COMP527 Data Mining and Visualisation Problem Set 0

Danushka Bollegala

Question 1 Consider two vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^3$ defined as $\boldsymbol{x} = (1, 2, -1)^\top$ and $\boldsymbol{y} = (-1, 0, 1)^\top$. Answer the following questions about these two vectors.

- A. Compute the length $(\ell_2 \text{ norm})$ of x and y. (4 marks) $||x||_2 = \sqrt{1+4+1} = \sqrt{6} \text{ and } ||y||_2 = \sqrt{1+0+1} = \sqrt{2}$
- B. Compute the inner product between x and y. (2 marks) $x^{\top}y = -1 + 0 + -1 = -2$
- C. Compute the cosine of the angle between the two vectors x and y. (4 marks)

The definition of cosine similarity is $\frac{\boldsymbol{x}^{\top}\boldsymbol{y}}{||\boldsymbol{x}||_2||\boldsymbol{y}||_2}$. Therefore, the required value will be $-2/\sqrt{12}$.

- D. Compute the Euclidean distance between the end points corresponding to the two vectors \boldsymbol{x} and \boldsymbol{y} . (4 marks) The definition of the Euclidean distance is $\sqrt{\sum_i (x_i - y_i)^2}$. Therefore, we get $\sqrt{4 + 4 + 4} = 2\sqrt{3}$
- E. For any two vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^d$ such that $||\boldsymbol{x}||_2 = ||\boldsymbol{y}||_2 = 1$ show that the following relationship holds between their cosine similarity $\cos(\boldsymbol{x}, \boldsymbol{y})$ and their Euclidean distance $\operatorname{Euc}(\boldsymbol{x}, \boldsymbol{y})$. (6 marks)

$$\operatorname{Euc}(\boldsymbol{x}, \boldsymbol{y})^2 = 2(1 - \cos(\boldsymbol{x}, \boldsymbol{y}))$$

$$\operatorname{Euc}(\boldsymbol{x}, \boldsymbol{y})^2 = (\boldsymbol{x} - \boldsymbol{y})^{\top} (\boldsymbol{x} - \boldsymbol{y})$$

= $\boldsymbol{x}^{\top} \boldsymbol{x} + \boldsymbol{y}^{\top} \boldsymbol{y} - 2\boldsymbol{x} \boldsymbol{y}$
= $1 + 1 - 2\cos(\boldsymbol{x}, \boldsymbol{y})$
= $2(1 - \cos(\boldsymbol{x}, \boldsymbol{y}) \square$

Question 2 Consider a matrix $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ defined as follows:

$$\mathbf{A} = \left(\begin{array}{cc} 2 & 1\\ 1 & 2 \end{array}\right)$$

Answer the following questions related to **A**.

A. Compute the transpose \mathbf{A}^{\top} .

For a matrix $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $\mathbf{A}^{\top} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$. Therefore, we have $\mathbf{A}^{\top} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$

- B. Compute the determinant det(A). $det(A) = ac - bd = 2 \times 2 - 1 \times 1 = 3$
- C. Compute the inverse \mathbf{A}^{-1} .

$$\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

From which is follows,

$$\mathbf{A}^{-1} = \begin{pmatrix} 2/3 & -1/3 \\ -1/3 & 2/3 \end{pmatrix}.$$

D. Compute the eigenvalues and eigenvectors of **A**. (6 marks) Eigenvector \boldsymbol{x} corresponding to the eigenvalue λ satisfies the equation $A\boldsymbol{x} = \lambda \boldsymbol{x}$. From which it follows that $(\mathbf{A} - \lambda \mathbf{I})\boldsymbol{x} =$ **0**. Therefore, det $(\mathbf{A} - \lambda \mathbf{I}) = 0$. In this case, we get det $\begin{pmatrix} 2-\lambda & 1\\ 1 & 2-\lambda \end{pmatrix} = 0$. Solving this second-order polynomial equation we get $\lambda = 1, 3$, which are the eigenvalues. Substituting these values separately in the eigenvalue equation we get the eigevectors corresponding $\lambda = 1$ and $\lambda = 3$ to be respectively $(1, -1)^{\top}$ and $(1, 1)^{\top}$, subjected to a scaling factor.

Question 3

A. Given $\sigma(x) = \frac{1}{1 + \exp(ax+b)}$, compute $\sigma'(x)$, the differential of $\sigma(x)$ with respect to x.

 $\sigma'(x) = \frac{-a \exp(ax+b)}{(1+\exp(ax+b))^2}$

B. Given $H(p) = -p \log(p) - (1-p) \log(1-p)$, find the value of p that maximises H(p).

 $H'(p) = -\log(p) + \log(1-p) = 0$ gives p = 0.5

C. Find the maximum value of $g(x, y) = x^2 + y^2$ such that $y \leq -x + 1$.

(2 marks)

(2 marks)

(4 marks)

Use Lagrange method of multipliers.

$$L(x, y, \lambda) = x^{2} + y^{2} + \lambda(y + x - 1)$$
$$\frac{\partial L}{\partial x} = 2x + \lambda = 0$$
$$\frac{\partial L}{\partial y} = 2y + \lambda = 0$$

Substituting for x and y we get

$$L(\lambda) = -\frac{\lambda^2}{2} - \lambda$$
$$\frac{\partial L}{\partial \lambda} = -\lambda - 1 = 0$$
$$\lambda = -1$$

Therefore, x = y = 0.5 is the maximiser. Substituting these g(0.5, 0.5) = 0.5. Geometric solutions that measure the radius of the circle touching the line y = -x + 1 are also possible.