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Graphs
• A Graph G can be defined as a set of vertices (nodes) V 

connected by a set of edges (links) E 

• A graph G(V,E) is fully defined by specifying the two sets 
V and E
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Types of Graphs
• Undirected Graph 

• There are no directional edges in the graph 

• Directed Graph 

• There are directional edges in the graph 

• Labeled/Coloured Graph 

• Vertex-Labeled Graph 

• Vertices are labeled (coloured) 

• Edge-Labeled Graph 

• Edges are labeled (coloured) 

• Weighted Graph 

• Edges have weights associated with them 

• Unweighted Graph 

• Edges have no weights associated with them. All edges have an equal weight.
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Adjacency Matrix
• If two vertices vi and vj are connected by an edge 

in an graph G, then the element aij in the 
incidence matrix will be set to 1, otherwise it will 
be set to 0.
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Weight Matrix
• The weight matrix W of a weighted graph G denotes the weight of the 

edge between vertices vi and vj by the element wij 

• Notes 

• A negative weight does not indicate a reverse link always (however, 
some abuse of notation is possible, if defined in advance)
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For undirected graphs, wij = wji

(W is becomes a symmetric matrix)



State Transitions
• At a given time t=T, the probability of being at each vertex can be represented by a |

V| dimensional vector x, where |V| is the total number of vertices in the graph. 

• Question 

• What is the probability of being at each vertex at t =(T+1) 

• Answer 

• Bx 

• B  is the state transition matrix (stochastic matrix) 

• ∑j Bij = 1 for all rows i (when B is a right stochastic matrix) 

• The probability of being at vertex Vj at t=T+1, when we are at vertex Vi at t = T 
is given by Bji  

• What about t=(T+2) then 

• B(Bx) = B2x 

• What about t = (T+n) then 

• Bnx
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Random Walk in a Graph
• Assume that you are walking in a graph 

• You start with some vertex and randomly move to 
a vertex that is connected to the current vertex 

• All connected vertices have an equal probability 
of getting selected for the next move 

• After you have moved infinite amount of time in 
this graph according to the previously described 
mechanism, what is the probability of you ending 
up in some vertex vi in the graph?
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Random Walk
• If the state transition has reached a stable state, 

then we have the situation 

• Ax = λx 

• This means that x is the eigenvector of A 
corresponding to the eigenvalue λ, which is a scalar. 

• Instead of moving around the graph for infinite time 
we can simply perform eigenvalue decomposition 
of A to find the final state (if it exists!) 

• Moreover, final state (if exists) does not depend on 
the initial state!
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What can we learn from a Random Walk?

• Connectivity of the graph 

• If there are islands in the graph (ie. subgraphs that are not 
connected), then no matter how much we perform this random 
walk, we will not be able to reach those islands. 

• Importance of the vertices 

• If there is a close connection between two vertices vi and vj, then 
the probability of ending up in vj, when we start from vi will be 
higher 

• But, it does not matter from where we start 

• which means that the probability of ending up at a particular 
vertex is an indicator of how important that vertex (measured 
by its connectivity to other vertices in the graph) in the graph 

• Highly connected people are more important/influential?
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PageRank Algorithm
• One of many algorithms that are based on the idea of random walks in a graph 

• Proposed by Larry Page 

• Original objective 

• Compute the rank of web pages 

• vertices = web pages 

• edges = hyperlinks 

• Can be applied to any graph, not limiting to web graph, to induce a ranking for the vertices.  

• PR(pi): page rank of page pi 

• M(pi): set of nodes connected to pi via an inbound link 

• L(pj): number of outbound links on pj

 10

PR(pi) =
X

pj2M(pi)

PR(pj)

L(pj) pi

pj



Quiz: Compute the PageRanks for the following graph.

 11

A B

C



Issues with simple PageRank
• If the random walker gets trapped/struck inside a particular 

node, then the simple PageRank algorithm we discussed 
previously will fail. 

• This is called “a leak” of PageRank 

• To overcome this problem we use teleportation 

• At each node p we will select a node from the set of nodes 
connected via in-bound links to p, M(p), with a probability 
d-1. 

• Or, we randomly jump (teleport) to any of the remaining 
(N-1) nodes with probability d. 

• This gives rise to the damped version of PageRank discussed in 
the next slide.
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Damping Factor
• It is possible that a random surfer (walker) might not surf (walk) over 

the graph eternally (until infinite number of iterations) but will stop 
after a while (tired/damping). 

• The following version of the PageRank algorithm takes this into 
consideration  

• d is the damping factor and is set to 0.85 in most practical cases 

• N is the total number of vertices (pages)
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