Deep Learning

COMP 527
Danushka Bollegala

Deep Learning

- So far, in all our machine learning, we designed features by ourselves. But can we do this automatically?
- feature learning from data
- How can we combine different types of features and decide the useful combinations as part of the learning process?
- One solution
- kernels
- Considers only fixed, limited, and specific combinations. (eg. polynomial kernel considers only pairwise combinations)
- Another solution
- Multi-layer perceptrons
- Overfitting, difficulty to train, time consuming
- Can we train deep models (with many hidden layers) efficiently and without overfitting?
- This is the central problem considered in Deep learning

Deep Learning at a glance

supervision
pixel colors edge shape object detection detection detection

Big news

The delu Hork Titu
(20nday, June 25, 2012 Last Update: 11:50 PM ET
 Facebook, Google in 'Deep Learning' Arms Race

Yann LeCun, an NYU artificial intelligence researcher who now wo ks for Facebook. Photo: Jo. \downarrow ValcarcelWIRED

WIRFD

NEWS BULLETIN
 Google Beat Facebofik fof fopeepMind

Google Acquires Artificial Intelligence Startup DeepMind For More Than \$500M

Applications of DL

- Image Recognition
- ILVSCR 14, 15: outperformed human level
- NLP
- Machine translation, text similarity, sentiment analysis
- Voice
- Voice recognition
- Robotics
- DeepMind, Computer Games, Reinforcement Learning

Object Recognition

image

features

speaker identification

features

detection

Image Features

Voice Features

Image labeling

Krizhevsky+ NIPS' 12

- demo : http://deeplearning.cs.toronto.edu/

Similar image retrieval

Krizhevsky+ NIPS'I2

20 layer NN by Google!

Detecting roads from satellite images

Word Analogy Detection

- How to learn representations for words?
- you shall know a word by the company it keeps - Firth
- Distributional Hypothesis
- We can predict the meaning of a word by looking into its local context
- Can we learn vector representations for words such that we can accurately predict its neigbours in a sentence?
- word2vec (skip-gram model) Mikolov+13
- GloVe (Global Vector Prediction) Pennington+14
- $\mathrm{v}($ king $)-\mathrm{v}($ man $)+\mathrm{v}($ woman $)=\mathrm{v}($ queen $)$

Brief History

- Neural networks were around even back in 1950s
- It was shown that you cannot learn non-linearly separable data using single layer neural networks (ca. Perceptron)
- Marvin Minsky [1960]
- First NN winter

Perceptron (revision)

- Perceptron is a single layer neural network

Perceptron (revision)

$$
\begin{aligned}
& s=x_{1} w_{1}+x_{2} w_{2}+\ldots+x_{n} w_{n} \\
& \text { if } s>0 \text { : } \\
& \quad \text { return } 1
\end{aligned}
$$

else:

linear separability

In 2D space linear separability means you can separate the two classes by a straight line. $a x+b y+c=0$

Non-linear separable case

XOR (exclusive OR)

Multi-layer Neural Networks

- XOR is a very common logical operation
- Perceptron being unable to handle this common case was seen as a show stopper for neural networks
- We could get over this issue by using multiple hidden layers.
- But there was no algorithm to learn the weights
- Until, error backpropagation (Rummelhart+86) was proposed
- However, deep neural networks are likely to overfit and training them was time consuming (no GPUs back then!)
- Second NN winter.

Advantages of DL

- Deep learning can learn the features useful for a particular task automatically
- Can use unlabeled data to learn the features
- Can learn distributed representations

Local vs. Distributed Representations

- RBMs, Factor models, PCA, Sparse Coding,

Bengio, 2009, Foundations and Trends in Machine Learning

The breakthrough!

- It was shown that by learning two layers at a time, and then stacking those to create a deep neural network was an effective method for overfitting.
- greedy layer-wise training
- A Fast Learning Algorithm for Deep Belief Nets, Hinton et al., Neural Computing, 2006.

unsupervised pre-training

supervised post-training

Deep Learning Methods

- Two main techniques exist
- Autoencoders (AE)
- A non-probabilistic method
- Easier to implement
- Theoretical analysis is difficult (although some work has been done lately)
- Restricted Boltzman Machine (RBM)
- A probabilistic method
- Under certain conditions it could be shown that both RBMs and AEs are optimizing the same objective

Autoencoder

Reconstruction error $=\|x-z\|^{2}$

Autoencoder

Hidden layer

Autoencoder

hidden layer

Details

- By using the transpose matrix W^{\prime} for the decoder where W is the encoder matrix, we can reduce the number of parameters in the model. (less likely to overfit)
- b and b^{\prime} are respectively encoding and decoding bias terms.
- Bias terms can be incorporated as features into the autoencoder by setting a feature that is always ON.
- The non-linear function f is performing some elementwise non-linear operation on each element of a vector.
- Without non-linearity, autoencoders are equivalent to PCA.

Training procedure

1. encode the input x using the encoder
2. Calculate $\mathrm{Wx}+\mathrm{b}$, and insert it in f
3. Let the output of (1) be y. Insert y into the decoder and reconstruct the input
4. Calculate $W^{\top} y+b^{\prime}$, and insert it in f
5. Let the output of (2) be z. Compare z and x.
6. The loss function to be used is problem specific. For real values a popular loss function is the squared loss. For binary values use the cross-entropy error function.
7. Adjust the parameters ($\mathrm{W}, \mathrm{b}, \mathrm{b}^{\prime}$) such that the loss computed in (3) is minimized.
8. Compute the partial derivative of the loss w.r.t. each parameter and apply the stochastic gradient descent method.

Stochastic Gradient Descent (SGD)

- We have already seen SGD in Perceptron, logistic regression and multilayer neural networks.
- Move in the opposite direction of the gradient of the loss

gradient is given by the derivative

Example

In matrix form...

$$
\begin{aligned}
\mathbf{W}=\left(\begin{array}{lll}
w_{11} & w_{12} & w_{13} \\
w_{21} & w_{22} & w_{23} \\
w_{31} & w_{32} & w_{33}
\end{array}\right) \quad \boldsymbol{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \quad \boldsymbol{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \quad \boldsymbol{y}=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) \\
\boldsymbol{z}=\left(\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right) \quad \boldsymbol{b}^{\prime}=\left(\begin{array}{c}
b_{1}^{\prime} \\
b_{2}^{\prime} \\
b_{3}^{\prime}
\end{array}\right)
\end{aligned}
$$

$$
\boldsymbol{y}=f(\mathbf{W} \boldsymbol{x}+\boldsymbol{b})
$$

Decoder becomes...

$$
\begin{aligned}
& z_{1}=f\left(y_{1} W_{11}+y_{2} W_{21}+y_{3} W_{31}+b_{1}^{\prime}\right) \\
& z_{2}=f\left(y_{1} W_{12}+y_{2} W_{22}+y_{3} W_{32}+b_{2}^{\prime}\right) \\
& z_{3}=f\left(y_{1} W_{13}+y_{2} W_{23}+y_{3} W_{33}+b_{3}^{\prime}\right) \\
& \\
& \quad \boldsymbol{z}=f\left(\mathbf{W}^{\top} \boldsymbol{y}+\boldsymbol{b}^{\prime}\right)
\end{aligned}
$$

squared loss $\quad\|\boldsymbol{x}-\boldsymbol{z}\|^{2}=\sum_{k=1}^{d}\left(x_{k}-z_{k}\right)^{2}$

Parameter update

Let us consider the update of w_{12}

$$
\begin{array}{r}
\frac{\partial\|\boldsymbol{x}-\boldsymbol{z}\|^{2}}{\partial w_{12}}=-2(\boldsymbol{x}-\boldsymbol{z}) \frac{\partial z_{2}}{\partial w_{12}} \\
\frac{\partial z_{2}}{\partial w_{i j}}=\frac{\partial}{\partial w_{i j}} f\left(w_{12 j} y_{1}+w_{22} y_{2}+w_{32} y_{3}+b_{2}^{\prime}\right)
\end{array}
$$

Here

$$
\begin{gathered}
t=w_{12 j} y_{1}+w_{22} y_{2}+w_{32} y_{3}+b_{2}^{\prime} \\
\frac{\partial f(t)}{\partial w_{12}}=\frac{\partial f(t)}{\partial t} \frac{\partial t}{\partial w_{12}}=\frac{\exp (-t)}{(1+\exp (-t))^{2}} y_{1}=\sigma(t)(1-\sigma(t)) y_{1}
\end{gathered}
$$

$$
\frac{\partial\|\boldsymbol{x}-\boldsymbol{z}\|^{2}}{\partial w_{12}}=-2(\boldsymbol{x}-\boldsymbol{z}) \sigma(t)(1-\sigma(t)) y_{1}
$$

$$
w_{12}^{(n+1)}=w_{12}^{(n)}+2 \eta(\boldsymbol{x}-\boldsymbol{z}) \sigma(t)(1-\sigma(t)) y_{1}
$$

References

- Deep Learning Tutorial
- http://deeplearning.net/tutorial/gettingstarted.html
- git clone git://github.com/lisa-lab/ DeepLearningTutorials.git
- You need Theano
- http://deeplearning.net/software/theano/install.html
- Dependencies Python >= 2.6, g++, python-dev, NumPy, SciPy, BLAS)
- Can be installed via sudo apt-get install in Debian/ Ubuntu or for Mac OSX brew/macports.

