# COMP527 <br> Data Mining and Visualisation Problem Set 0 

Danushka Bollegala

Question 1 Consider two vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{3}$ defined as $\boldsymbol{x}=(1,2,-1)^{\top}$ and $\boldsymbol{y}=(-1,0,1)^{\top}$. Answer the following questions about these two vectors.
A. Compute the length ( $\ell_{2}$ norm) of $\boldsymbol{x}$ and $\boldsymbol{y}$.
$\|\boldsymbol{x}\|_{2}=\sqrt{1+4+1}=\sqrt{6}$ and $\|\boldsymbol{y}\|_{2}=\sqrt{1+0+1}=\sqrt{2}$
B. Compute the inner product between $\boldsymbol{x}$ and $\boldsymbol{y}$.
(2 marks)
$\boldsymbol{x}^{\top} \boldsymbol{y}=-1+0+-1=-2$
C. Compute the cosine of the angle between the two vectors $\boldsymbol{x}$ and $\boldsymbol{y}$. (4 marks)

The definition of cosine similarity is $\frac{\boldsymbol{x}^{\top} \boldsymbol{y}}{\|\boldsymbol{x}\|_{2}\|\boldsymbol{y}\|_{2}}$. Therefore, the required value will be $-2 / \sqrt{12}$.
D. Compute the Euclidean distance between the end points corresponding to the two vectors $\boldsymbol{x}$ and $\boldsymbol{y}$.
(4 marks)
The definition of the Euclidean distance is $\sqrt{\sum_{i}\left(x_{i}-y_{i}\right)^{2}}$.
Therefore, we get $\sqrt{4+4+4}=2 \sqrt{3}$
E. For any two vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{d}$ such that $\|x\|_{2}=\|y\|_{2}=1$ show that the following relationship holds between their cosine similarity $\cos (\boldsymbol{x}, \boldsymbol{y})$ and their Euclidean distance $\operatorname{Euc}(\boldsymbol{x}, \boldsymbol{y})$.
( 6 marks)

$$
\operatorname{Euc}(\boldsymbol{x}, \boldsymbol{y})^{2}=2(1-\cos (\boldsymbol{x}, \boldsymbol{y}))
$$

$$
\begin{aligned}
\operatorname{Euc}(\boldsymbol{x}, \boldsymbol{y})^{2} & =(\boldsymbol{x}-\boldsymbol{y})^{\top}(\boldsymbol{x}-\boldsymbol{y}) \\
& =\boldsymbol{x}^{\top} \boldsymbol{x}+\boldsymbol{y}^{\top} \boldsymbol{y}-2 \boldsymbol{x} \boldsymbol{y} \\
& =1+1-2 \cos (\boldsymbol{x}, \boldsymbol{y}) \\
& =2(1-\cos (\boldsymbol{x}, \boldsymbol{y})
\end{aligned}
$$

Question 2 Consider a matrix $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ defined as follows:

$$
\mathbf{A}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

Answer the following questions related to $\mathbf{A}$.
A. Compute the transpose $\mathbf{A}^{\top}$.
(2 marks)
For a matrix $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \mathbf{A}^{\top}=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$. Therefore,
we have

$$
\mathbf{A}^{\top}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

B. Compute the determinant $\operatorname{det}(\mathbf{A})$.
$\operatorname{det}(\mathbf{A})=a c-b d=2 \times 2-1 \times 1=3$
C. Compute the inverse $\mathbf{A}^{-1}$.

$$
\mathbf{A}^{-1}=\frac{1}{\operatorname{det} \mathbf{A}}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

From which is follows,

$$
\mathbf{A}^{-1}=\left(\begin{array}{cc}
2 / 3 & -1 / 3 \\
-1 / 3 & 2 / 3
\end{array}\right)
$$

D. Compute the eigenvalues and eigenvectors of $\mathbf{A}$.

Eigenvector $\boldsymbol{x}$ corresponding to the eigenvalue $\lambda$ satisfies the equation $\mathbf{A} \boldsymbol{x}=\lambda \boldsymbol{x}$. From which it follows that $(\mathbf{A}-\lambda \mathbf{I}) \boldsymbol{x}=$ $\mathbf{0}$. Therefore, $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$. In this case, we get $\operatorname{det}\left(\begin{array}{cc}2-\lambda & 1 \\ 1 & 2-\lambda\end{array}\right)=0$. Solving this second-order polynomial equation we get $\lambda=1,3$, which are the eigenvalues. Substituting these values separately in the eigenvalue equation we get the eigevectors corresponding $\lambda=1$ and $\lambda=3$ to be respectively $(1,-1)^{\top}$ and $(1,1)^{\top}$, subjected to a scaling factor.

## Question 3

A. Given $\sigma(x)=\frac{1}{1+\exp (a x+b)}$, compute $\sigma^{\prime}(x)$, the differential of $\sigma(x)$ with respect to $x$.
$\sigma^{\prime}(x)=\frac{-a \exp (a x+b)}{(1+\exp (a x+b))^{2}}$
B. Given $H(p)=-p \log (p)-(1-p) \log (1-p)$, find the value of $p$ that maximises $H(p)$.
$H^{\prime}(p)=-\log (p)+\log (1-p)=0$ gives $p=0.5$
C. Find the maximum value of $g(x, y)=x^{2}+y^{2}$ such that $y \leq-x+1$.

Use Lagrange method of multipliers.

$$
\begin{aligned}
L(x, y, \lambda) & = & x^{2}+y^{2}+\lambda(y+x-1) \\
\frac{\partial L}{\partial x} & = & 2 x+\lambda=0 \\
\frac{\partial L}{\partial y} & = & 2 y+\lambda=0
\end{aligned}
$$

Substituting for $x$ and $y$ we get

$$
\begin{array}{cc}
L(\lambda)= & -\frac{\lambda^{2}}{2}-\lambda \\
\frac{\partial L}{\partial \lambda}=-\lambda-1=0 \\
\lambda=-1
\end{array}
$$

Therefore, $x=y=0.5$ is the maximiser. Substituting these $g(0.5,0.5)=0.5$. Geometric solutions that measure the radius of the circle touching the line $y=-x+1$ are also possible.

