Multi-layer Neural Networks

COMP 527
Danushka Bollegala

v v

& LIVERPOOL

Neural Networks

e We have already learnt single layer neural
networks

e |t was called the Perceptron

e Unfortunately, it could learn only linear
relationships

e Quiz: What is meant by /inear separability?

e Can we stack multiple layers of neurons to learn
more complex (from non-linearly separable
data) functions?

Artificial Neural Networks

e There are different types of artificial neural networks
¢ Feed forward neural networks

® no backward links, only forward links

The most popular case.
Useful for learning
OUTPUT classifiers/regression models.

INPUT Typically 3 layers (one hidden).

/'
Recently there have been
work that learn 7 or more
hidden layers!

salls

Artificial Neural Networks

e There are different types of artificial neural networks
¢ Recurrent neural networks

e both backward and forward links exist

Useful for learning
temporal relations.

™~

e

INPUT OUTPUT

salls

Artificial Neural Networks

e There are different types of artificial neural networks

e Recursive neural networks

e Same neural network is applied recursively, following some structure

O
This

@
()
O (—) ()
film :
() ()
© O & ©
does n’t care
O (5]
about
© ©
® O @O
or
® O O O
wit ally
® O OO
cleverness other kind

of

intelligent humor

+ +

Used in NLP for

dependency parsing,
sentiment classification,

etc.

[Socher+ 13]

Can we learn multiple classes?

e With 1 logistic output
node we can only predict
two classes (binary
classification)

hidden units

* outputs

Y1

e With 2 such output

nodes we can predict 4
classes [(0,0), (0,1), (1,0),
(1,1)]

e With k such output nodes
we can predict 2¥ classes!

How can we learn NNs?

e We only have supervision for the output layer.

¢ How can we infer the weights for the edges
(connections) in the inner (hidden) layers?

® error backpropagation (aka backprop)

Derivation of Backprop

e et us consider the following
feed forward neural network.

hidden units

e D input nodes (features)

e M hidden nodes ; [y
' : E outputs

e bias terms Xy and zg

Y1

e Kk output nodes

e The weight connecting node |
to node jis w;

e Note the reverse notation!

Derivation of Backprop

Let us assume that the prediction error of the n-th
training instance is measured by the squared loss function.
E, = %Z(ynk — tnk)2

k

The derivative of loss w.r.t. a particular weight is

oE,
8ynk

Activation z;at node j is given by
CLj = Zwﬂzz

Using some activation function h

= Ynk — tnk

zj = h(a;)

Derivation of Backprop

e We would like to update the weights of the neural network
such that the loss is minimized.

e |f we can somehow compute the derivative of the loss w.r.t.
to a particular weight then we can use stochastic gradient
descent for this purpose (recall logistic regression).

8En o (9En 8aj

aUqu; (9aj (9wj7;

Recall Calculus — Chain Rule

e |[fyisafunction of x (y=f(x)), and x is a function
Z (x = g(2)), then we can write

@_dydz
dr dz dx

You can remember this as the two
dz factors canceling each other out.
But remember these are not factors
but differentials.

Derivation of Backprop

e A new notation

oE,

(Sj:

8aj

delta can be thought as the
error associated with node j.

How much overall error does
it cause when we vary the
input arriving at node j?

Derivation of Backprop

Clj: E TUjiZZ'
)

Oaj _
— Zj-

ow j; @ Wi

Ly,
0 — 5322

N

error at output o; activation at input z

13

Derivation of Backprop

e We know all activations z for all nodes by
forward propagation.

e We know the error 6 for the output nodes. For
squared error this was,

Ok = Yk — Lk

* |f we can somehow compute the 6s for the
inner (hidden) nodes, then we are done.

® backpropagation = recursive updating

Derivation of Backprop

o 8En o 8En 8ak
6j o 8aj N zk: (96% ﬁaj

Q: why do we sum over k?
A: g; depends on ax as follows

ar =) _wijzj =) wiih(ay)
j j

From this relationship we have,
0ak

v — .h’ .
aaj wk’] (aJ)
oF,,

By the definition of o, 94, — %

Putting it altogether

5j — hg(&j) Ek: wkj5k \

Error at an
Error at an outer node k

Inner node J perivative of the The weight

activation function ~ connecting
at node j nhode j to k

Backprop Algorithm

. Apply the input vector X, to the network and forward
propagate the network using the following equations to
find the activations of all the hidden and output nodes.

b=Nwn i)
)

. Evaluate o for all the output nodes using

Ok = Yk — tk

. Backpropagate the &'s using the fo
obtain o; for each hidden node in't
6; = h'(a;) Zwkj(Sk

. Use SGD to update weights

lowing equation to

ne network.

- ey _ @) Okn

ow = 0i% Jt

w:. —1mn
J awji 17

Activation Functions

»Sigmoid function®
sy=1/(1 + exp(-x))=

=Rectified linear unit=
sy=max(0,x)=

1.5 -1

\J
ro+

*Hyperbolic tangent *

sy=tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))=

SR o

15 2

2.5

18

Quiz

e Consider the following neural network with two input nodes,
two hidden nodes, and a single output node. Assuming that we
are using the squared loss function and the activation function
at all nodes is tanh, compute the gradient of the error w.r.t. wy,

References

¢ Pattern Recognition and Machine Learning
(PRML) Sec 5.3.

20

