
Deep Learning
COMP 527

Danushka Bollegala

Deep Learning
• So far, in all our machine learning, we designed features by ourselves. But can we do this

automatically?

• feature learning from data

• How can we combine different types of features and decide the useful combinations as
part of the learning process?

• One solution

• kernels

• Considers only fixed, limited, and specific combinations. (eg. polynomial kernel
considers only pairwise combinations)

• Another solution

• Multi-layer perceptrons

• Overfitting, difficulty to train, time consuming

• Can we train deep models (with many hidden layers) efficiently and without over-
fitting?

• This is the central problem considered in Deep learning

2

Deep Learning at a glance

3

pixel colors
edge	

detection
shape	

detection
object	

detection

supervision

4

Deep Learning in the News

13!

Researcher Dreams Up Machines
That Learn Without Humans
06.27.13

Scientists See Promise in
Deep-Learning Programs
John Markoff
November 23, 2012

Google!taps!U!
of!T!professor!
to!teach!
context!to!
computers!
03.11.13!

slide credit: Bengio KDD’14

Yan LeCun (Facebook)

Big news

Yoshua Bengio	

Univ. of TorontoGeoff Hinton(Google)

Applications of DL
• Image Recognition

• ILVSCR 14, 15: outperformed human level

• NLP

• Machine translation, text similarity, sentiment analysis

• Voice

• Voice recognition

• Robotics

• DeepMind, Computer Games, Reinforcement Learning

5

Object Recognition

6

input features classifier

Howiscomputer$percep>on$done?$

Image$ LowTlevel$
vision$features$

Recogni>on$

Object$
detec>on$

Input Data Learning
Algorithm

Low-level
features

Slide$Credit:$HonglakLee

Audio$
classifica>on$

Audio$ LowTlevel$
audio$features$

Speaker$
iden>fica>on$

Howiscomputer$percep>on$done?$

Image$ LowTlevel$
vision$features$

Recogni>on$

Object$
detec>on$

Input Data Learning
Algorithm

Low-level
features

Slide$Credit:$HonglakLee

Audio$
classifica>on$

Audio$ LowTlevel$
audio$features$

Speaker$
iden>fica>on$

Howiscomputer$percep>on$done?$

Image$ LowTlevel$
vision$features$

Recogni>on$

Object$
detec>on$

Input Data Learning
Algorithm

Low-level
features

Slide$Credit:$HonglakLee

Audio$
classifica>on$

Audio$ LowTlevel$
audio$features$

Speaker$
iden>fica>on$

image

features recognition

Howiscomputer$percep>on$done?$

Image$ LowTlevel$
vision$features$

Recogni>on$

Object$
detec>on$

Input Data Learning
Algorithm

Low-level
features

Slide$Credit:$HonglakLee

Audio$
classifica>on$

Audio$ LowTlevel$
audio$features$

Speaker$
iden>fica>on$

Howiscomputer$percep>on$done?$

Image$ LowTlevel$
vision$features$

Recogni>on$

Object$
detec>on$

Input Data Learning
Algorithm

Low-level
features

Slide$Credit:$HonglakLee

Audio$
classifica>on$

Audio$ LowTlevel$
audio$features$

Speaker$
iden>fica>on$

Howiscomputer$percep>on$done?$

Image$ LowTlevel$
vision$features$

Recogni>on$

Object$
detec>on$

Input Data Learning
Algorithm

Low-level
features

Slide$Credit:$HonglakLee

Audio$
classifica>on$

Audio$ LowTlevel$
audio$features$

Speaker$
iden>fica>on$

speaker	

identification

features detection

slide credit: Honglak Lee

Image Features

7

Computer$vision$features$

SIFT$ Spin$image$

HoG$ RIFT$

Textons$ GLOH$
Slide$Credit:$HonglakLee

Voice Features

8

Audio$features$

ZCR$

Spectrogram$ MFCC$

Rolloff$Flux$

Image labeling

• demo：http://deeplearning.cs.toronto.edu/
9

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

Krizhevsky+ NIPS’12

http://deeplearning.cs.toronto.edu/

Similar image retrieval

10

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

Krizhevsky+ NIPS’12

20 layer NN by Google!

Detecting roads from satellite images

11

Predic>ng$Roads$from$
Satellite$Images$

(MnihandHinton, ICML 2012)!

12

Predic>ng$Roads$from$
Satellite$Images$

(MnihandHinton, ICML 2012)!

Word Analogy Detection
• How to learn representations for words?

• you shall know a word by the company it keeps — Firth

• Distributional Hypothesis

• We can predict the meaning of a word by looking into
its local context

• Can we learn vector representations for words such that
we can accurately predict its neigbours in a sentence?

• word2vec (skip-gram model) Mikolov+13

• GloVe (Global Vector Prediction) Pennington+14

• v(king) - v(man) + v(woman) = v(queen)
13

Brief History

• Neural networks were around even back in 1950s

• It was shown that you cannot learn non-linearly
separable data using single layer neural networks
(ca. Perceptron)

• Marvin Minsky [1960]

• First NN winter

14

Perceptron (revision)
• Perceptron is a single layer neural network

15

x1 x2 x3 xn

＋

…

w1

w2 wn wn

Perceptron (revision)

16

x1 x2 x3 xn

＋

…

w1

w2 wn wn

s = x1w1 + x2w2 + … + xnwn	

if s > 0:	

	
 return 1	

else:	

	
 return 0

-2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4

-1.5

-1

-0.5

0.5

1

1.5

Logistic function

linear separability

17

+

+

+

+ +
+ +

-
-
-

-
-

-

-
-

--
-

-

In 2D space linear separability means you can separate	

the two classes by a straight line. ax + by +c = 0

Non-linear separable case

18

XOR (exclusive OR)

x=0 x=1

y=0 0 1

y=1 1 0
x

y

-

- -
- -

-
-

-

-+
+ +

+

+ +
+

+

+

Multi-layer Neural Networks
• XOR is a very common logical operation

• Perceptron being unable to handle this common case was
seen as a show stopper for neural networks

• We could get over this issue by using multiple hidden
layers.

• But there was no algorithm to learn the weights

• Until, error backpropagation (Rummelhart+86) was
proposed

• However, deep neural networks are likely to overfit and
training them was time consuming (no GPUs back then!)

• Second NN winter.
19

Advantages of DL

• Deep learning can learn the features useful for a
particular task automatically

• Can use unlabeled data to learn the features

• Can learn distributed representations

20

Local vs. Distributed Representations

21slide credit: Salakhutdinov KDD’14

Local$vs.$Distributed$Representa>ons$
• $Clustering,$Nearest$
Neighbors,RBFSVM,$local$
density$es>mators$$$

Learned$
prototypes$

Local$regions$

C3=0$

C1=1$

C1=0$

C3=0$
C3=0$

C2=1$

C2=1$C1=1$
C2=0$

C1=0$
C2=0$
C3=0$

C1=1$
C2=1$
C3=1$

C1=0$
C2=1$
C3=1$

C1=0$
C2=0$
C3=1$

• $RBMs,$Factor$models,$
PCA,$Sparse$Coding,$
Deep$models$

• $Parameters$for$each$region.$
• $#$of$regions$is$linear$with$$$$$$$
$$#ofparameters.$

C2$C1$ C3$

Bengio, 2009, Foundations and Trends in Machine Learning!

The breakthrough!

• It was shown that by learning two layers at a time,
and then stacking those to create a deep neural
network was an effective method for overfitting.

• greedy layer-wise training

• A Fast Learning Algorithm for Deep Belief Nets,
Hinton et al., Neural Computing, 2006.

22

…

…

input

features

… More abstract
features

…
Even more abstract

features

Layer-wise Unsupervised Learning

47!

unsupervised pre-training

…

…

input

features

… More abstract
features

…
Even more abstract

features

Output
f(X) six

Target
Y

two! =
?

Supervised Fine-Tuning

•  AddiMonal!hypothesis:!features!good!for!P(x)!good!for!P(y|x)!
48!

slide credit: Bengio KDD 2014

supervised post-training

Deep Learning Methods
• Two main techniques exist

• Autoencoders (AE)

• A non-probabilistic method

• Easier to implement

• Theoretical analysis is difficult (although some work
has been done lately)

• Restricted Boltzman Machine (RBM)

• A probabilistic method

• Under certain conditions it could be shown that both
RBMs and AEs are optimizing the same objective

25

Autoencoder

26

Input

Feature Representations

Encoder	

!

Decoder	

y

y = f(Wx + b)

x

z = f(WTy+ b’)

Reconstruction error =||x-z||2

Autoencoder

27

x1 x2 x3 +1

Input

y1 y2 y3 +1

Hidden layer

Autoencoder

28

x1 x2 x3 +1

input layer

y1 y2 y3 +1

hidden layer

wij : xj —> yi

b3

W32

encoder

Details
• By using the transpose matrix W’ for the decoder where W

is the encoder matrix, we can reduce the number of
parameters in the model. (less likely to overfit)

• b and b’ are respectively encoding and decoding bias
terms.

• Bias terms can be incorporated as features into the
autoencoder by setting a feature that is always ON.

• The non-linear function f is performing some elementwise
non-linear operation on each element of a vector.

• Without non-linearity, autoencoders are equivalent to
PCA.

29

Training procedure
1. encode the input x using the encoder

1. Calculate Wx + b，and insert it in f

2. Let the output of (1) be y. Insert y into the decoder and reconstruct the input

1. Calculate WTy+ b’，and insert it in f

3. Let the output of (2) be z. Compare z and x．

1. The loss function to be used is problem specific. For real values a popular
loss function is the squared loss. For binary values use the cross-entropy
error function.

4. Adjust the parameters (W, b, b’) such that the loss computed in (3) is
minimized．

1. Compute the partial derivative of the loss w.r.t. each parameter and apply
the stochastic gradient descent method.

30

Stochastic Gradient Descent (SGD)
• We have already seen SGD in Perceptron, logistic regression and multi-

layer neural networks.

• Move in the opposite direction of the gradient of the loss

31

θ tan(θ)=∂y/∂x

gradient is given by the derivative

x

(t+1) = x

(t) � ⌘

@E(x, z)

@x

|t=t

Example

32

x1 x2 x3 +1

y1 y2 y3 +1

b3

W32

自己符号化器の導出

ボレガラ　ダヌシカ

1 ３つの入力ノードと 3つの隠れノードの場合

y1 = f(x1W11 + x2W12 + x3W13 + b1) (1)
y2 = f(x1W21 + x2W22 + x3W23 + b2) (2)
y3 = f(x1W31 + x2W32 + x3W33 + b3) (3)

1

自己符号化器の導出

ボレガラ　ダヌシカ

1 ３つの入力ノードと 3つの隠れノードの場合

y1 = f(x1W11 + x2W12 + x3W13 + b1) (1)
y2 = f(x1W21 + x2W22 + x3W23 + b2) (2)
y3 = f(x1W31 + x2W32 + x3W33 + b3) (3)

ここで
f(t) =

1

1 + exp(−t)
(4)

1

In matrix form…

33

自己符号化器の導出

ボレガラ　ダヌシカ

1 ３つの入力ノードと 3つの隠れノードの場合

y1 = f(x1W11 + x2W12 + x3W13 + b1) (1)
y2 = f(x1W21 + x2W22 + x3W23 + b2) (2)
y3 = f(x1W31 + x2W32 + x3W33 + b3) (3)

ここで
f(t) =

1

1 + exp(−t)
(4)

行列式として書くと，

W =

⎛

⎝
w11 w12 w13

w21 w22 w23

w31 w32 w33

⎞

⎠ (5)

1

自己符号化器の導出

ボレガラ　ダヌシカ

1 ３つの入力ノードと 3つの隠れノードの場合

y1 = f(x1W11 + x2W12 + x3W13 + b1) (1)
y2 = f(x1W21 + x2W22 + x3W23 + b2) (2)
y3 = f(x1W31 + x2W32 + x3W33 + b3) (3)

ここで
f(t) =

1

1 + exp(−t)
(4)

行列式として書くと，

W =

⎛

⎝
w11 w12 w13

w21 w22 w23

w31 w32 w33

⎞

⎠ (5)

b =

⎛

⎝
b1
b2
b3

⎞

⎠ (6)

1

自己符号化器の導出

ボレガラ　ダヌシカ

1 ３つの入力ノードと 3つの隠れノードの場合

y1 = f(x1W11 + x2W12 + x3W13 + b1) (1)
y2 = f(x1W21 + x2W22 + x3W23 + b2) (2)
y3 = f(x1W31 + x2W32 + x3W33 + b3) (3)

ここで
f(t) =

1

1 + exp(−t)
(4)

行列式として書くと，

W =

⎛

⎝
w11 w12 w13

w21 w22 w23

w31 w32 w33

⎞

⎠ (5)

b =

⎛

⎝
b1
b2
b3

⎞

⎠ (6)

x =

⎛

⎝
x1

x2

x3

⎞

⎠ (7)

y =

⎛

⎝
y1
y2
y3

⎞

⎠ (8)

z =

⎛

⎝
z1
z2
z3

⎞

⎠ (9)

b′ =

⎛

⎝
b′1
b′2
b′3

⎞

⎠ (10)

1

自己符号化器の導出

ボレガラ　ダヌシカ

1 ３つの入力ノードと 3つの隠れノードの場合

y1 = f(x1W11 + x2W12 + x3W13 + b1) (1)
y2 = f(x1W21 + x2W22 + x3W23 + b2) (2)
y3 = f(x1W31 + x2W32 + x3W33 + b3) (3)

ここで
f(t) =

1

1 + exp(−t)
(4)

行列式として書くと，

W =

⎛

⎝
w11 w12 w13

w21 w22 w23

w31 w32 w33

⎞

⎠ (5)

b =

⎛

⎝
b1
b2
b3

⎞

⎠ (6)

x =

⎛

⎝
x1

x2

x3

⎞

⎠ (7)

y =

⎛

⎝
y1
y2
y3

⎞

⎠ (8)

z =

⎛

⎝
z1
z2
z3

⎞

⎠ (9)

b′ =

⎛

⎝
b′1
b′2
b′3

⎞

⎠ (10)

1

自己符号化器の導出

ボレガラ　ダヌシカ

1 ３つの入力ノードと 3つの隠れノードの場合

y1 = f(x1W11 + x2W12 + x3W13 + b1) (1)
y2 = f(x1W21 + x2W22 + x3W23 + b2) (2)
y3 = f(x1W31 + x2W32 + x3W33 + b3) (3)

ここで
f(t) =

1

1 + exp(−t)
(4)

行列式として書くと，

W =

⎛

⎝
w11 w12 w13

w21 w22 w23

w31 w32 w33

⎞

⎠ (5)

b =

⎛

⎝
b1
b2
b3

⎞

⎠ (6)

x =

⎛

⎝
x1

x2

x3

⎞

⎠ (7)

y =

⎛

⎝
y1
y2
y3

⎞

⎠ (8)

z =

⎛

⎝
z1
z2
z3

⎞

⎠ (9)

b′ =

⎛

⎝
b′1
b′2
b′3

⎞

⎠ (10)

1

自己符号化器の導出

ボレガラ　ダヌシカ

1 ３つの入力ノードと 3つの隠れノードの場合

y1 = f(x1W11 + x2W12 + x3W13 + b1) (1)
y2 = f(x1W21 + x2W22 + x3W23 + b2) (2)
y3 = f(x1W31 + x2W32 + x3W33 + b3) (3)

ここで
f(t) =

1

1 + exp(−t)
(4)

行列式として書くと，

W =

⎛

⎝
w11 w12 w13

w21 w22 w23

w31 w32 w33

⎞

⎠ (5)

b =

⎛

⎝
b1
b2
b3

⎞

⎠ (6)

x =

⎛

⎝
x1

x2

x3

⎞

⎠ (7)

y =

⎛

⎝
y1
y2
y3

⎞

⎠ (8)

z =

⎛

⎝
z1
z2
z3

⎞

⎠ (9)

b′ =

⎛

⎝
b′1
b′2
b′3

⎞

⎠ (10)

1

自己符号化器の導出

ボレガラ　ダヌシカ

1 ３つの入力ノードと 3つの隠れノードの場合

y1 = f(x1W11 + x2W12 + x3W13 + b1) (1)
y2 = f(x1W21 + x2W22 + x3W23 + b2) (2)
y3 = f(x1W31 + x2W32 + x3W33 + b3) (3)

ここで
f(t) =

1

1 + exp(−t)
(4)

行列式として書くと，

W =

⎛

⎝
w11 w12 w13

w21 w22 w23

w31 w32 w33

⎞

⎠ (5)

b =

⎛

⎝
b1
b2
b3

⎞

⎠ (6)

x =

⎛

⎝
x1

x2

x3

⎞

⎠ (7)

y =

⎛

⎝
y1
y2
y3

⎞

⎠ (8)

z =

⎛

⎝
z1
z2
z3

⎞

⎠ (9)

b′ =

⎛

⎝
b′1
b′2
b′3

⎞

⎠ (10)

y = f(Wx+ b) (11)

1

Decoder becomes…

34

復号化の部分は，

z1 = f(y1W11 + y2W21 + y3W31 + b′1) (12)
z2 = f(y1W12 + y2W22 + y3W32 + b′2) (13)
z3 = f(y1W13 + y2W23 + y3W33 + b′3) (14)

2

復号化の部分は，

z1 = f(y1W11 + y2W21 + y3W31 + b′1) (12)
z2 = f(y1W12 + y2W22 + y3W32 + b′2) (13)
z3 = f(y1W13 + y2W23 + y3W33 + b′3) (14)

行列式として書くと，

z = f(W⊤y + b′) (15)

2

復号化の部分は，

z1 = f(y1W11 + y2W21 + y3W31 + b′1) (12)
z2 = f(y1W12 + y2W22 + y3W32 + b′2) (13)
z3 = f(y1W13 + y2W23 + y3W33 + b′3) (14)

行列式として書くと，

z = f(W⊤y + b′) (15)

自乗誤差 (squared loss)を考える

||x− z||2 =
d∑

k=1

(xk − zk)
2 (16)

2

squared loss

Parameter update

35

復号化の部分は，

z1 = f(y1W11 + y2W21 + y3W31 + b′1) (12)
z2 = f(y1W12 + y2W22 + y3W32 + b′2) (13)
z3 = f(y1W13 + y2W23 + y3W33 + b′3) (14)

行列式として書くと，

z = f(W⊤y + b′) (15)

自乗誤差 (squared loss)を考える

||x− z||2 =
d∑

k=1

(xk − zk)
2 (16)

例えば，w12 の値を更新するための更新式を導出する．

∂ ||x− z||2

∂w12
= −2(x− z)

∂z2
∂w12

∂z2
∂wij

=
∂

∂wij
f(w12jy1 + w22y2 + w32y3 + b′2)

ここで
t = w12jy1 + w22y2 + w32y3 + b′2

とすると，
∂f(t)

∂w12
=

∂f(t)

∂t

∂t

∂w12
=

exp(−t)

(1 + exp(−t))2
y1 = σ(t)(1− σ(t))y1

2

復号化の部分は，

z1 = f(y1W11 + y2W21 + y3W31 + b′1) (12)
z2 = f(y1W12 + y2W22 + y3W32 + b′2) (13)
z3 = f(y1W13 + y2W23 + y3W33 + b′3) (14)

行列式として書くと，

z = f(W⊤y + b′) (15)

自乗誤差 (squared loss)を考える

||x− z||2 =
d∑

k=1

(xk − zk)
2 (16)

例えば，w12 の値を更新するための更新式を導出する．

∂ ||x− z||2

∂w12
= −2(x− z)

∂z2
∂w12

∂z2
∂wij

=
∂

∂wij
f(w12jy1 + w22y2 + w32y3 + b′2)

ここで
t = w12jy1 + w22y2 + w32y3 + b′2

とすると，
∂f(t)

∂w12
=

∂f(t)

∂t

∂t

∂w12
=

exp(−t)

(1 + exp(−t))2
y1 = σ(t)(1− σ(t))y1

よって，
∂ ||x− z||2

∂w12
= −2(x− z)σ(t)(1− σ(t))y1

2

復号化の部分は，

z1 = f(y1W11 + y2W21 + y3W31 + b′1) (12)
z2 = f(y1W12 + y2W22 + y3W32 + b′2) (13)
z3 = f(y1W13 + y2W23 + y3W33 + b′3) (14)

行列式として書くと，

z = f(W⊤y + b′) (15)

自乗誤差 (squared loss)を考える

||x− z||2 =
d∑

k=1

(xk − zk)
2 (16)

例えば，w12 の値を更新するための更新式を導出する．

∂ ||x− z||2

∂w12
= −2(x− z)

∂z2
∂w12

∂z2
∂wij

=
∂

∂wij
f(w12jy1 + w22y2 + w32y3 + b′2)

ここで
t = w12jy1 + w22y2 + w32y3 + b′2

とすると，
∂f(t)

∂w12
=

∂f(t)

∂t

∂t

∂w12
=

exp(−t)

(1 + exp(−t))2
y1 = σ(t)(1− σ(t))y1

よって，
∂ ||x− z||2

∂w12
= −2(x− z)σ(t)(1− σ(t))y1

w12 に関する更新式は，

w(n+1)
12 = w(n)

12 + 2η(x− z)σ(t)(1− σ(t))y1

2

Let us consider the update of w12

Here

References
• Deep Learning Tutorial

• http://deeplearning.net/tutorial/gettingstarted.html

• git clone git://github.com/lisa-lab/
DeepLearningTutorials.git

• You need Theano

• http://deeplearning.net/software/theano/install.html

• Dependencies Python >= 2.6, g++, python-dev, NumPy,
SciPy, BLAS)

• Can be installed via sudo apt-get install in Debian/
Ubuntu or for Mac OSX brew/macports.

36

git://github.com/lisa-lab/DeepLearningTutorials.git
http://deeplearning.net/software/theano/install.html

