
Multi-layer Neural Networks

COMP 527
Danushka Bollegala

Neural Networks

• We have already learnt single layer neural
networks

• It was called the Perceptron

• Unfortunately, it could learn only linear
relationships

• Quiz: What is meant by linear separability?

• Can we stack multiple layers of neurons to learn
more complex (from non-linearly separable
data) functions?

2

Artificial Neural Networks
• There are different types of artificial neural networks

• Feed forward neural networks

• no backward links, only forward links

3

INPUT
OUTPUT

The most popular case.
Useful for learning
classifiers/regression models.
!
Typically 3 layers (one hidden).
!
Recently there have been
work that learn 7 or more
hidden layers!

Artificial Neural Networks
• There are different types of artificial neural networks

• Recurrent neural networks

• both backward and forward links exist

4

INPUT OUTPUT

Useful for learning
temporal relations.

Artificial Neural Networks
• There are different types of artificial neural networks

• Recursive neural networks

• Same neural network is applied recursively, following some structure

5

Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1631–1642,
Seattle, Washington, USA, 18-21 October 2013. c�2013 Association for Computational Linguistics

Recursive Deep Models for Semantic Compositionality
Over a Sentiment Treebank

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang,
Christopher D. Manning, Andrew Y. Ng and Christopher Potts

Stanford University, Stanford, CA 94305, USA
richard@socher.org,{aperelyg,jcchuang,ang}@cs.stanford.edu

{jeaneis,manning,cgpotts}@stanford.edu

Abstract

Semantic word spaces have been very use-
ful but cannot express the meaning of longer
phrases in a principled way. Further progress
towards understanding compositionality in
tasks such as sentiment detection requires
richer supervised training and evaluation re-
sources and more powerful models of com-
position. To remedy this, we introduce a
Sentiment Treebank. It includes fine grained
sentiment labels for 215,154 phrases in the
parse trees of 11,855 sentences and presents
new challenges for sentiment composition-
ality. To address them, we introduce the
Recursive Neural Tensor Network. When
trained on the new treebank, this model out-
performs all previous methods on several met-
rics. It pushes the state of the art in single
sentence positive/negative classification from
80% up to 85.4%. The accuracy of predicting
fine-grained sentiment labels for all phrases
reaches 80.7%, an improvement of 9.7% over
bag of features baselines. Lastly, it is the only
model that can accurately capture the effects
of negation and its scope at various tree levels
for both positive and negative phrases.

1 Introduction

Semantic vector spaces for single words have been
widely used as features (Turney and Pantel, 2010).
Because they cannot capture the meaning of longer
phrases properly, compositionality in semantic vec-
tor spaces has recently received a lot of attention
(Mitchell and Lapata, 2010; Socher et al., 2010;
Zanzotto et al., 2010; Yessenalina and Cardie, 2011;
Socher et al., 2012; Grefenstette et al., 2013). How-
ever, progress is held back by the current lack of
large and labeled compositionality resources and

–

0

0

This

0

film

–

–

–

0

does

0

n’t

0

+

care

+

0

about

+

+

+

+

+

cleverness

0

,

0

wit

0

or

+

0

0

any

0

0

other

+

kind

+

0

of

+

+

intelligent

+ +

humor

0

.

Figure 1: Example of the Recursive Neural Tensor Net-
work accurately predicting 5 sentiment classes, very neg-
ative to very positive (– –, –, 0, +, + +), at every node of a
parse tree and capturing the negation and its scope in this
sentence.

models to accurately capture the underlying phe-
nomena presented in such data. To address this need,
we introduce the Stanford Sentiment Treebank and
a powerful Recursive Neural Tensor Network that
can accurately predict the compositional semantic
effects present in this new corpus.

The Stanford Sentiment Treebank is the first cor-
pus with fully labeled parse trees that allows for a
complete analysis of the compositional effects of
sentiment in language. The corpus is based on
the dataset introduced by Pang and Lee (2005) and
consists of 11,855 single sentences extracted from
movie reviews. It was parsed with the Stanford
parser (Klein and Manning, 2003) and includes a
total of 215,154 unique phrases from those parse
trees, each annotated by 3 human judges. This new
dataset allows us to analyze the intricacies of senti-
ment and to capture complex linguistic phenomena.
Fig. 1 shows one of the many examples with clear
compositional structure. The granularity and size of

1631

Used in NLP for
dependency parsing,
sentiment classification,
etc.

[Socher+ 13]

Can we learn multiple classes?

• With 1 logistic output
node we can only predict
two classes (binary
classification)

• With 2 such output
nodes we can predict 4
classes [(0,0), (0,1), (1,0),
(1,1)]

• With k such output nodes
we can predict 2k classes!

6

228 5. NEURAL NETWORKS

Figure 5.1 Network diagram for the two-
layer neural network corre-
sponding to (5.7). The input,
hidden, and output variables
are represented by nodes, and
the weight parameters are rep-
resented by links between the
nodes, in which the bias pa-
rameters are denoted by links
coming from additional input
and hidden variables x0 and
z0. Arrows denote the direc-
tion of information flow through
the network during forward
propagation.

x0

x1

xD

z0

z1

zM

y1

yK

w(1)
MD w(2)

KM

w(2)
10

hidden units

inputs outputs

and follows the same considerations as for linear models discussed in Chapters 3 and
4. Thus for standard regression problems, the activation function is the identity so
that yk = ak. Similarly, for multiple binary classification problems, each output unit
activation is transformed using a logistic sigmoid function so that

yk = σ(ak) (5.5)

where
σ(a) =

1
1 + exp(−a)

. (5.6)

Finally, for multiclass problems, a softmax activation function of the form (4.62)
is used. The choice of output unit activation function is discussed in detail in Sec-
tion 5.2.

We can combine these various stages to give the overall network function that,
for sigmoidal output unit activation functions, takes the form

yk(x,w) = σ

(
M∑

j=1

w(2)
kj h

(
D∑

i=1

w(1)
ji xi + w(1)

j0

)
+ w(2)

k0

)
(5.7)

where the set of all weight and bias parameters have been grouped together into a
vector w. Thus the neural network model is simply a nonlinear function from a set
of input variables {xi} to a set of output variables {yk} controlled by a vector w of
adjustable parameters.

This function can be represented in the form of a network diagram as shown
in Figure 5.1. The process of evaluating (5.7) can then be interpreted as a forward
propagation of information through the network. It should be emphasized that these
diagrams do not represent probabilistic graphical models of the kind to be consid-
ered in Chapter 8 because the internal nodes represent deterministic variables rather
than stochastic ones. For this reason, we have adopted a slightly different graphical

How can we learn NNs?

• We only have supervision for the output layer.

• How can we infer the weights for the edges
(connections) in the inner (hidden) layers?

• error backpropagation (aka backprop)

7

Derivation of Backprop

• Let us consider the following
feed forward neural network.

• D input nodes (features)

• M hidden nodes

• bias terms x0 and z0

• k output nodes

• The weight connecting node i
to node j is wji

• Note the reverse notation!

8

228 5. NEURAL NETWORKS

Figure 5.1 Network diagram for the two-
layer neural network corre-
sponding to (5.7). The input,
hidden, and output variables
are represented by nodes, and
the weight parameters are rep-
resented by links between the
nodes, in which the bias pa-
rameters are denoted by links
coming from additional input
and hidden variables x0 and
z0. Arrows denote the direc-
tion of information flow through
the network during forward
propagation.

x0

x1

xD

z0

z1

zM

y1

yK

w(1)
MD w(2)

KM

w(2)
10

hidden units

inputs outputs

and follows the same considerations as for linear models discussed in Chapters 3 and
4. Thus for standard regression problems, the activation function is the identity so
that yk = ak. Similarly, for multiple binary classification problems, each output unit
activation is transformed using a logistic sigmoid function so that

yk = σ(ak) (5.5)

where
σ(a) =

1
1 + exp(−a)

. (5.6)

Finally, for multiclass problems, a softmax activation function of the form (4.62)
is used. The choice of output unit activation function is discussed in detail in Sec-
tion 5.2.

We can combine these various stages to give the overall network function that,
for sigmoidal output unit activation functions, takes the form

yk(x,w) = σ

(
M∑

j=1

w(2)
kj h

(
D∑

i=1

w(1)
ji xi + w(1)

j0

)
+ w(2)

k0

)
(5.7)

where the set of all weight and bias parameters have been grouped together into a
vector w. Thus the neural network model is simply a nonlinear function from a set
of input variables {xi} to a set of output variables {yk} controlled by a vector w of
adjustable parameters.

This function can be represented in the form of a network diagram as shown
in Figure 5.1. The process of evaluating (5.7) can then be interpreted as a forward
propagation of information through the network. It should be emphasized that these
diagrams do not represent probabilistic graphical models of the kind to be consid-
ered in Chapter 8 because the internal nodes represent deterministic variables rather
than stochastic ones. For this reason, we have adopted a slightly different graphical

Derivation of Backprop

• Let us assume that the prediction error of the n-th
training instance is measured by the squared loss function.

!

• The derivative of loss w.r.t. a particular weight is

!

• Activation zj at node j is given by

!

• Using some activation function h 

9

242 5. NEURAL NETWORKS

uation of other derivatives such as the Jacobian and Hessian matrices, as we shall
see later in this chapter. Similarly, the second stage of weight adjustment using the
calculated derivatives can be tackled using a variety of optimization schemes, many
of which are substantially more powerful than simple gradient descent.

5.3.1 Evaluation of error-function derivatives
We now derive the backpropagation algorithm for a general network having ar-

bitrary feed-forward topology, arbitrary differentiable nonlinear activation functions,
and a broad class of error function. The resulting formulae will then be illustrated
using a simple layered network structure having a single layer of sigmoidal hidden
units together with a sum-of-squares error.

Many error functions of practical interest, for instance those defined by maxi-
mum likelihood for a set of i.i.d. data, comprise a sum of terms, one for each data
point in the training set, so that

E(w) =
N∑

n=1

En(w). (5.44)

Here we shall consider the problem of evaluating ∇En(w) for one such term in the
error function. This may be used directly for sequential optimization, or the results
can be accumulated over the training set in the case of batch methods.

Consider first a simple linear model in which the outputs yk are linear combina-
tions of the input variables xi so that

yk =
∑

i

wkixi (5.45)

together with an error function that, for a particular input pattern n, takes the form

En =
1
2

∑

k

(ynk − tnk)2 (5.46)

where ynk = yk(xn,w). The gradient of this error function with respect to a weight
wji is given by

∂En

∂wji
= (ynj − tnj)xni (5.47)

which can be interpreted as a ‘local’ computation involving the product of an ‘error
signal’ ynj − tnj associated with the output end of the link wji and the variable xni

associated with the input end of the link. In Section 4.3.2, we saw how a similar
formula arises with the logistic sigmoid activation function together with the cross
entropy error function, and similarly for the softmax activation function together
with its matching cross-entropy error function. We shall now see how this simple
result extends to the more complex setting of multilayer feed-forward networks.

In a general feed-forward network, each unit computes a weighted sum of its
inputs of the form

aj =
∑

i

wjizi (5.48)

242 5. NEURAL NETWORKS

uation of other derivatives such as the Jacobian and Hessian matrices, as we shall
see later in this chapter. Similarly, the second stage of weight adjustment using the
calculated derivatives can be tackled using a variety of optimization schemes, many
of which are substantially more powerful than simple gradient descent.

5.3.1 Evaluation of error-function derivatives
We now derive the backpropagation algorithm for a general network having ar-

bitrary feed-forward topology, arbitrary differentiable nonlinear activation functions,
and a broad class of error function. The resulting formulae will then be illustrated
using a simple layered network structure having a single layer of sigmoidal hidden
units together with a sum-of-squares error.

Many error functions of practical interest, for instance those defined by maxi-
mum likelihood for a set of i.i.d. data, comprise a sum of terms, one for each data
point in the training set, so that

E(w) =
N∑

n=1

En(w). (5.44)

Here we shall consider the problem of evaluating ∇En(w) for one such term in the
error function. This may be used directly for sequential optimization, or the results
can be accumulated over the training set in the case of batch methods.

Consider first a simple linear model in which the outputs yk are linear combina-
tions of the input variables xi so that

yk =
∑

i

wkixi (5.45)

together with an error function that, for a particular input pattern n, takes the form

En =
1
2

∑

k

(ynk − tnk)2 (5.46)

where ynk = yk(xn,w). The gradient of this error function with respect to a weight
wji is given by

∂En

∂wji
= (ynj − tnj)xni (5.47)

which can be interpreted as a ‘local’ computation involving the product of an ‘error
signal’ ynj − tnj associated with the output end of the link wji and the variable xni

associated with the input end of the link. In Section 4.3.2, we saw how a similar
formula arises with the logistic sigmoid activation function together with the cross
entropy error function, and similarly for the softmax activation function together
with its matching cross-entropy error function. We shall now see how this simple
result extends to the more complex setting of multilayer feed-forward networks.

In a general feed-forward network, each unit computes a weighted sum of its
inputs of the form

aj =
∑

i

wjizi (5.48)

5.3. Error Backpropagation 243

where zi is the activation of a unit, or input, that sends a connection to unit j, and wji

is the weight associated with that connection. In Section 5.1, we saw that biases can
be included in this sum by introducing an extra unit, or input, with activation fixed
at +1. We therefore do not need to deal with biases explicitly. The sum in (5.48) is
transformed by a nonlinear activation function h(·) to give the activation zj of unit j
in the form

zj = h(aj). (5.49)

Note that one or more of the variables zi in the sum in (5.48) could be an input, and
similarly, the unit j in (5.49) could be an output.

For each pattern in the training set, we shall suppose that we have supplied the
corresponding input vector to the network and calculated the activations of all of
the hidden and output units in the network by successive application of (5.48) and
(5.49). This process is often called forward propagation because it can be regarded
as a forward flow of information through the network.

Now consider the evaluation of the derivative of En with respect to a weight
wji. The outputs of the various units will depend on the particular input pattern n.
However, in order to keep the notation uncluttered, we shall omit the subscript n
from the network variables. First we note that En depends on the weight wji only
via the summed input aj to unit j. We can therefore apply the chain rule for partial
derivatives to give

∂En

∂wji
=

∂En

∂aj

∂aj

∂wji
. (5.50)

We now introduce a useful notation

δj ≡ ∂En

∂aj
(5.51)

where the δ’s are often referred to as errors for reasons we shall see shortly. Using
(5.48), we can write

∂aj

∂wji
= zi. (5.52)

Substituting (5.51) and (5.52) into (5.50), we then obtain

∂En

∂wji
= δjzi. (5.53)

Equation (5.53) tells us that the required derivative is obtained simply by multiplying
the value of δ for the unit at the output end of the weight by the value of z for the unit
at the input end of the weight (where z = 1 in the case of a bias). Note that this takes
the same form as for the simple linear model considered at the start of this section.
Thus, in order to evaluate the derivatives, we need only to calculate the value of δj

for each hidden and output unit in the network, and then apply (5.53).
As we have seen already, for the output units, we have

δk = yk − tk (5.54)

@En

@ynk
= ynk � tnk

Derivation of Backprop
• We would like to update the weights of the neural network

such that the loss is minimized.

• If we can somehow compute the derivative of the loss w.r.t.
to a particular weight then we can use stochastic gradient
descent for this purpose (recall logistic regression).

10

5.3. Error Backpropagation 243

where zi is the activation of a unit, or input, that sends a connection to unit j, and wji

is the weight associated with that connection. In Section 5.1, we saw that biases can
be included in this sum by introducing an extra unit, or input, with activation fixed
at +1. We therefore do not need to deal with biases explicitly. The sum in (5.48) is
transformed by a nonlinear activation function h(·) to give the activation zj of unit j
in the form

zj = h(aj). (5.49)

Note that one or more of the variables zi in the sum in (5.48) could be an input, and
similarly, the unit j in (5.49) could be an output.

For each pattern in the training set, we shall suppose that we have supplied the
corresponding input vector to the network and calculated the activations of all of
the hidden and output units in the network by successive application of (5.48) and
(5.49). This process is often called forward propagation because it can be regarded
as a forward flow of information through the network.

Now consider the evaluation of the derivative of En with respect to a weight
wji. The outputs of the various units will depend on the particular input pattern n.
However, in order to keep the notation uncluttered, we shall omit the subscript n
from the network variables. First we note that En depends on the weight wji only
via the summed input aj to unit j. We can therefore apply the chain rule for partial
derivatives to give

∂En

∂wji
=

∂En

∂aj

∂aj

∂wji
. (5.50)

We now introduce a useful notation

δj ≡ ∂En

∂aj
(5.51)

where the δ’s are often referred to as errors for reasons we shall see shortly. Using
(5.48), we can write

∂aj

∂wji
= zi. (5.52)

Substituting (5.51) and (5.52) into (5.50), we then obtain

∂En

∂wji
= δjzi. (5.53)

Equation (5.53) tells us that the required derivative is obtained simply by multiplying
the value of δ for the unit at the output end of the weight by the value of z for the unit
at the input end of the weight (where z = 1 in the case of a bias). Note that this takes
the same form as for the simple linear model considered at the start of this section.
Thus, in order to evaluate the derivatives, we need only to calculate the value of δj

for each hidden and output unit in the network, and then apply (5.53).
As we have seen already, for the output units, we have

δk = yk − tk (5.54)

Recall Calculus — Chain Rule

• If y is a function of x (y=f(x)), and x is a function
z (x = g(z)), then we can write

11

dy

dx

=
dy

dz

dz

dx

You can remember this as the two
dz factors canceling each other out.
But remember these are not factors
but differentials.

Derivation of Backprop
• A new notation

12

5.3. Error Backpropagation 243

where zi is the activation of a unit, or input, that sends a connection to unit j, and wji

is the weight associated with that connection. In Section 5.1, we saw that biases can
be included in this sum by introducing an extra unit, or input, with activation fixed
at +1. We therefore do not need to deal with biases explicitly. The sum in (5.48) is
transformed by a nonlinear activation function h(·) to give the activation zj of unit j
in the form

zj = h(aj). (5.49)

Note that one or more of the variables zi in the sum in (5.48) could be an input, and
similarly, the unit j in (5.49) could be an output.

For each pattern in the training set, we shall suppose that we have supplied the
corresponding input vector to the network and calculated the activations of all of
the hidden and output units in the network by successive application of (5.48) and
(5.49). This process is often called forward propagation because it can be regarded
as a forward flow of information through the network.

Now consider the evaluation of the derivative of En with respect to a weight
wji. The outputs of the various units will depend on the particular input pattern n.
However, in order to keep the notation uncluttered, we shall omit the subscript n
from the network variables. First we note that En depends on the weight wji only
via the summed input aj to unit j. We can therefore apply the chain rule for partial
derivatives to give

∂En

∂wji
=

∂En

∂aj

∂aj

∂wji
. (5.50)

We now introduce a useful notation

δj ≡ ∂En

∂aj
(5.51)

where the δ’s are often referred to as errors for reasons we shall see shortly. Using
(5.48), we can write

∂aj

∂wji
= zi. (5.52)

Substituting (5.51) and (5.52) into (5.50), we then obtain

∂En

∂wji
= δjzi. (5.53)

Equation (5.53) tells us that the required derivative is obtained simply by multiplying
the value of δ for the unit at the output end of the weight by the value of z for the unit
at the input end of the weight (where z = 1 in the case of a bias). Note that this takes
the same form as for the simple linear model considered at the start of this section.
Thus, in order to evaluate the derivatives, we need only to calculate the value of δj

for each hidden and output unit in the network, and then apply (5.53).
As we have seen already, for the output units, we have

δk = yk − tk (5.54)

delta can be thought as the
error associated with node j.
!
How much overall error does
it cause when we vary the
input arriving at node j?

Derivation of Backprop

13

242 5. NEURAL NETWORKS

uation of other derivatives such as the Jacobian and Hessian matrices, as we shall
see later in this chapter. Similarly, the second stage of weight adjustment using the
calculated derivatives can be tackled using a variety of optimization schemes, many
of which are substantially more powerful than simple gradient descent.

5.3.1 Evaluation of error-function derivatives
We now derive the backpropagation algorithm for a general network having ar-

bitrary feed-forward topology, arbitrary differentiable nonlinear activation functions,
and a broad class of error function. The resulting formulae will then be illustrated
using a simple layered network structure having a single layer of sigmoidal hidden
units together with a sum-of-squares error.

Many error functions of practical interest, for instance those defined by maxi-
mum likelihood for a set of i.i.d. data, comprise a sum of terms, one for each data
point in the training set, so that

E(w) =
N∑

n=1

En(w). (5.44)

Here we shall consider the problem of evaluating ∇En(w) for one such term in the
error function. This may be used directly for sequential optimization, or the results
can be accumulated over the training set in the case of batch methods.

Consider first a simple linear model in which the outputs yk are linear combina-
tions of the input variables xi so that

yk =
∑

i

wkixi (5.45)

together with an error function that, for a particular input pattern n, takes the form

En =
1
2

∑

k

(ynk − tnk)2 (5.46)

where ynk = yk(xn,w). The gradient of this error function with respect to a weight
wji is given by

∂En

∂wji
= (ynj − tnj)xni (5.47)

which can be interpreted as a ‘local’ computation involving the product of an ‘error
signal’ ynj − tnj associated with the output end of the link wji and the variable xni

associated with the input end of the link. In Section 4.3.2, we saw how a similar
formula arises with the logistic sigmoid activation function together with the cross
entropy error function, and similarly for the softmax activation function together
with its matching cross-entropy error function. We shall now see how this simple
result extends to the more complex setting of multilayer feed-forward networks.

In a general feed-forward network, each unit computes a weighted sum of its
inputs of the form

aj =
∑

i

wjizi (5.48)

5.3. Error Backpropagation 243

where zi is the activation of a unit, or input, that sends a connection to unit j, and wji

is the weight associated with that connection. In Section 5.1, we saw that biases can
be included in this sum by introducing an extra unit, or input, with activation fixed
at +1. We therefore do not need to deal with biases explicitly. The sum in (5.48) is
transformed by a nonlinear activation function h(·) to give the activation zj of unit j
in the form

zj = h(aj). (5.49)

Note that one or more of the variables zi in the sum in (5.48) could be an input, and
similarly, the unit j in (5.49) could be an output.

For each pattern in the training set, we shall suppose that we have supplied the
corresponding input vector to the network and calculated the activations of all of
the hidden and output units in the network by successive application of (5.48) and
(5.49). This process is often called forward propagation because it can be regarded
as a forward flow of information through the network.

Now consider the evaluation of the derivative of En with respect to a weight
wji. The outputs of the various units will depend on the particular input pattern n.
However, in order to keep the notation uncluttered, we shall omit the subscript n
from the network variables. First we note that En depends on the weight wji only
via the summed input aj to unit j. We can therefore apply the chain rule for partial
derivatives to give

∂En

∂wji
=

∂En

∂aj

∂aj

∂wji
. (5.50)

We now introduce a useful notation

δj ≡ ∂En

∂aj
(5.51)

where the δ’s are often referred to as errors for reasons we shall see shortly. Using
(5.48), we can write

∂aj

∂wji
= zi. (5.52)

Substituting (5.51) and (5.52) into (5.50), we then obtain

∂En

∂wji
= δjzi. (5.53)

Equation (5.53) tells us that the required derivative is obtained simply by multiplying
the value of δ for the unit at the output end of the weight by the value of z for the unit
at the input end of the weight (where z = 1 in the case of a bias). Note that this takes
the same form as for the simple linear model considered at the start of this section.
Thus, in order to evaluate the derivatives, we need only to calculate the value of δj

for each hidden and output unit in the network, and then apply (5.53).
As we have seen already, for the output units, we have

δk = yk − tk (5.54)

5.3. Error Backpropagation 243

where zi is the activation of a unit, or input, that sends a connection to unit j, and wji

is the weight associated with that connection. In Section 5.1, we saw that biases can
be included in this sum by introducing an extra unit, or input, with activation fixed
at +1. We therefore do not need to deal with biases explicitly. The sum in (5.48) is
transformed by a nonlinear activation function h(·) to give the activation zj of unit j
in the form

zj = h(aj). (5.49)

Note that one or more of the variables zi in the sum in (5.48) could be an input, and
similarly, the unit j in (5.49) could be an output.

For each pattern in the training set, we shall suppose that we have supplied the
corresponding input vector to the network and calculated the activations of all of
the hidden and output units in the network by successive application of (5.48) and
(5.49). This process is often called forward propagation because it can be regarded
as a forward flow of information through the network.

Now consider the evaluation of the derivative of En with respect to a weight
wji. The outputs of the various units will depend on the particular input pattern n.
However, in order to keep the notation uncluttered, we shall omit the subscript n
from the network variables. First we note that En depends on the weight wji only
via the summed input aj to unit j. We can therefore apply the chain rule for partial
derivatives to give

∂En

∂wji
=

∂En

∂aj

∂aj

∂wji
. (5.50)

We now introduce a useful notation

δj ≡ ∂En

∂aj
(5.51)

where the δ’s are often referred to as errors for reasons we shall see shortly. Using
(5.48), we can write

∂aj

∂wji
= zi. (5.52)

Substituting (5.51) and (5.52) into (5.50), we then obtain

∂En

∂wji
= δjzi. (5.53)

Equation (5.53) tells us that the required derivative is obtained simply by multiplying
the value of δ for the unit at the output end of the weight by the value of z for the unit
at the input end of the weight (where z = 1 in the case of a bias). Note that this takes
the same form as for the simple linear model considered at the start of this section.
Thus, in order to evaluate the derivatives, we need only to calculate the value of δj

for each hidden and output unit in the network, and then apply (5.53).
As we have seen already, for the output units, we have

δk = yk − tk (5.54)

error at output δj activation at input zi

i j
wji

Derivation of Backprop
• We know all activations z for all nodes by

forward propagation.

• We know the error δ for the output nodes. For
squared error this was, 
 

• If we can somehow compute the δs for the
inner (hidden) nodes, then we are done.

• backpropagation = recursive updating
14

5.3. Error Backpropagation 243

where zi is the activation of a unit, or input, that sends a connection to unit j, and wji

is the weight associated with that connection. In Section 5.1, we saw that biases can
be included in this sum by introducing an extra unit, or input, with activation fixed
at +1. We therefore do not need to deal with biases explicitly. The sum in (5.48) is
transformed by a nonlinear activation function h(·) to give the activation zj of unit j
in the form

zj = h(aj). (5.49)

Note that one or more of the variables zi in the sum in (5.48) could be an input, and
similarly, the unit j in (5.49) could be an output.

For each pattern in the training set, we shall suppose that we have supplied the
corresponding input vector to the network and calculated the activations of all of
the hidden and output units in the network by successive application of (5.48) and
(5.49). This process is often called forward propagation because it can be regarded
as a forward flow of information through the network.

Now consider the evaluation of the derivative of En with respect to a weight
wji. The outputs of the various units will depend on the particular input pattern n.
However, in order to keep the notation uncluttered, we shall omit the subscript n
from the network variables. First we note that En depends on the weight wji only
via the summed input aj to unit j. We can therefore apply the chain rule for partial
derivatives to give

∂En

∂wji
=

∂En

∂aj

∂aj

∂wji
. (5.50)

We now introduce a useful notation

δj ≡ ∂En

∂aj
(5.51)

where the δ’s are often referred to as errors for reasons we shall see shortly. Using
(5.48), we can write

∂aj

∂wji
= zi. (5.52)

Substituting (5.51) and (5.52) into (5.50), we then obtain

∂En

∂wji
= δjzi. (5.53)

Equation (5.53) tells us that the required derivative is obtained simply by multiplying
the value of δ for the unit at the output end of the weight by the value of z for the unit
at the input end of the weight (where z = 1 in the case of a bias). Note that this takes
the same form as for the simple linear model considered at the start of this section.
Thus, in order to evaluate the derivatives, we need only to calculate the value of δj

for each hidden and output unit in the network, and then apply (5.53).
As we have seen already, for the output units, we have

δk = yk − tk (5.54)

Derivation of Backprop

15

244 5. NEURAL NETWORKS

Figure 5.7 Illustration of the calculation of δj for hidden unit j by
backpropagation of the δ’s from those units k to which
unit j sends connections. The blue arrow denotes the
direction of information flow during forward propagation,
and the red arrows indicate the backward propagation
of error information.

zi

zj

δj
δk

δ1

wji wkj

provided we are using the canonical link as the output-unit activation function. To
evaluate the δ’s for hidden units, we again make use of the chain rule for partial
derivatives,

δj ≡ ∂En

∂aj
=

∑

k

∂En

∂ak

∂ak

∂aj
(5.55)

where the sum runs over all units k to which unit j sends connections. The arrange-
ment of units and weights is illustrated in Figure 5.7. Note that the units labelled k
could include other hidden units and/or output units. In writing down (5.55), we are
making use of the fact that variations in aj give rise to variations in the error func-
tion only through variations in the variables ak. If we now substitute the definition
of δ given by (5.51) into (5.55), and make use of (5.48) and (5.49), we obtain the
following backpropagation formula

δj = h′(aj)
∑

k

wkjδk (5.56)

which tells us that the value of δ for a particular hidden unit can be obtained by
propagating the δ’s backwards from units higher up in the network, as illustrated
in Figure 5.7. Note that the summation in (5.56) is taken over the first index on
wkj (corresponding to backward propagation of information through the network),
whereas in the forward propagation equation (5.10) it is taken over the second index.
Because we already know the values of the δ’s for the output units, it follows that
by recursively applying (5.56) we can evaluate the δ’s for all of the hidden units in a
feed-forward network, regardless of its topology.

The backpropagation procedure can therefore be summarized as follows.

Error Backpropagation

1. Apply an input vector xn to the network and forward propagate through
the network using (5.48) and (5.49) to find the activations of all the hidden
and output units.

2. Evaluate the δk for all the output units using (5.54).

3. Backpropagate the δ’s using (5.56) to obtain δj for each hidden unit in the
network.

4. Use (5.53) to evaluate the required derivatives.

244 5. NEURAL NETWORKS

Figure 5.7 Illustration of the calculation of δj for hidden unit j by
backpropagation of the δ’s from those units k to which
unit j sends connections. The blue arrow denotes the
direction of information flow during forward propagation,
and the red arrows indicate the backward propagation
of error information.

zi

zj

δj
δk

δ1

wji wkj

provided we are using the canonical link as the output-unit activation function. To
evaluate the δ’s for hidden units, we again make use of the chain rule for partial
derivatives,

δj ≡ ∂En

∂aj
=

∑

k

∂En

∂ak

∂ak

∂aj
(5.55)

where the sum runs over all units k to which unit j sends connections. The arrange-
ment of units and weights is illustrated in Figure 5.7. Note that the units labelled k
could include other hidden units and/or output units. In writing down (5.55), we are
making use of the fact that variations in aj give rise to variations in the error func-
tion only through variations in the variables ak. If we now substitute the definition
of δ given by (5.51) into (5.55), and make use of (5.48) and (5.49), we obtain the
following backpropagation formula

δj = h′(aj)
∑

k

wkjδk (5.56)

which tells us that the value of δ for a particular hidden unit can be obtained by
propagating the δ’s backwards from units higher up in the network, as illustrated
in Figure 5.7. Note that the summation in (5.56) is taken over the first index on
wkj (corresponding to backward propagation of information through the network),
whereas in the forward propagation equation (5.10) it is taken over the second index.
Because we already know the values of the δ’s for the output units, it follows that
by recursively applying (5.56) we can evaluate the δ’s for all of the hidden units in a
feed-forward network, regardless of its topology.

The backpropagation procedure can therefore be summarized as follows.

Error Backpropagation

1. Apply an input vector xn to the network and forward propagate through
the network using (5.48) and (5.49) to find the activations of all the hidden
and output units.

2. Evaluate the δk for all the output units using (5.54).

3. Backpropagate the δ’s using (5.56) to obtain δj for each hidden unit in the
network.

4. Use (5.53) to evaluate the required derivatives.

ak =
X

j

wkjzj =
X

j

wkjh(aj)

Q: why do we sum over k?
A: aj depends on ak as follows

@En

@ak
= �kBy the definition of δ,

From this relationship we have,

@ak
@aj

= wkjh
0(aj)

Putting it altogether

16

244 5. NEURAL NETWORKS

Figure 5.7 Illustration of the calculation of δj for hidden unit j by
backpropagation of the δ’s from those units k to which
unit j sends connections. The blue arrow denotes the
direction of information flow during forward propagation,
and the red arrows indicate the backward propagation
of error information.

zi

zj

δj
δk

δ1

wji wkj

provided we are using the canonical link as the output-unit activation function. To
evaluate the δ’s for hidden units, we again make use of the chain rule for partial
derivatives,

δj ≡ ∂En

∂aj
=

∑

k

∂En

∂ak

∂ak

∂aj
(5.55)

where the sum runs over all units k to which unit j sends connections. The arrange-
ment of units and weights is illustrated in Figure 5.7. Note that the units labelled k
could include other hidden units and/or output units. In writing down (5.55), we are
making use of the fact that variations in aj give rise to variations in the error func-
tion only through variations in the variables ak. If we now substitute the definition
of δ given by (5.51) into (5.55), and make use of (5.48) and (5.49), we obtain the
following backpropagation formula

δj = h′(aj)
∑

k

wkjδk (5.56)

which tells us that the value of δ for a particular hidden unit can be obtained by
propagating the δ’s backwards from units higher up in the network, as illustrated
in Figure 5.7. Note that the summation in (5.56) is taken over the first index on
wkj (corresponding to backward propagation of information through the network),
whereas in the forward propagation equation (5.10) it is taken over the second index.
Because we already know the values of the δ’s for the output units, it follows that
by recursively applying (5.56) we can evaluate the δ’s for all of the hidden units in a
feed-forward network, regardless of its topology.

The backpropagation procedure can therefore be summarized as follows.

Error Backpropagation

1. Apply an input vector xn to the network and forward propagate through
the network using (5.48) and (5.49) to find the activations of all the hidden
and output units.

2. Evaluate the δk for all the output units using (5.54).

3. Backpropagate the δ’s using (5.56) to obtain δj for each hidden unit in the
network.

4. Use (5.53) to evaluate the required derivatives.

Error at an
inner node j Derivative of the

activation function
at node j

The weight
connecting
node j to k

Error at an
outer node k

Backprop Algorithm
1. Apply the input vector xn to the network and forward

propagate the network using the following equations to
find the activations of all the hidden and output nodes. 
 

2. Evaluate δk for all the output nodes using 

3. Backpropagate the δ’s using the following equation to
obtain δj for each hidden node in the network. 

4. Use SGD to update weights

17

242 5. NEURAL NETWORKS

uation of other derivatives such as the Jacobian and Hessian matrices, as we shall
see later in this chapter. Similarly, the second stage of weight adjustment using the
calculated derivatives can be tackled using a variety of optimization schemes, many
of which are substantially more powerful than simple gradient descent.

5.3.1 Evaluation of error-function derivatives
We now derive the backpropagation algorithm for a general network having ar-

bitrary feed-forward topology, arbitrary differentiable nonlinear activation functions,
and a broad class of error function. The resulting formulae will then be illustrated
using a simple layered network structure having a single layer of sigmoidal hidden
units together with a sum-of-squares error.

Many error functions of practical interest, for instance those defined by maxi-
mum likelihood for a set of i.i.d. data, comprise a sum of terms, one for each data
point in the training set, so that

E(w) =
N∑

n=1

En(w). (5.44)

Here we shall consider the problem of evaluating ∇En(w) for one such term in the
error function. This may be used directly for sequential optimization, or the results
can be accumulated over the training set in the case of batch methods.

Consider first a simple linear model in which the outputs yk are linear combina-
tions of the input variables xi so that

yk =
∑

i

wkixi (5.45)

together with an error function that, for a particular input pattern n, takes the form

En =
1
2

∑

k

(ynk − tnk)2 (5.46)

where ynk = yk(xn,w). The gradient of this error function with respect to a weight
wji is given by

∂En

∂wji
= (ynj − tnj)xni (5.47)

which can be interpreted as a ‘local’ computation involving the product of an ‘error
signal’ ynj − tnj associated with the output end of the link wji and the variable xni

associated with the input end of the link. In Section 4.3.2, we saw how a similar
formula arises with the logistic sigmoid activation function together with the cross
entropy error function, and similarly for the softmax activation function together
with its matching cross-entropy error function. We shall now see how this simple
result extends to the more complex setting of multilayer feed-forward networks.

In a general feed-forward network, each unit computes a weighted sum of its
inputs of the form

aj =
∑

i

wjizi (5.48)

5.3. Error Backpropagation 243

where zi is the activation of a unit, or input, that sends a connection to unit j, and wji

is the weight associated with that connection. In Section 5.1, we saw that biases can
be included in this sum by introducing an extra unit, or input, with activation fixed
at +1. We therefore do not need to deal with biases explicitly. The sum in (5.48) is
transformed by a nonlinear activation function h(·) to give the activation zj of unit j
in the form

zj = h(aj). (5.49)

Note that one or more of the variables zi in the sum in (5.48) could be an input, and
similarly, the unit j in (5.49) could be an output.

For each pattern in the training set, we shall suppose that we have supplied the
corresponding input vector to the network and calculated the activations of all of
the hidden and output units in the network by successive application of (5.48) and
(5.49). This process is often called forward propagation because it can be regarded
as a forward flow of information through the network.

Now consider the evaluation of the derivative of En with respect to a weight
wji. The outputs of the various units will depend on the particular input pattern n.
However, in order to keep the notation uncluttered, we shall omit the subscript n
from the network variables. First we note that En depends on the weight wji only
via the summed input aj to unit j. We can therefore apply the chain rule for partial
derivatives to give

∂En

∂wji
=

∂En

∂aj

∂aj

∂wji
. (5.50)

We now introduce a useful notation

δj ≡ ∂En

∂aj
(5.51)

where the δ’s are often referred to as errors for reasons we shall see shortly. Using
(5.48), we can write

∂aj

∂wji
= zi. (5.52)

Substituting (5.51) and (5.52) into (5.50), we then obtain

∂En

∂wji
= δjzi. (5.53)

Equation (5.53) tells us that the required derivative is obtained simply by multiplying
the value of δ for the unit at the output end of the weight by the value of z for the unit
at the input end of the weight (where z = 1 in the case of a bias). Note that this takes
the same form as for the simple linear model considered at the start of this section.
Thus, in order to evaluate the derivatives, we need only to calculate the value of δj

for each hidden and output unit in the network, and then apply (5.53).
As we have seen already, for the output units, we have

δk = yk − tk (5.54)

5.3. Error Backpropagation 243

where zi is the activation of a unit, or input, that sends a connection to unit j, and wji

is the weight associated with that connection. In Section 5.1, we saw that biases can
be included in this sum by introducing an extra unit, or input, with activation fixed
at +1. We therefore do not need to deal with biases explicitly. The sum in (5.48) is
transformed by a nonlinear activation function h(·) to give the activation zj of unit j
in the form

zj = h(aj). (5.49)

Note that one or more of the variables zi in the sum in (5.48) could be an input, and
similarly, the unit j in (5.49) could be an output.

For each pattern in the training set, we shall suppose that we have supplied the
corresponding input vector to the network and calculated the activations of all of
the hidden and output units in the network by successive application of (5.48) and
(5.49). This process is often called forward propagation because it can be regarded
as a forward flow of information through the network.

Now consider the evaluation of the derivative of En with respect to a weight
wji. The outputs of the various units will depend on the particular input pattern n.
However, in order to keep the notation uncluttered, we shall omit the subscript n
from the network variables. First we note that En depends on the weight wji only
via the summed input aj to unit j. We can therefore apply the chain rule for partial
derivatives to give

∂En

∂wji
=

∂En

∂aj

∂aj

∂wji
. (5.50)

We now introduce a useful notation

δj ≡ ∂En

∂aj
(5.51)

where the δ’s are often referred to as errors for reasons we shall see shortly. Using
(5.48), we can write

∂aj

∂wji
= zi. (5.52)

Substituting (5.51) and (5.52) into (5.50), we then obtain

∂En

∂wji
= δjzi. (5.53)

Equation (5.53) tells us that the required derivative is obtained simply by multiplying
the value of δ for the unit at the output end of the weight by the value of z for the unit
at the input end of the weight (where z = 1 in the case of a bias). Note that this takes
the same form as for the simple linear model considered at the start of this section.
Thus, in order to evaluate the derivatives, we need only to calculate the value of δj

for each hidden and output unit in the network, and then apply (5.53).
As we have seen already, for the output units, we have

δk = yk − tk (5.54)

244 5. NEURAL NETWORKS

Figure 5.7 Illustration of the calculation of δj for hidden unit j by
backpropagation of the δ’s from those units k to which
unit j sends connections. The blue arrow denotes the
direction of information flow during forward propagation,
and the red arrows indicate the backward propagation
of error information.

zi

zj

δj
δk

δ1

wji wkj

provided we are using the canonical link as the output-unit activation function. To
evaluate the δ’s for hidden units, we again make use of the chain rule for partial
derivatives,

δj ≡ ∂En

∂aj
=

∑

k

∂En

∂ak

∂ak

∂aj
(5.55)

where the sum runs over all units k to which unit j sends connections. The arrange-
ment of units and weights is illustrated in Figure 5.7. Note that the units labelled k
could include other hidden units and/or output units. In writing down (5.55), we are
making use of the fact that variations in aj give rise to variations in the error func-
tion only through variations in the variables ak. If we now substitute the definition
of δ given by (5.51) into (5.55), and make use of (5.48) and (5.49), we obtain the
following backpropagation formula

δj = h′(aj)
∑

k

wkjδk (5.56)

which tells us that the value of δ for a particular hidden unit can be obtained by
propagating the δ’s backwards from units higher up in the network, as illustrated
in Figure 5.7. Note that the summation in (5.56) is taken over the first index on
wkj (corresponding to backward propagation of information through the network),
whereas in the forward propagation equation (5.10) it is taken over the second index.
Because we already know the values of the δ’s for the output units, it follows that
by recursively applying (5.56) we can evaluate the δ’s for all of the hidden units in a
feed-forward network, regardless of its topology.

The backpropagation procedure can therefore be summarized as follows.

Error Backpropagation

1. Apply an input vector xn to the network and forward propagate through
the network using (5.48) and (5.49) to find the activations of all the hidden
and output units.

2. Evaluate the δk for all the output units using (5.54).

3. Backpropagate the δ’s using (5.56) to obtain δj for each hidden unit in the
network.

4. Use (5.53) to evaluate the required derivatives.

5.3. Error Backpropagation 243

where zi is the activation of a unit, or input, that sends a connection to unit j, and wji

is the weight associated with that connection. In Section 5.1, we saw that biases can
be included in this sum by introducing an extra unit, or input, with activation fixed
at +1. We therefore do not need to deal with biases explicitly. The sum in (5.48) is
transformed by a nonlinear activation function h(·) to give the activation zj of unit j
in the form

zj = h(aj). (5.49)

Note that one or more of the variables zi in the sum in (5.48) could be an input, and
similarly, the unit j in (5.49) could be an output.

For each pattern in the training set, we shall suppose that we have supplied the
corresponding input vector to the network and calculated the activations of all of
the hidden and output units in the network by successive application of (5.48) and
(5.49). This process is often called forward propagation because it can be regarded
as a forward flow of information through the network.

Now consider the evaluation of the derivative of En with respect to a weight
wji. The outputs of the various units will depend on the particular input pattern n.
However, in order to keep the notation uncluttered, we shall omit the subscript n
from the network variables. First we note that En depends on the weight wji only
via the summed input aj to unit j. We can therefore apply the chain rule for partial
derivatives to give

∂En

∂wji
=

∂En

∂aj

∂aj

∂wji
. (5.50)

We now introduce a useful notation

δj ≡ ∂En

∂aj
(5.51)

where the δ’s are often referred to as errors for reasons we shall see shortly. Using
(5.48), we can write

∂aj

∂wji
= zi. (5.52)

Substituting (5.51) and (5.52) into (5.50), we then obtain

∂En

∂wji
= δjzi. (5.53)

Equation (5.53) tells us that the required derivative is obtained simply by multiplying
the value of δ for the unit at the output end of the weight by the value of z for the unit
at the input end of the weight (where z = 1 in the case of a bias). Note that this takes
the same form as for the simple linear model considered at the start of this section.
Thus, in order to evaluate the derivatives, we need only to calculate the value of δj

for each hidden and output unit in the network, and then apply (5.53).
As we have seen already, for the output units, we have

δk = yk − tk (5.54)

w(t+1)
ji = w(t)

ji � ⌘
@En

@wji

Activation Functions

18

Quiz

• Consider the following neural network with two input nodes,
two hidden nodes, and a single output node. Assuming that we
are using the squared loss function and the activation function
at all nodes is tanh, compute the gradient of the error w.r.t. w12

19

x1

x2

z1

z2

y1

E = 0.5(y1 - t)2

w12

@E

@w12
?

References

• Pattern Recognition and Machine Learning
(PRML) Sec 5.3.

20

