Mathematical Preliminaries

COMP 527 Data Mining and Visualisation

Linear Algebra

- In Data Mining, we will represent data points using a set of coordinates (corresponding to various attributes/features). This mathematical representation is compact and powerful enough to describe parallel processing methods.
- The branch of mathematics that concerns with such coordinated representations is called linear algebra
- Reference: Chapter 02 of the MML book [https://mml-book.github.io/book/chapter02.pdf]

Vectors

- We will denote a vector \mathbf{x} in the n-dimensional real space by (lowercase bold fonts) $\mathbf{x} \in \mathbb{R}^{n}$
- We will use column vectors throughout this module (transposed by T when written as row vectors)
- e.g. $\mathbf{x}=(3.2,-9.1,0.1)^{\top}$
- A function can be seen as an infinite dimensional vector, where all function values are arranged as elements in the vector!

Matrices

- We obtain matrices by arranging a collection of vectors by columns or rows.
- We use uppercase bold fonts to denote matrices such as $\mathbf{M} \in \mathbb{R}^{\mathrm{n} \times m}$
- When $n=m$ we say M is square
- We denote the (i, j) element of \mathbf{M} by $M_{i, j}$
- If $M_{i, j}=M_{j, i}$ for all i and j, we say \mathbf{M} is symmetric. Otherwise, \mathbf{M} is asymmetric
- If all elements in \mathbf{M} are real numbers, then we call \mathbf{M} to be a real matrix, otherwise a complex matrix

Vector arithmetic

- Given two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{N}$ their addition is given by the vector $\mathbf{z} \in \mathbb{R}^{N}$ where i-th element z_{i} is given by $z_{i}=x_{i}+y_{i}$
- Their element-wise product (Hadamard product \otimes) is given by $z_{i}=x_{i} y_{i}$
- Their inner-product (dot product) is defined as

$$
\mathbf{x}^{\top} \mathbf{y}=\sum_{i=1}^{N} x_{i} y_{i}
$$

- Their outer-product $\left(\mathbf{x y}^{\top}\right)$ is defined as the matrix $\mathbf{M} \in \mathbb{R}^{N \times N}$ where $M_{i, j}=x_{i} y_{j}$

Quiz

- Given $\mathbf{x}=(1,2,3)^{\top}$ and $\mathbf{y}=(3,2,1)^{\top}$
- Find $\mathbf{x + y}$
- Find $\mathbf{x} \otimes \mathbf{y}$
- Find $\mathbf{x}^{\top} \mathbf{y}$
- Find $\mathbf{x y}^{\boldsymbol{\top}}$

Matrix arithmetic

- Matrices of the same shape (number of rows and columns) can be added elementwise
- $\mathbf{A}+\mathbf{B}=\mathbf{C}$ where $\mathrm{C}_{\mathrm{i}, \mathrm{j}}=\mathrm{A}_{\mathrm{i}, \mathrm{j}}+\mathrm{B}_{\mathrm{i}, \mathrm{j}}$
- Matrices can be multiplied if the number of columns of the first matrix is equal to the number of rows of the second matrix
$\mathbf{A} \in \mathbb{R}^{n \times m}, \mathbf{B} \in \mathbb{R}^{n \times p}$
- $\mathbf{A B}=\mathbf{C}$ where $C^{C_{i, j}=\sum_{k=1}^{m} A_{i, k} B_{k, j}}$

Quiz

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right), \mathbf{B}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 2 & 3 \\
-1 & 0 & 1
\end{array}\right)
$$

- Compute $\mathbf{A + B}$
- Compute B+A
- Compute AB
- Compute BA
- Is matrix product commutative in general?

Transpose and Inverse

- The transpose of a matrix \mathbf{A} is denoted by \mathbf{A}^{\top} and the (i, j) element of the transpose is $\mathrm{A}_{\mathrm{j}, \mathrm{i}}$
- $(\mathbf{A B})^{\top}=\mathbf{B}^{\top} \mathbf{A}^{\top}$
- The inverse of a square matrix \mathbf{A} is denoted by \mathbf{A}^{-1} and satisfies $\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$
- Here, $\mathbf{I} \in \mathbb{R}^{n \times n}$ is the unit matrix (all diagonal elements are set to 1 and non-diagonal elements are set to 0)

Computing the inverse of a 2×2 matrix

- Compute the inverse of the following matrix

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right)
$$

Determinant of a matrix

- Determinant of a matrix \mathbf{A} is denoted by $|\mathbf{A}|$
- For a 2×2 matrix \mathbf{A} its determinant is given by

$$
\mathbf{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),|\mathbf{A}|=a d-b c
$$

Quiz: Matrix inversion

- Write the generalised form for the inverse of a 2×2 matrix using the matrix determinant.

Linear independence

- Let us consider a vector \mathbf{v} formed as the linearlyweighted sum of a set of vectors
$\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{K}}\right\}$ with respective coefficients $\lambda_{1}, \ldots, \lambda_{\kappa}$ as follows:

$$
\mathbf{v}=\lambda_{1} \mathbf{x}_{1}+\ldots+\lambda_{K} \mathbf{x}_{K}=\sum_{i=1}^{K} \lambda_{i} \mathbf{x}_{i}
$$

- \mathbf{v} is called a linear combination of $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{K}}\right\}$
- The null vector $\mathbf{0}$ can always be represented as a linear combination of K vectors (Quiz: show this)
- We are interested in cases where we can represent a vector as the linear combination of non-zero coefficients.

Quiz: Linear independence

- Show that v cannot be expressed as a linear combination of \mathbf{a} and \mathbf{b}, where

$$
\begin{aligned}
& \mathbf{v}=(1,2,-3,4)^{\top} \\
& \mathbf{a}=(1,1,0,2)^{\top} \\
& \mathbf{b}=(-1,-2,1,1)^{\top}
\end{aligned}
$$

Rank

- The number of linear independent columns of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}(m \leq n)$ equals the number of linearly independent rows and is called the rank of \mathbf{A} is denoted by $\operatorname{rank}(\mathbf{A})$
- $\operatorname{rank}(\mathbf{A}) \leq \min (m, n)=m$
- If $\operatorname{rank}(\mathbf{A})=m$, then \mathbf{A} is said to be full-rank, otherwise rank deficit.
- Only full-rank square matrices are invertible.

Quiz:

- Find the ranks of the following matrices:

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right), \mathbf{B}=\left(\begin{array}{ccc}
1 & 2 & 1 \\
-2 & -3 & 1 \\
3 & 5 & 0
\end{array}\right)
$$

Matrix trace

- The sum of diagonal elements is called the trace of the matrix. Specifically,

$$
\operatorname{tr}(\mathbf{A})=\sum_{i} A_{i, i}
$$

- Find $\operatorname{tr}(\mathbf{A})$ for

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Eigendecomposition

- Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a square matrix. Then $\lambda \in \mathbb{R}$ is an eigenvalue of \mathbf{A} and a nonzero $\mathbf{x} \in \mathbb{R}^{n}$ is the corresponding eigenvector of \mathbf{A} if $\mathbf{A x}=\lambda \mathbf{x}$
- We call this the eigenvalue equation
- an n-dimensional square matrix has exactly n eigenvectors and we can express \mathbf{A} using its eigenvectors as follows. This called the eigendecomposition of \mathbf{A}.

$$
\mathbf{A}=\sum_{i=1}^{n} \lambda_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}
$$

Quiz:

- Find the eigenvalues and the corresponding eigenvectors of \mathbf{A}

$$
\mathbf{A}=\left(\begin{array}{ll}
4 & 2 \\
1 & 3
\end{array}\right)
$$

Vector Calculus

- This is also known as multivariate calculus, where we have functions of multiple variables (such as the dimensions in a vector) and we must compute partial or total derivatives w.r.t. the variables.
- All what you know from A/L calculus is still valid and can be used to derive the rules in vector calculus starting from the first principles.

Differentiation Rules

Product Rule: $\quad(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
Quotient Rule: $\quad\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}$
Sum Rule: $\quad(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$
Chain Rule: $\quad(g(f(x)))^{\prime}=(g \circ f)^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)$

Quiz: Given $f(x)=\log (x)$ and $g(x)=2 x+1$, compute the four derivatives corresponding to the rules stated above.

Partial derivative

Definition 5.5 (Partial Derivative). For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \boldsymbol{x} \mapsto$ $f(\boldsymbol{x}), \boldsymbol{x} \in \mathbb{R}^{n}$ of n variables x_{1}, \ldots, x_{n} we define the partial derivatives as

$$
\begin{align*}
\frac{\partial f}{\partial x_{1}} & =\lim _{h \rightarrow 0} \frac{f\left(x_{1}+h, x_{2}, \ldots, x_{n}\right)-f(\boldsymbol{x})}{h} \\
& \vdots \tag{5.39}\\
\frac{\partial f}{\partial x_{n}} & =\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{n-1}, x_{n}+h\right)-f(\boldsymbol{x})}{h}
\end{align*}
$$

and collect them in the row vector

$$
\nabla_{\boldsymbol{x}} f=\operatorname{grad} f=\frac{\mathrm{d} f}{\mathrm{~d} \boldsymbol{x}}=\left[\begin{array}{llll}
\frac{\partial f(\boldsymbol{x})}{\partial x_{1}} & \frac{\partial f(\boldsymbol{x})}{\partial x_{2}} & \cdots & \frac{\partial f(\boldsymbol{x})}{\partial x_{n}} \tag{5.40}
\end{array}\right] \in \mathbb{R}^{1 \times n}
$$

where n is the number of variables and 1 is the dimension of the im-age/range/co-domain of f. Here, we defined the column vector $\boldsymbol{x}=$ $\left[x_{1}, \ldots, x_{n}\right]^{\top} \in \mathbb{R}^{n}$. The row vector in (5.40) is called the gradient of f or the Jacobian and is the generalization of the derivative from Section 5.1.

Quiz: For $f(x, y)=\left(x+2 y^{3}\right)^{2}$ compute $\partial f / \partial x, \partial f / \partial y$ and $\nabla_{(x, y)} f$

Chain rule for multivariate functions

Consider a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ of two variables x_{1}, x_{2}. Furthermore, $x_{1}(t)$ and $x_{2}(t)$ are themselves functions of t. To compute the gradient of f with respect to t, we need to apply the chain rule (5.48) for multivariate functions as

$$
\frac{\mathrm{d} f}{\mathrm{~d} t}=\left[\begin{array}{ll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}}
\end{array}\right]\left[\begin{array}{l}
\frac{\partial x_{1}(t)}{\partial t} \tag{5.49}\\
\frac{\partial x_{2}(t)}{\partial t}
\end{array}\right]=\frac{\partial f}{\partial x_{1}} \frac{\partial x_{1}}{\partial t}+\frac{\partial f}{\partial x_{2}} \frac{\partial x_{2}}{\partial t}
$$

where d denotes the gradient and ∂ partial derivatives.
Quiz: Consider $f\left(x_{1}, x_{2}\right)=x_{1}{ }^{2}+2 x_{2}$, where $x_{1}=\sin (t)$ and $x_{2}=\cos (t)$. Find, df/dt.

Useful identities for computing gradients

$$
\begin{align*}
& \frac{\partial}{\partial \boldsymbol{X}} \boldsymbol{f}(\boldsymbol{X})^{\top}=\left(\frac{\partial \boldsymbol{f}(\boldsymbol{X})}{\partial \boldsymbol{X}}\right)^{\top} \\
& \frac{\partial}{\partial \boldsymbol{X}} \operatorname{tr}(\boldsymbol{f}(\boldsymbol{X}))=\operatorname{tr}\left(\frac{\partial \boldsymbol{f}(\boldsymbol{X})}{\partial \boldsymbol{X}}\right) \\
& \frac{\partial}{\partial \boldsymbol{X}} \operatorname{det}(\boldsymbol{f}(\boldsymbol{X}))=\operatorname{det}(\boldsymbol{f}(\boldsymbol{X})) \operatorname{tr}\left(\boldsymbol{f}(\boldsymbol{X})^{-1} \frac{\partial \boldsymbol{f}(\boldsymbol{X})}{\partial \boldsymbol{X}}\right) \\
& \frac{\partial}{\partial \boldsymbol{X}} \boldsymbol{f}(\boldsymbol{X})^{-1}=-\boldsymbol{f}(\boldsymbol{X})^{-1} \frac{\partial \boldsymbol{f}(\boldsymbol{X})}{\partial \boldsymbol{X}} \boldsymbol{f}(\boldsymbol{X})^{-1} \\
& \frac{\partial \boldsymbol{a}^{\top} \boldsymbol{X}^{-1} \boldsymbol{b}}{\partial \boldsymbol{X}}=-\left(\boldsymbol{X}^{-1}\right)^{\top} \boldsymbol{a} \boldsymbol{b}^{\top}\left(\boldsymbol{X}^{-1}\right)^{\top} \\
& \frac{\partial \boldsymbol{x}^{\top} \boldsymbol{a}}{\partial \boldsymbol{x}}=\boldsymbol{a}^{\top} \\
& \frac{\partial \boldsymbol{a}^{\top} \boldsymbol{x}}{\partial \boldsymbol{x}}=\boldsymbol{a}^{\top} \\
& \frac{\partial \boldsymbol{a}^{\top} \boldsymbol{X} \boldsymbol{b}}{\partial \boldsymbol{X}}=\boldsymbol{a} \boldsymbol{b}^{\top} \\
& \frac{\partial \boldsymbol{x}^{\top} \boldsymbol{B} \boldsymbol{x}}{\partial \boldsymbol{x}}=\boldsymbol{x}^{\top}\left(\boldsymbol{B}+\boldsymbol{B}^{\top}\right) \\
& \frac{\partial}{\partial \boldsymbol{s}}(\boldsymbol{x}-\boldsymbol{A} \boldsymbol{s})^{\top} \boldsymbol{W}(\boldsymbol{x}-\boldsymbol{A} \boldsymbol{s})=-2(\boldsymbol{x}-\boldsymbol{A} \boldsymbol{s})^{\top} \boldsymbol{W} \boldsymbol{A} \quad \text { for symmetric } \boldsymbol{W} \tag{5.108}
\end{align*}
$$

Note: You do not need to memorise these but must be able to verify these by yourself.

