Deep Learning

COMP 527 Danushka Bollegala

Deep Learning

- So far, in all our machine learning, we designed features by ourselves. But can we do this automatically?
 - feature learning from data
- How can we combine different types of features and decide the useful combinations as part of the learning process?
- One solution
 - kernels
 - Considers only fixed, limited, and specific combinations. (eg. polynomial kernel considers only pairwise combinations)
- Another solution
 - Multi-layer perceptrons
 - Overfitting, difficulty to train, time consuming
- Can we train deep models (with many hidden layers) efficiently and without overfitting?
 - This is the central problem considered in *Deep learning*

object pixel colors detection detection detection

Ehe New York Ein

Monday, June 25, 2012 Last Update: 11:50 PM ET

Facebook, Google in 'Deep Learning'

Arms Race

Yann LeCun, an NYU artificial intelligence researcher who now works for Facebook. Photo: Josh Valcarcel/WIRED

Geoff Hinton (Google) Google Beat Facebook for DeepMind

oshukBen

Google Acquires Artificial Intelligence Startup DeepMind For More Than \$500M

Applications of DL

- Image Recognition
 - ILVSCR 14, 15: outperformed human level
- NLP
 - Machine translation, text similarity, sentiment analysis
- Voice
 - Voice recognition
- Robotics
 - DeepMind, Computer Games, Reinforcement Learning

Object Recognition

slide credit: Honglak Lee

Image Features

Spin image

GLOH Slide Credit: Honglak Lee

Voice Features

Spectrogram

MFCC

Flux

ZCR

Rolloff

Image labeling

	mite	container ship	motor scooter	leopard
	mite	container ship	motor scooter	leopard
	black widow	lifeboat	go-kart	jaguar
Π	cockroach	amphibian	moped	cheetah
Π	tick	fireboat	bumper car	snow leopard
Т	starfish	drilling platform	golfcart	Egyptian cat
	grille	mushroom	cherry	Madagascar cat
	convertible	agaric	dalmatian	squirrel monkey
	grille	mushroom	grape	spider monkey
	pickup	jelly fungus	elderberry	titi
	heach wadon	aill fungus	ffordshire bullterrier	indri

fire engine dead-man's-fingers

Krizhevsky+ NIPS'12

howler monkey

• demo : <u>http://deeplearning.cs.toronto.edu/</u>

currant

Similar image retrieval

Krizhevsky+ NIPS'12

20 layer NN by Google!

Detecting roads from satellite images

Word Analogy Detection

- How to learn representations for words?
- you shall know a word by the company it keeps Firth
- Distributional Hypothesis
 - We can predict the meaning of a word by looking into its local context
- Can we learn vector representations for words such that we can accurately predict its neigbours in a sentence?
 - word2vec (skip-gram model) Mikolov+13
 - GloVe (Global Vector Prediction) Pennington+14
- v(king) v(man) + v(woman) = v(queen)

Brief History

- Neural networks were around even back in 1950s
- It was shown that you cannot learn non-linearly separable data using single layer neural networks (ca. Perceptron)
 - Marvin Minsky [1960]
- First NN winter

Perceptron (revision)

• Perceptron is a single layer neural network

Perceptron (revision)

linear separability

In 2D space linear separability means you can separate the two classes by a straight line. ax + by + c = 0

Non-linear separable case

XOR (exclusive OR)

	x=0	x=I
y=0	0	-
y=1		0

Multi-layer Neural Networks

- XOR is a very common logical operation
 - Perceptron being unable to handle this common case was seen as a show stopper for neural networks
- We could get over this issue by using multiple hidden layers.
 - But there was no algorithm to learn the weights
 - Until, error backpropagation (Rummelhart+86) was proposed
- However, deep neural networks are likely to overfit and training them was time consuming (no GPUs back then!)
 - Second NN winter.

Advantages of DL

- Deep learning can learn the features useful for a particular task automatically
 - Can use **unlabeled** data to learn the features
- Can learn distributed representations

Local vs. Distributed Representations

The breakthrough!

- It was shown that by learning two layers at a time, and then stacking those to create a deep neural network was an effective method for overfitting.
- greedy layer-wise training
 - A Fast Learning Algorithm for Deep Belief Nets, Hinton et al., Neural Computing, 2006.

unsupervised pre-training

supervised post-training

slide credit: Bengio KDD 2014

Deep Learning Methods

- Two main techniques exist
- Autoencoders (AE)
 - A non-probabilistic method
 - Easier to implement
 - Theoretical analysis is difficult (although some work has been done lately)
- Restricted Boltzman Machine (RBM)
 - A probabilistic method
 - Under certain conditions it could be shown that both RBMs and AEs are optimizing the same objective

Autoencoder

Autoencoder

Hidden layer

Autoencoder

input layer $w_{ij}: x_j \longrightarrow y_i$

Details

- By using the transpose matrix W' for the decoder where W is the encoder matrix, we can reduce the number of parameters in the model. (less likely to overfit)
- b and b' are respectively encoding and decoding bias terms.
- Bias terms can be incorporated as features into the autoencoder by setting a feature that is always ON.
- The non-linear function f is performing some elementwise non-linear operation on each element of a vector.
- Without non-linearity, autoencoders are equivalent to PCA.

Training procedure

- 1. encode the input x using the encoder
 - 1. Calculate Wx + b, and insert it in f
- 2. Let the output of (1) be y. Insert y into the decoder and reconstruct the input
 - 1. Calculate $W^T y + b'$, and insert it in f
- 3. Let the output of (2) be z. Compare z and x.
 - 1. The loss function to be used is problem specific. For real values a popular loss function is the squared loss. For binary values use the cross-entropy error function.
- 4. Adjust the parameters (W, b, b') such that the loss computed in (3) is minimized.
 - 1. Compute the partial derivative of the loss w.r.t. each parameter and apply the stochastic gradient descent method.

Stochastic Gradient Descent (SGD)

- We have already seen SGD in Perceptron, logistic regression and multilayer neural networks.
- Move in the opposite direction of the gradient of the loss

Example

 $y_1 = f(x_1W_{11} + x_2W_{12} + x_3W_{13} + b_1)$ $y_2 = f(x_1W_{21} + x_2W_{22} + x_3W_{23} + b_2)$ $y_3 = f(x_1W_{31} + x_2W_{32} + x_3W_{33} + b_3)$

$$f(t) = \frac{1}{1 + \exp(-t)}$$

In matrix form...

$$\mathbf{W} = \begin{pmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \qquad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \qquad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \\ \mathbf{z} = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \qquad \mathbf{b}' = \begin{pmatrix} b'_1 \\ b'_2 \\ b'_3 \end{pmatrix}$$

$$y = f(\mathbf{W}x + b)$$

Decoder becomes...

$$z_{1} = f(y_{1}W_{11} + y_{2}W_{21} + y_{3}W_{31} + b'_{1})$$

$$z_{2} = f(y_{1}W_{12} + y_{2}W_{22} + y_{3}W_{32} + b'_{2})$$

$$z_{3} = f(y_{1}W_{13} + y_{2}W_{23} + y_{3}W_{33} + b'_{3})$$

$$\boldsymbol{z} = f(\mathbf{W}^{\top}\boldsymbol{y} + \boldsymbol{b}')$$

squared loss
$$||x - z||^2 = \sum_{k=1}^{d} (x_k - z_k)^2$$

Parameter update

Let us consider the update of w_{12}

$$\frac{\partial ||\boldsymbol{x} - \boldsymbol{z}||^2}{\partial w_{12}} = -2(\boldsymbol{x} - \boldsymbol{z})\frac{\partial z_2}{\partial w_{12}}$$
$$\frac{\partial z_2}{\partial w_{ij}} = \frac{\partial}{\partial w_{ij}}f(w_{12j}y_1 + w_{22}y_2 + w_{32}y_3 + b_2')$$

$$t = w_{12j}y_1 + w_{22}y_2 + w_{32}y_3 + b_2'$$

$$\frac{\partial f(t)}{\partial w_{12}} = \frac{\partial f(t)}{\partial t} \frac{\partial t}{\partial w_{12}} = \frac{\exp(-t)}{(1 + \exp(-t))^2} y_1 = \sigma(t)(1 - \sigma(t))y_1$$

$$\frac{\partial ||\boldsymbol{x} - \boldsymbol{z}||^2}{\partial w_{12}} = -2(\boldsymbol{x} - \boldsymbol{z})\sigma(t)(1 - \sigma(t))y_1$$

$$w_{12}^{(n+1)} = w_{12}^{(n)} + 2\eta(\boldsymbol{x} - \boldsymbol{z})\sigma(t)(1 - \sigma(t))y_1$$

References

- Deep Learning Tutorial
 - http://deeplearning.net/tutorial/gettingstarted.html
 - git clone <u>git://github.com/lisa-lab/</u> <u>DeepLearningTutorials.git</u>
- You need Theano
 - <u>http://deeplearning.net/software/theano/install.html</u>
- Dependencies Python >= 2.6, g++, python-dev, NumPy, SciPy, BLAS)
- Can be installed via sudo apt-get install in Debian/ Ubuntu or for Mac OSX brew/macports.