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Outline

• Problems with high dimensional data 

• Dimensionality Reduction Methods 

• Singular Value Decomposition (SVD) 

• Principal Component Analysis (PCA)
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Problems in High Dimensions
• Curse of dimensionality 

• We need exponentially large number of data 
points to cover a high dimensional space
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1.4. The Curse of Dimensionality 35

Figure 1.20 Illustration of a simple approach
to the solution of a classification
problem in which the input space
is divided into cells and any new
test point is assigned to the class
that has a majority number of rep-
resentatives in the same cell as
the test point. As we shall see
shortly, this simplistic approach
has some severe shortcomings.
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fall in the same cell. The identity of the test point is predicted as being the same
as the class having the largest number of training points in the same cell as the test
point (with ties being broken at random).

There are numerous problems with this naive approach, but one of the most se-
vere becomes apparent when we consider its extension to problems having larger
numbers of input variables, corresponding to input spaces of higher dimensionality.
The origin of the problem is illustrated in Figure 1.21, which shows that, if we divide
a region of a space into regular cells, then the number of such cells grows exponen-
tially with the dimensionality of the space. The problem with an exponentially large
number of cells is that we would need an exponentially large quantity of training data
in order to ensure that the cells are not empty. Clearly, we have no hope of applying
such a technique in a space of more than a few variables, and so we need to find a
more sophisticated approach.

We can gain further insight into the problems of high-dimensional spaces by
returning to the example of polynomial curve fitting and considering how we wouldSection 1.1

Figure 1.21 Illustration of the
curse of dimensionality, showing
how the number of regions of a
regular grid grows exponentially
with the dimensionality D of the
space. For clarity, only a subset of
the cubical regions are shown for
D = 3.
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Problems in High Dimensions

• Data Sparseness 

• Although we have a large feature space (lots of 
dimensions to the data), we only observe a 
small number of non-zero features in any 
instance 

• This was the case for texts (in particular with the 
bag-of-words model)
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Problems in High Dimensions
• Overfitting 

• Given n train data points, we can come up with an n-dimensional 
(n-th order) polynomial that passes through all those data points. 

• But it is very unlikely that it will fit well for the test data points
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Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

√
2E(w⋆)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3 , from
Figure 1.4.



Problems in High Dimensions

• Time consuming (time complexity is large) 

• Consider computing cosine similarity between 
two n dimensional vectors, when n increases. 

• Memory issues (space complexity is large) 

• Storing high dimensional dense vectors can be 
problematic when 

• the dimensionality of the vectors is large 

• there are lots of vectors (instances) to store
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Solution
• Dimensionality Reduction 

• Try to project the original vectors to a lower 
dimensional space L  

• What constraints do we have 

• Try to minimise the error due to the projection 

• If X and Y are neighbours in the original space, then 
they must also be neighbours in the projected space 

• Try to retain salient/important/principal dimensions as 
much as possible and remove the non-salient/
unimportant/auxiliary dimensions as much as possible
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Eigenvalue Decomposition
• Linear Algebra Revision 

• Eigenvalues and Eigenvectors of a Square Matrix 

• Ax  = λx 

• x is the eigenvector of A corresponding to the eigenvalue λ 

• Compute the eigenvalues and eigenvectors of the following 
matrix
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converges.1 When M is a stochastic matrix, the limiting vector is the principal
eigenvector (the eigenvector with the largest eigenvalue), and its corresponding
eigenvalue is 1.2 This method for finding the principal eigenvector, called power
iteration, works quite generally, although if the principal eigenvalue (eigenvalue
associated with the principal eigenvector) is not 1, then as i grows, the ratio
of M i+1v to M iv approaches the principal eigenvalue while M iv approaches
a vector (probably not a unit vector) with the same direction as the principal
eigenvector.

We shall take up the generalization of the power-iteration method to find all
eigenpairs in Section 11.1.3. However, there is an O(n3)-running-time method
for computing all the eigenpairs of a symmetric n × n matrix exactly, and this
method will be presented first. There will always be n eigenpairs, although in
some cases, some of the eigenvalues will be identical. The method starts by
restating the equation that defines eigenpairs, Me = λe as (M − λI)e = 0,
where

1. I is the n × n identity matrix with 1’s along the main diagonal and 0’s
elsewhere.

2. 0 is a vector of all 0’s.

A fact of linear algebra is that in order for (M − λI)e = 0 to hold for a
vector e ≠ 0, the determinant of M − λI must be 0. Notice that (M − λI)
looks almost like the matrix M , but if M has c in one of its diagonal elements,
then (M − λI) has c − λ there. While the determinant of an n × n matrix has
n! terms, it can be computed in various ways in O(n3) time; an example is the
method of “pivotal condensation.”

The determinant of (M − λI) is an nth-degree polynomial in λ, from which
we can get the n values of λ that are the eigenvalues of M . For each such value,
say c, we can then solve the equation Me = c e. There are n equations in n
unknowns (the n components of e), but since there is no constant term in any
equation, we can only solve for e to within a constant factor. However, using
any solution, we can normalize it so the sum of the squares of the components
is 1, thus obtaining the eigenvector that corresponds to eigenvalue c.

Example 11.2 : Let us find the eigenpairs for the 2 × 2 matrix M from Ex-
ample 11.1. Recall M =

[

3 2
2 6

]

Then M − λI is
[

3 − λ 2
2 6 − λ

]

1Recall M i denotes multiplying by the matrix M i times, as discussed in Section 5.1.2.
2Note that a stochastic matrix is not generally symmetric. Symmetric matrices and

stochastic matrices are two classes of matrices for which eigenpairs exist and can be exploited.
In this chapter, we focus on techniques for symmetric matrices.



Singular Value Decomposition
• Eigenvalue decomposition can be performed only for square matrices. 

• Singular Value Decomposition (SVD) is a operation that can be applied to any matrix 

• M = UΣVT 

• U and V are unitary (perpendicular) matrices, Σ is a diagonal matrix (singular 
values of M are diagonal elements of Σ). 

• Columns of U and V are perpendicular. UTU= I and VTV = I.
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2. V is an n× r column-orthonormal matrix. Note that we always use V in
its transposed form, so it is the rows of V T that are orthonormal.

3. Σ is a diagonal matrix; that is, all elements not on the main diagonal are
0. The elements of Σ are called the singular values of M .

Mm
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=

nr

Figure 11.5: The form of a singular-value decomposition

Example 11.8 : In Fig. 11.6 is a rank-2 matrix representing ratings of movies
by users. In this contrived example there are two “concepts” underlying the
movies: science-fiction and romance. All the boys rate only science-fiction, and
all the girls rate only romance. It is this existence of two strictly adhered to
concepts that gives the matrix a rank of 2. That is, we may pick one of the first
four rows and one of the last three rows and observe that there is no nonzero
linear sum of these rows that is 0. But we cannot pick three independent rows.
For example, if we pick rows 1, 2, and 7, then three times the first minus the
second, plus zero times the seventh is 0.

1   1   1   0   0
3   3   3   0   0
4   4   4   0   0
5   5   5   0   0
0   0   0   4   4
0   0   0   5   5
0   0   0   2   2
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Figure 11.6: Ratings of movies by users



SVD?
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Snayperskaya Vintovka sistem'y Dragunova obraz’tsa
(Dragunov Sniper Rifle or SVD)



Example
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We can make a similar observation about the columns. We may pick one of
the first three columns and one of the last two rows, and they will be indepen-
dent, but no set of three columns is independent.

The decomposition of the matrix M from Fig. 11.6 into U , Σ, and V , with
all elements correct to two significant digits, is shown in Fig. 11.7. Since the
rank of M is 2, we can use r = 2 in the decomposition. We shall see how to
compute this decomposition in Section 11.3.6. ✷
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Figure 11.7: SVD for the matrix M of Fig. 11.6

11.3.2 Interpretation of SVD

The key to understanding what SVD offers is in viewing the r columns of U ,
Σ, and V as representing concepts that are hidden in the original matrix M . In
Example 11.8, these concepts are clear; one is “science fiction” and the other
is “romance.” Let us think of the rows of M as people and the columns of
M as movies. Then matrix U connects people to concepts. For example, the
person Joe, who corresponds to row 1 of M in Fig. 11.6, likes only the concept
science fiction. The value 0.14 in the first row and first column of U is smaller
than some of the other entries in that column, because while Joe watches only
science fiction, he doesn’t rate those movies highly. The second column of the
first row of U is 0, because Joe doesn’t rate romance movies at all.

The matrix V relates movies to concepts. The 0.58 in each of the first three
columns of the first row of V T indicates that the first three movies – Matrix,
Alien, and Star Wars – each are of the science-fiction genre, while the 0’s in
the last two columns of the first row say that these movies do not partake of
the concept romance at all. Likewise, the second row of V T tells us that the
movies Casablanca and Titanic are exclusively romances.

Finally, the matrix Σ gives the strength of each of the concepts. In our
example, the strength of the science-fiction concept is 12.4, while the strength
of the romance concept is 9.5. Intuitively, the science-fiction concept is stronger
because the data provides more movies of that genre and more people who like
them.

To perform SVD in python (scipy) use scipy.linalg.svd
http://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svd.html

http://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svd.html


Dimensionality Reduction with SVD

• Procedure 

• Perform SVD on M. Retain the top-k (largest) 
singular values in Σ and set the remainder to 
zero.  

• Let us denote the diagonal matrix produced by 
the previous step by Σk 

• The k-dimensional approximation (projection) 
Mk of M is then given by 

• Mk = U Σk VT
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Reason

• The k-dimensional matrix Mk that minimises the 
Frobenius norm ||M-Mk|| is given by the matrix Mk 
computed as described in the previous slide 

• Frobenius norm 

• Extension of the vector L2 norm to matrices 

• Frobenius norm of a matrix M is given by 

 13
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ij

Mij
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Proof
• By performing SVD on M, let 

• M = PQRT
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Figure 11.10: Dropping the lowest singular value from the decomposition of
Fig. 11.7

by the fact that the decomposition of M ′ was only correct to two significant
digits. ✷

11.3.4 Why Zeroing Low Singular Values Works

The choice of the lowest singular values to drop when we reduce the number of
dimensions can be shown to minimize the root-mean-square error between the
original matrix M and its approximation. Since the number of entries is fixed,
and the square root is a monotone operation, we can simplify and compare
the Frobenius norms of the matrices involved. Recall that the Frobenius norm
of a matrix M , denoted ∥M∥, is the square root of the sum of the squares of
the elements of M . Note that if M is the difference between one matrix and
its approximation, then ∥M∥ is proportional to the RMSE (root-mean-square
error) between the matrices.

To explain why choosing the smallest singular values to set to 0 minimizes
the RMSE or Frobenius norm of the difference between M and its approxima-
tion, let us begin with a little matrix algebra. Suppose M is the product of
three matrices M = PQR. Let mij , pij , qij , and rij be the elements in row i
and column j of M , P , Q, and R, respectively. Then the definition of matrix
multiplication tells us

mij =
∑

k

∑

ℓ

pikqkℓrℓj

Then

∥M∥2 =
∑

i

∑

j

(mij)
2 =

∑

i

∑

j

(

∑

k

∑

ℓ

pikqkℓrℓj

)2

(11.1)
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How Many Singular Values Should We Retain?

A useful rule of thumb is to retain enough singular values to make up
90% of the energy in Σ. That is, the sum of the squares of the retained
singular values should be at least 90% of the sum of the squares of all the
singular values. In Example 11.10, the total energy is (12.4)2 + (9.5)2 +
(1.3)2 = 245.70, while the retained energy is (12.4)2 + (9.5)2 = 244.01.
Thus, we have retained over 99% of the energy. However, were we to
eliminate the second singular value, 9.5, the retained energy would be
only (12.4)2/245.70 or about 63%.

When we square a sum of terms, as we do on the right side of Equation 11.1, we
effectively create two copies of the sum (with different indices of summation)
and multiply each term of the first sum by each term of the second sum. That
is,

(

∑

k

∑

ℓ

pikqkℓrℓj

)2

=
∑

k

∑

ℓ

∑

m

∑

n

pikqkℓrℓjpinqnmrmj

we can thus rewrite Equation 11.1 as

∥M∥2 =
∑

i

∑

j

∑

k

∑

ℓ

∑

n

∑

m

pikqkℓrℓjpinqnmrmj (11.2)

Now, let us examine the case where P , Q, and R are really the SVD of M .
That is, P is a column-orthonormal matrix, Q is a diagonal matrix, and R is
the transpose of a column-orthonormal matrix. That is, R is row-orthonormal;
its rows are unit vectors and the dot product of any two different rows is 0. To
begin, since Q is a diagonal matrix, qkℓ and qnm will be zero unless k = ℓ and
n = m. We can thus drop the summations for ℓ and m in Equation 11.2 and
set k = ℓ and n = m. That is, Equation 11.2 becomes

∥M∥2 =
∑

i

∑

j

∑

k

∑

n

pikqkkrkjpinqnnrnj (11.3)

Next, reorder the summation, so i is the innermost sum. Equation 11.3 has
only two factors pik and pin that involve i; all other factors are constants as far
as summation over i is concerned. Since P is column-orthonormal, We know
that

∑

i pikpin is 1 if k = n and 0 otherwise. That is, in Equation 11.3 we can
set k = n, drop the factors pik and pin, and eliminate the sums over i and n,
yielding

∥M∥2 =
∑

j

∑

k

qkkrkjqkkrkj (11.4)

Since R is row-orthonormal,
∑

j rkjrkj is 1. Thus, we can eliminate the
terms rkj and the sum over j, leaving a very simple formula for the Frobenius
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yielding

∥M∥2 =
∑

j

∑

k

qkkrkjqkkrkj (11.4)

Since R is row-orthonormal,
∑

j rkjrkj is 1. Thus, we can eliminate the
terms rkj and the sum over j, leaving a very simple formula for the Frobenius

422 CHAPTER 11. DIMENSIONALITY REDUCTION

How Many Singular Values Should We Retain?

A useful rule of thumb is to retain enough singular values to make up
90% of the energy in Σ. That is, the sum of the squares of the retained
singular values should be at least 90% of the sum of the squares of all the
singular values. In Example 11.10, the total energy is (12.4)2 + (9.5)2 +
(1.3)2 = 245.70, while the retained energy is (12.4)2 + (9.5)2 = 244.01.
Thus, we have retained over 99% of the energy. However, were we to
eliminate the second singular value, 9.5, the retained energy would be
only (12.4)2/245.70 or about 63%.

When we square a sum of terms, as we do on the right side of Equation 11.1, we
effectively create two copies of the sum (with different indices of summation)
and multiply each term of the first sum by each term of the second sum. That
is,

(

∑

k

∑

ℓ

pikqkℓrℓj

)2

=
∑

k

∑

ℓ

∑

m

∑

n

pikqkℓrℓjpinqnmrmj

we can thus rewrite Equation 11.1 as

∥M∥2 =
∑

i

∑

j

∑

k

∑

ℓ

∑

n

∑

m

pikqkℓrℓjpinqnmrmj (11.2)

Now, let us examine the case where P , Q, and R are really the SVD of M .
That is, P is a column-orthonormal matrix, Q is a diagonal matrix, and R is
the transpose of a column-orthonormal matrix. That is, R is row-orthonormal;
its rows are unit vectors and the dot product of any two different rows is 0. To
begin, since Q is a diagonal matrix, qkℓ and qnm will be zero unless k = ℓ and
n = m. We can thus drop the summations for ℓ and m in Equation 11.2 and
set k = ℓ and n = m. That is, Equation 11.2 becomes

∥M∥2 =
∑

i

∑

j

∑

k

∑

n

pikqkkrkjpinqnnrnj (11.3)

Next, reorder the summation, so i is the innermost sum. Equation 11.3 has
only two factors pik and pin that involve i; all other factors are constants as far
as summation over i is concerned. Since P is column-orthonormal, We know
that

∑

i pikpin is 1 if k = n and 0 otherwise. That is, in Equation 11.3 we can
set k = n, drop the factors pik and pin, and eliminate the sums over i and n,
yielding

∥M∥2 =
∑

j

∑

k

qkkrkjqkkrkj (11.4)

Since R is row-orthonormal,
∑

j rkjrkj is 1. Thus, we can eliminate the
terms rkj and the sum over j, leaving a very simple formula for the Frobenius

11.3. SINGULAR-VALUE DECOMPOSITION 423

norm:
∥M∥2 =

∑

k

(qkk)2 (11.5)

Next, let us apply this formula to a matrix M whose SVD is M = UΣV T .
Let the ith diagonal element of Σ be σi, and suppose we preserve the first n
of the r diagonal elements of Σ, setting the rest to 0. Let Σ′ be the resulting
diagonal matrix. Let M ′ = UΣ′V T be the resulting approximation to M . Then
M − M ′ = U(Σ − Σ′)V T is the matrix giving the errors that result from our
approximation.

If we apply Equation 11.5 to the matrix M − M ′, we see that ∥M − M ′∥2

equals the sum of the squares of the diagonal elements of Σ − Σ′. But Σ − Σ′

has 0 for the first n diagonal elements and σi for the ith diagonal element,
where n < i ≤ r. That is, ∥M −M ′∥2 is the sum of the squares of the elements
of Σ that were set to 0. To minimize ∥M − M ′∥2, pick those elements to be
the smallest in Σ. So doing gives the least possible value of ∥M − M ′∥2 under
the constraint that we preserve n of the diagonal elements, and it therefore
minimizes the RMSE under the same constraint.

11.3.5 Querying Using Concepts

In this section we shall look at how SVD can help us answer certain queries
efficiently, with good accuracy. Let us assume for example that we have decom-
posed our original movie-rating data (the rank-2 data of Fig. 11.6) into the SVD
form of Fig. 11.7. Quincy is not one of the people represented by the original
matrix, but he wants to use the system to know what movies he would like. He
has only seen one movie, Matrix, and rated it 4. Thus, we can represent Quincy
by the vector q = [4, 0, 0, 0, 0], as if this were one of the rows of the original
matrix.

If we used a collaborative-filtering approach, we would try to compare
Quincy with the other users represented in the original matrix M . Instead,
we can map Quincy into “concept space” by multiplying him by the matrix V
of the decomposition. We find qV = [2.32, 0].3 That is to say, Quincy is high
in science-fiction interest, and not at all interested in romance.

We now have a representation of Quincy in concept space, derived from, but
different from his representation in the original “movie space.” One useful thing
we can do is to map his representation back into movie space by multiplying
[2.32, 0] by V T . This product is [1.35, 1.35, 1.35, 0, 0]. It suggests that Quincy
would like Alien and Star Wars, but not Casablanca or Titanic.

Another sort of query we can perform in concept space is to find users similar
to Quincy. We can use V to map all users into concept space. For example,
Joe maps to [1.74, 0], and Jill maps to [0, 5.68]. Notice that in this simple
example, all users are either 100% science-fiction fans or 100% romance fans, so
each vector has a zero in one component. In reality, people are more complex,

3Note that Fig. 11.7 shows V T , while this multiplication requires V .

Much easier proof exists if you use
the trace of a matrix and its properties



Proof using Trace
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M = PQR>

||M||22 = tr(M>M)

||M||22 = tr(RQP>PQR>)

||M||22 = tr(RQQR>)

||M||22 = tr(RQ2R>)

||M||22 = tr(R>RQ2)

||M||22 = tr(Q2)



SVD and Approximation Error
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M = P
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If Mk is the matrix with (k+1)  and above
singular values set to zero
(k-th rank approximation)
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SVD and Approximation error
• Then, the approximation error, ||M - Mk||2 becomes

 17

||M�Mk||2 = tr

0

BBBBBBBB@

P

2

666666664

0
. . .

0
�k+1

. . .
�n

3

777777775

R>

1

CCCCCCCCA

||M�Mk||2 = �2
k+1 + . . .+ �2

n

If we want to minimize this error, then we must select the largest 
singular values for the first 1…k positions!



Applications of SVD

• Latent Semantic Analysis 

• words vs. document matrix 

• Find similar words (query expansion) 

• Find similar documents (similarity search) 

• Recommendation Systems 

• users vs. items/products 

• Recommend similar products to users

 18



Two uses of SVD
• SVD for dimensionality reduction 

• Compute M = UΣVT 

• Get the largest k singular values from Σ to 
construct a diagonal matrix Σk 

• Get the corresponding left singular vectors from 
U to construct a matrix Uk 

• Reduce the number of columns of M to k  to 
construct the matrix Mk 

• Mk = UkΣk
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Two uses of SVD
• SVD to increase the density of a matrix 

• Compute M = UΣVT 

• Get the largest k singular values from Σ to construct a diagonal matrix Σk 

• Get the corresponding left singular vectors from U to construct a matrix 
Uk 

• Get the corresponding right singular vectors from U to construct a 
matrix Vk 

• Reproduce a dense version of M, Mk 

• Mk = UkΣkVkT 

• Lesser number of non-zero values in Mk 

• However, we end up with negative values in Mk even though M is a 
matrix with all non-negative values! 
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Principal Component Analysis
• We would like to project our high dimensional data 

points to a low dimensional space by preserving the 
geometric properties in the original space as much 
as possible 

• Two ways to do this: 

• Maximise the variance of the projected data 

• Linear projection that minimises the average 
projection cost (e.g. sum of squared Euclidean 
distance between original and projected points) 

• PCA is also known as the Karhunen-Loève Transform
 21



Idea

 22

x̃n

xn

u1

First principal 
component

minimise 
squared error

maximise variance



Maximum Variance Formulation
• Problem 

• Given D dimensional N data points {xn}, where 
n=1,...,N, we must project those into an M<D 
dimensional space 

• M is given 

• Let us consider the case M=1 (one-dimensional 
projection) 

• The projection direction is given by the unit vector u1 

• u1T u1 = 1 

•
 23

x̃n = u1
>xn



Maximum Variance Formulation

• Mean of the data points 

• Variance of the projected data 

• S is the covariance matrix given by

 24

x̄ =
1

N

NX

n=1

xn

1

N

NX

n=1

(u1
>xn � u1

>x̄)2 = u1
>Su1

S =
1

N

NX

n=1

(xn � x̄)(xn � x̄)>

*An unbiased estimator of variance uses (N-1) instead of N. 
But this does not matter because we are only interested in the maximisation of the variance.



Maximum Variance Formulation
• We must maximize the variance subjected to the 

normalization constraint on u1

 25

L(u1,�1) = u1
>Su1 + �1(1� u1

>u1)
Lagrange multiplier method

@L(u1,�1)

@u1
= 0 Su1 = �1u1

u1
>Su1 = �1 u1 is the eigenvector of

S that corresponds to
the largest eigenvalue of S

This is variance!



PCA Algorithm
•INPUT

•D dimensional N data points {xn}, where 
n=1,...,N

•Dimensionality M 

•Procedure

•Compute the covariance matrix S for the dataset

•Compute the first M eigenvectors of S

•return the computed eigenvectors
 26



A Word on Complexity
• Eigenvalue decomposition of a DxD matrix is O(D3) 

• However, we only need the largest M eigenvectors 
of S 

• This can be computed efficiently using truncated 
methods such as the power-iteration method in 
O(MD2) 

• Reference 

• Golub & Van Loan, Matrix Computations, John 
Hopkins University Press, 1996.
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Computational Remarks (1/2)

• The following methods for computing PCA are 
equivalent (i.e. gives the same principal components) 

1. Compute the sum of squared Euclidean distance 
between original and projected points and 
minimise it. 

2. Compute the pairwise squared Euclidean distance 
between projected points and maximise it. 

3. Compute the variance of the projected points on 
the projection line and maximise it.

 28



Computational Remarks (2/2)
• Let us show that (2) and (3) are equivalent

 29

Using (2) for computing 
PCA is usually a bad 
idea when the dataset is 
large because the 
pairwise combinations 
grow quadratically with 
the number of data 
points in the dataset. 
But could be helpful for 
small examples because 
we do not have to 
compute the mean.
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