet, similarity measures that are based
on WordNet cannot be used directly in these tasks. Unlike
common English words, named entities are being created
constantly. Manually maintaining an up-to-date taxonomy
of named entities is costly, if not impossible. The proposed
semantic similarity measure is appealing for these applica-
tions because it does not require pre-compiled taxonomies.

In order to evaluate the performance of the proposed mea-
sure in capturing the semantic similarity between named-
entities, we set up a community mining task. We select 50
personal names from 5 communities: tennis players, golfers,
actors, politicians and scientists , (10 names from each com-
munity) from the open directory project (DMOZ)8. For each
pair of names in our data set, we measure their similarity
using the proposed method and baselines. We use group-
average agglomerative hierarchical clustering (GAAC) to clus-
ter the names in our dataset into five clusters.

Initially, each name is assigned to a separate cluster. In
subsequent iterations, group average agglomerative cluster-
ing process, merges the two clusters with highest correlation.
Correlation, Corr(°) between two clusters A and B is de-
fined as the following,

Corr(°) =
1
2

1
|°|(|°|° 1)

(u,v)2°

sim(u, v) (8)

Here, ° is the merger of the two clusters A and B. |°| de-
notes the number of elements (persons) in ° and sim(u, v)
is the semantic similarity between two persons u and v in
°. We terminate GAAC process when exactly five clusters
are formed. We adopt this clustering method with diÆer-
ent semantic similarity measures sim(u, v) to compare their
accuracy in clustering people who belong to the same com-
munity.

We employed the B-CUBED metric [1] to evaluate the
clustering results. The B-CUBED evaluation metric was
originally proposed for evaluating cross-document co-reference
chains. We compute precision, recall and F -score for each

8http://dmoz.org

Table 6: Results for Community Mining

Method Precision Recall F Measure
WebJaccard 0.5926 0.712 0.6147
WebOverlap 0.5976 0.68 0.5965
WebDice 0.5895 0.716 0.6179
WebPMI 0.2649 0.428 0.2916
Sahami [36] 0.6384 0.668 0.6426
Chen [6] 0.4763 0.624 0.4984
Proposed 0.7958 0.804 0.7897

name in the data set and average the results over the dataset.
For each person p in our data set, let us denote the cluster
that p belongs to by C(p). Moreover, we use A(p) to denote
the a±liation of person p, e.g., A(“Tiger Woods”) =“Tennis
Player”. Then we calculate precision and recall for person
p as,

Precision(p) =
No. of people in C(p) with a±liation A(p)

No. of people in C(p)
,

(9)

Recall(p) =
No. of people in C(p) with a±liation A(p)
Total No. of people with a±liation A(p)

.

(10)
Since, we selected 10 people from each of the five cate-

gories, the denominator in Formula 10 is 10 for all the names
p.

Then, the F -score of person p is defined as,

F(p) =
2£ Precision(p)£ Recall(p)

Precision(p) + Recall(p)
. (11)

Overall precision, recall and F -score are computed by tak-
ing the averaged sum over all the names in the dataset.

Precision =
1
N

p2DataSet

Precision(p) (12)

Recall =
1
N

p2DataSet

Recall(p) (13)

F°Score =
1
N

p2DataSet

F(p) (14)

Here, DataSet is the set of 50 names selected from the
open directory project. Therefore, N = 50 in our evalua-
tions.

Experimental results are shown in Table 6. The proposed
method shows the highest entity clustering accuracy in Ta-
ble 6 with a statistically significant (p ∑ 0.01 Tukey HSD) F
score of 0.7897. Sahami et al. [36]’s snippet-based similarity
measure, WebJaccard, WebDice and WebOverlap measures
yield similar clustering accuracies.

4.8 Entity Disambiguation
Disambiguating named entities is important in various ap-

plications such as information retrieval [9], social network
extraction [19, 3, 4], Word Sense Disambiguation (WSD) [21],
citation matching [11] and cross-document co-reference res-
olution [28, 10].

WWW 2007 / Track: Semantic Web Session: Similarity and Extraction
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Hierarchical Clustering
• Sometimes we might want to organise the data into a hierarchy of 

subsuming concepts for visualisation (abstraction) purposes 

• Two methods exists 

• Conglomerative clustering 

• Start from one big cluster with all data instances and 
repeatedly partition it 

• Top-down approach 

• Agglomerative clustering 

• Start singletons (clusters with exactly one instance) and 
iteratively merge the most similar two clusters 

• Bottom-up approach 

• computationally more efficient (O(logn) merges required )
 36



Merging two clusters
• Single linkage 

• Distance between two clusters A and B is the smallest distance 
between any instance a ∈ A and b ∈ B 

• Complete linkage 

• Distance between two clusters A and B is the largest distance 
between any instance a ∈ A and b ∈ B 

• Average linkage (Group-Average) 

• Average of all the pairs selected from each cluster  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D(A,B) = min
a2A,b2B

dist(a, b)

D(A,B) = max
a2A,b2B

dist(a, b)

D(A,B) = 1

|A||B|
X

a2A,b2B
dist(a, b)



 38

A

B
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Q

R

Quiz: Let us assume that in the 2D space there are 
two clusters {A,B,C} and {P,Q,R}. Which of the 
distances correspond to the single link and 
complete link distances between the shown 
clusters?



Group-Average Agglomerative Clustering

• INPUT: 

• A set of N data instances {x1, ..., xN}, Number of 
clusters k 

• Initialise 

• Create singletons Si = {xi} for i = 1, ..., N 

• Repeat until only we are left with one cluster 

• Merge the two clusters Si and Sj with the 
minimum distance (cf. maximum similarity) 

•
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D(Si,Sj) =
1

|Si||Sj |
X

a2Si,b2Sj

dist(a, b)



Dendrogram
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