students	$\frac{\text { reishts }}{s_{1}}$	$\frac{\text { weishrs }}{\omega_{1}}$
s_{2}	h_{2}	ω_{2}
\vdots		
s_{80}	h_{80}	ω_{80}

Pearson conelation coefficiant.

Lineor

$$
h=a \omega+b=a_{1} \sin (\omega)+\omega^{2} a_{2}+b
$$

$$
l(a, b)=\left(h_{i}-\tilde{h}_{i}\right)^{2}=\left(h_{i}-a \omega_{i}-b\right)^{2}
$$

$$
\int \frac{\partial l}{\partial a}=\frac{2\left(h_{i} a \omega_{i}-b x-\omega_{i}\right)}{}=0
$$

$$
\begin{aligned}
& a^{(k+1)}=a^{(k)}-\eta \frac{\partial l}{\partial a^{(k)}} \\
& \quad=a^{(k)}+2 \eta \omega_{i}\left(h_{i}-a_{0}^{(k)}-b\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial l}{\partial b}=2\left(h_{i}-a \omega_{i}-b\right)(-1)=0 \\
& 1-a \omega_{i}^{2}-b \omega_{i}=0
\end{aligned}
$$

$$
\begin{aligned}
& h_{i} \omega_{i}-a \omega_{i}^{2}-b \omega_{i}=0 \\
& h_{i}-a \omega_{i}-b=0 . \\
& \sum_{i} h_{i} \omega_{i}-a \sum_{i} \omega_{i}^{2}-b \varepsilon \omega_{i}=0 \\
& \sum_{i} h_{i}-a \sum \omega_{i}-b N=0
\end{aligned}
$$

$$
b^{(k+1)}=b^{(1)}-\eta \frac{\partial l}{\partial b}
$$

$$
=b^{(k)}+2\left(h_{i}-a^{(k)} \omega_{i}-b^{(k)}\right)
$$

$$
\left(a^{\left(P^{\prime}\right.}, b^{(k)}\right)=(0.3,0.5)
$$

$$
\begin{aligned}
\omega^{(k+1)}= & \omega^{(k)}-\eta \frac{\partial l}{\partial \omega^{(k)}} \\
& \text { Stochastic Grodient Desent } \\
& \text { CSGD) }
\end{aligned}
$$

(2).

