Text Mining

February 28 2019

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

3

February 28 2019

1 / 47

Part-of-Speech (POS) Tagging

- Symbolic
 - Rule-based
 - Transformation-based
- Probabilistic
 - Hidden Markov Models
 - Maximum Entropy Markov Models

(日) (同) (三) (三)

3

2 / 47

February 28 2019

• Conditional Random Fields

Part-of-Speech Tagging (POS)

- Task of tagging POS tags (Nouns, Verbs, Adjectives, Adverbs, ...) for words
- POS tags provide lot of information about a word
 - knowing whether a word is **noun** or **verb** gives information about neighbouring words
 - nouns are preceded by determiners; adjectives and verbs by nouns
 - useful for Named entity recognition; Machine Translation; Parsing; Word sense disambiguation
- Given a word, we assume it can belong to only one of the POS tags.
- POS Tagging problem
 - Given a sentence $S = w_1 w_2 \dots w_n$ consisting of *n* words, determine the corresponding tag sequence $P = P_1 P_2 \dots P_n$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

POS Tagging - Challenges

- Words often have more than one POS: e.g., back
 - The <u>back</u> door = adjective (JJ)
 - On my <u>back</u> = noun (NN)
 - *Win the voters <u>back</u>* = adverb (RB)
 - Promised to <u>back</u> the bill = verb (VB)

(日) (周) (三) (三)

POS Tagging - Tagset

Tee	Description	Fromalo	Tee	Description	Example
Tag	Description	Example	Tag	Description	Ехатріе
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb base form	eat
FW	foreign word	mea culpa	VBD	verb past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb gerund	eating
JJ	adjective	yellow	VBN	verb past participle	eaten
JJR	adj., comparative	bigger	VBP	verb non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, sing.	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	**	left quote	' or "
POS	possessive ending	's	"	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis	$],), \}, >$
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.1?
RBS	adverb, superlative	fastest	:	mid-sentence punc	:;
RP	particle	up, off			

Figure: Penn Treebank POS Tags

POS Tagging - Brown Corpus

- Brown Corpus standard corpus used for POS tagging task
- first text corpus of American English
- published in 1963-1964 by Francis and Kucera
- consists of 1 million words (500 samples of 2000+ words each)
- Brown corpus is PoS tagged with Penn TreeBank tagset.
- ullet pprox 11% of the word types are ambiguous with regard to POS
- \bullet \approx 40% of the word tokens are ambiguous
- ambiguity for common words. e.g. that
 - I know that he is honest = preposition (IN)
 - Yes, that play was nice = determiner (DT)
 - You can't to **that** far = adverb (RB)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Automatic POS Tagging

- Symbolic
 - Rule-based
 - Transformation-based
- Probabilistic
 - Hidden Markov Models
 - Maximum Entropy Markov Models

< ロ > < 同 > < 三 > < 三

3

7 / 47

February 28 2019

Conditional Random Fields

Automatic POS Tagging - Brill Tagger

- An example of Transformation-Based Learning
 - Basic idea: do a quick job first (using frequency), then revise it using contextual rules.
 - Painting metaphor from the readings
- Very popular (freely available, works fairly well)
- A supervised method: requires a tagged corpus

(日) (周) (三) (三)

Automatic POS Tagging - Brill Tagger

- Start with simple (less accurate) rules...learn better ones from tagged corpus
 - Tag each word initially with most likely POS
 - Examine set of transformations to see which improves tagging decisions compared to tagged corpus
 - Re-tag corpus using best transformation
 - Repeat until, e.g., performance doesn't improve
 - Result: tagging procedure (ordered list of transformations) which can be applied to new, untagged text

イロト イポト イヨト イヨト

Automatic POS Tagging: Brill Tagger - Example

- Examples:
 - They are expected to race tomorrow.
 - The race for outer space.
- Tagging algorithm:
 - 1. Tag all uses of "race" as NN (most likely tag in the Brown corpus)
 - They are expected to race/NN tomorrow
 - the race/NN for outer space
 - Use a transformation rule to replace the tag NN with VB for all uses of "race" preceded by the tag TO:
 - They are expected to race/VB tomorrow
 - the race/NN for outer space

イロト 不得下 イヨト イヨト

Automatic POS Tagging: Brill Tagger - Sample Final Rules

Rules: NN -> NNP if the tag of words i+1...i+2 is 'NNP' NN -> VB if the tag of the preceding word is 'TO' NN -> VBD if the tag of the following word is 'DT' NN -> VBD if the tag of the preceding word is 'NNS' NN -> JJ if the tag of the preceding word is 'DT', and the tag of the followi ng word is 'NN' NN -> NNP if the tag of the preceding word is 'NN', and the tag of the follow ing word is ',' NN -> NNP if the tag of words i+1...i+2 is 'NNP' NN -> IN if the tag of the preceding word is '.' NNP -> NN if the tag of words i-3...i-1 is 'JJ' NN -> JJ if the tag of the following word is 'JJ' NN -> VBP if the tag of the preceding word is 'PRP' WDT -> IN if the tag of the following word is 'DT' NN -> JJ if the tag of the preceding word is 'IN', and the tag of the followi ng word is 'NN' NN -> VBN if the tag of the preceding word is 'VBP' VBD -> VB if the tag of the preceding word is 'MD' NN -> JJ if the tag of the preceding word is 'CC', and the tag of the followi ng word is 'NN'

Automatic POS Tagging

- Symbolic
 - Rule-based
 - Transformation-based
- Probabilistic
 - Hidden Markov Models (HMM)
 - Maximum Entropy Markov Models (MEMM)
 - Conditional Random Field (CRF)

(日) (同) (三) (三)

Markov Chains

• Probabilistic **graphical model** for representing probabilistic assumptions in a graph.

- $Q = q_1, q_2, ..., q_N$: a set of states
- $A = a_{01}, a_{02}, \dots, a_{n1}, \dots, a_{nn}$: a transition probability matrix A, each a_{ij} representing the probability of moving from state i to state j, $s.t. \sum_{j=1}^{n} a_{ij} = 1 \quad \forall i$
- *q*₀, *q*_{end} : a special *start and end state* which are not associated with observations

Markov Chains

 $\pi_1, \pi_2, ..., \pi_N$: an **initial probability distribution** over states. π_i is the probability that the Markov chain will start in state *i*.

- Markov Assumption: $P(q_i|q_1, q_2, ..., q_{i-1}) = P(q_i|q_{i-1})$
- P(cold hot cold hot) =P(cold) P(hot|cold) P(cold|hot) P(hot|cold) $= 0.3 \times 0.2 \times 0.2 \times 0.2$

= 0.0024

Hidden Markov Model (HMM)

- Markov chains are useful for observed events
- However, in many cases the events are not observed
 - Example: POS tagging POS tags are not observed

Given a sequence of words (observed states) determine a sequence of state transitions (unobserved states)

• HMMs allows us to model both *observed events* (words that we see) and *hidden events* (POS tags).

February 28 2019

15 / 47

Hidden Markov Model

Hidden Markov Model (HMM)

3

・ロン ・四 ・ ・ ヨン ・ ヨン

HMM - Definition

$Q = q_1 q_2 \dots q_N$	a set of states
$A = a_{01}a_{02}\ldots a_{n1}\ldots a_{nn}$	a transition probability matrix <i>A</i> , each a_{ij} representing the probability of moving from state <i>i</i> to state <i>j</i> , s.t. $\sum_{j=1}^{n} a_{ij} = 1 \forall i$
$O=o_1o_2\ldots o_N$	a set of observations , each one drawn from a vo- cabulary $V = v_1, v_2,, v_V$.
$B = b_i(o_t)$	A set of observation likelihoods: , also called emission probabilities , each expressing the probability of an observation o_t being generated from a state <i>i</i> .
q_0, q_{end}	a special start and end state which are not asso- ciated with observation.

Markov Assumption: $P(q-1|q_1,...,q_{i-1}=P(q_i|q_{i-1}))$

Output Independence Assumption: $P(o_i|q_1,...,q_i,...,q_n,o_1,...,o_i,...,o_n) = P(o_i|q_i)$

- 31

A motivating example

Probability of transition to another Urn after picking a ball:

	U_1	U_2	U_3
U_1	0.1	0.4	0.5
U_2	0.6	0.2	0.2
U_3	0.3	0.4	0.3

-

< (T) > <

A Motivating Example (contd.)

Given: Transition Probabilities

	U_1	U_2	U_3
U_1	0.1	0.4	0.5
U_2	0.6	0.2	0.2
U_3	0.3	0.4	0.3

Given: Output	Probabilities
---------------	---------------

(日) (同) (三) (三)

February 28 2019

19 / 47

	R	G	В
U_1	0.3	0.5	0.2
U_2	0.1	0.4	0.5
U_3	0.6	0.1	0.3

Observation: RRGGBRGR

State Sequence (Urn chosen corresponding to each ball): ?

Diagrammatic Representation - 1

Transition Probabilities

	U_1	U_2	<i>U</i> ₃
U_1	0.1	0.4	0.5
U_2	0.6	0.2	0.2
U_3	0.3	0.4	0.3

Output Probabilities

	R	G	В
U_1	0.3	0.5	0.2
U_2	0.1	0.4	0.5
U_3	0.6	0.1	0.3

Observation: RRGGBRGR State Sequence (Urn chosen corresponding to each ball): ?

Diagrammatic Representation - 2

Transition Probabilities

	U_1	U_2	U_3
U_1	0.1	0.4	0.5
U_2	0.6	0.2	0.2
U_3	0.3	0.4	0.3

Output Probabilities

	R	G	В
U_1	0.3	0.5	0.2
U_2	0.1	0.4	0.5
U_3	0.6	0.1	0.3

February 28 2019

21 / 47

Observation: RRGGBRGR

Example (contd.)

Transition Probabilities (A)

	U_1	U_2	U_3
U_1	0.1	0.4	0.5
U_2	0.6	0.2	0.2
U_3	0.3	0.4	0.3

Output Probabilities (B)

	R	G	В
U_1	0.3	0.5	0.2
U_2	0.1	0.4	0.5
U_3	0.6	0.1	0.3

22 / 47

- States Set: $S = \{U_1, U_2, U_3\}$
- Observation Set: $V = \{R, G, B\}$
- Observation Sequence:
 - $O = \{O_1, ..., O_n\}$
- State Sequence:

• $Q = \{q_1...,q_n\}$

- Initial Probability: ϵ
 - $\epsilon_i = P(q_i = U_i)$

Observations and states

	O_1	O_2	<i>O</i> ₃	O_4	O_5	O_6	<i>O</i> ₇	O_8
OBS:	R	R	G	G	В	R	G	R
State:	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8

 $S_i = U_1/U_2/U_3$; A particular state

- S: State sequence
- O: Observation sequence
- $S^* =$ 'best' possible state (urn) sequence

Goal: Maximize P(S * | O by choosing 'best' S)

- Goal: Maximize *P*(*S*|*O*) where *S* is the State Sequence and *O* is the Observation Sequence
 - $S^* = \operatorname{argmax}_s(P(S|O))$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

$$P(S|O) = P(S_{1-8}|O_{1-8})$$

$$P(S|O) = P(S_1|O)P(S_2|S_1, O)P(S_3|S_{1-2}, O)....P(S_8|S_{1-7}, O)$$

Markov Assumption: a state depends only on the previous state

$$P(S|O) = P(S_1|O)P(S_2|S_1, O)P(S_3|S_2, O)....P(S_8|S_7, O)$$

Baye's Theorem

 $P(A|B) = \frac{P(A)P(B|A)}{P(B)}$ P(A): Prior P(B|A): Likelihood

 $argmax_{s}P(S|O) = argmax_{x}P(S)P(O|S)$

State Transitions Probability

 $P(S) = P(S_{1-8})$ $P(S) = P(S_1)P(S_2|S_1)P(S_3|S_{1-2})P(S_4|S_{1-3})...P(S_8|S_{1-7})$

By Markov Assumption (k=1)

$$P(S) = P(S_1)P(S_2|S_1)P(S_3|S_2)P(S_4|S_3)....P(S_8|S_7)$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Observations Sequence Probability

$$\begin{array}{l} P(O|S) = \\ P(O_1|S_{1-8}) P(O_2|O_1,S_{1-8}) P(O_3|O_{1-2},S_{1-8}) ... P(O_8|O_{1-7},S_{1-8}) \end{array}$$

Assumption that ball drawn depends only on the Urn Chosen

$$P(O|S) = P(O_1|S_1)P(O_2|S_2)P(O_3|S_3)....P(O_8|S_8)$$

P(S|O) = P(S)P(O|S)

 $P(S|O) = P(S_1)P(S_2|S_1)P(S_3|S_2)P(S_4|S_3)...P(S_8|S_7)P(O_1|S_1)$ $P(O_2|S_2)P(O_3|S_3)....P(O_8|S_8)$

> February 28 2019

26 / 47

	O_0	O_1	02	<i>O</i> ₃	O_4	O_5	O_6	O_7	O_8	
OBS:	ϵ	R	R	G	G	В	R	G	R	
State:	S_0	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9

 $\begin{array}{ll} P(S).P(O|S) \\ = & \left[P(O_0|S_0).P(S_1|S_0) \right] \\ & \left[P(O_1|S_1).P(S_2|S_1) \right] \\ & \left[P(O_2|S_2).P(S_3|S_2) \right] \\ & \left[P(O_3|S_3).P(S_4|S_3) \right] \\ & \left[P(O_4|S_4).P(S_5|S_4) \right] \\ & \left[P(O_5|S_5).P(S_6|S_5) \right] \\ & \left[P(O_6|S_6).P(S_7|S_6) \right] \\ & \left[P(O_7|S_7).P(S_8|S_7) \right] \\ & \left[P(O_8|S_8).P(S_9|S_8) \right] \end{array}$

States S_0 and S_9 is introduced as initial and final states

After S_8 the next state is S_9 with probability 1, i.e., $P(S_9|S_8) == 1$

 O_0 is ϵ -transition

<ロ> (日) (日) (日) (日) (日)

February 28 2019

3

28 / 47

 $P(O_k|S_k).P(S_{k+1}|S_k) = P(S_k \xrightarrow{o_k} S_{k+1})$

Three problems of HMM

- Problem 1 (Decoding): Given an observation sequence O and an HMM $\lambda = (A, B)$, discover the best hidden state sequence S.
- Problem 2 (Computing Likelihood): Given an HMM $\lambda = (A, B)$ and an observation sequence O, determine the likelihood $P(O|\lambda)$.
- **Problem 3 (Learning)** : Given an observation sequence *O* and the set of states in the HMM, learn the HMM parameters *A* and *B*.

イロト 不得下 イヨト イヨト

• **Problem 1 (Decoding)**: Given an observation sequence O and an HMM $\lambda = (A, B)$, discover the best hidden state sequence S.

Why is it difficult?

< 口 > < 同 > < 三 > < 三

Viterbi Algorithm for the Urn problem (first two symbols)

3

∃ → (∃ →

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

HMM - Computational Complexity

February 28 2019 32 / 47

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

HMM - Computational Complexity

- if the tree is grown in this manner
 - RRGGBRGR Observation Sequence length = 9 (including epsilon)
 - at each level multiply the node by 3
 - level 1 (ϵ) 3¹, at level 2 (R) 3², ...at level 9 (R) 3⁹ (nodes at leaf)
 - complexity without restriction = $|S|^{|o|}$

|S| = Number o States, |O| = length of the observation sequence

イロト 不得下 イヨト イヨト

Viterbi Algorithm for the Urn problem (first two symbols)

- At every stage, we only keep three nodes
- at the end of observation sequence we have three nodes (total nodes -3×8)

February 28 2019

34 / 47

complexity comes down from |S||o| to |S| |o|

Probabilistic FSM

E 990

・ロト ・四ト ・ヨト ・ヨト

Probabilistic FSM (contd.)

æ

イロト イポト イヨト イヨト

Probabilistic FSM (contd.)

3

<ロ> (日) (日) (日) (日) (日)

Tabular Representation of the Tree

	ϵ	<i>a</i> 1	a ₂	a_1	a ₂
S_1	1.0	(1.0*0.1,0.0*0.2)	(0.02,	(0.009,	(0.0024,
		= (0.1 ,0.0)	0.09)	0.012)	0.0081)
S_2	0.0	(1.0*0.3,0.0*0.3)	(0.04,	(0.027 ,	(0.0048,
		= (0.3 ,0.0)	0.06)	0.018)	0.0054)

• Number of columns = length of observation sequence +1 (ϵ)

• Rows - ending state

3

(日) (同) (三) (三)

Goal: choose the most probable tag sequence given the observation sequence of *n* words $\hat{w_1^n}$

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

Using Bayes' rule

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} \frac{P(w_1^n | t_1^n) P(t_1^n)}{P(w_1^n)}$$

Simplifying further by dropping the denominator

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(w_1^n | t_1^n) P(t_1^n)$$

イロト 不得下 イヨト イヨト 二日

HMM makes two further assumptions:

probability of a word depends only on its tag and is independent of neighbouring words and tags

$$P(w_1^n|t_1^n) \approx \prod_{i=1}^n P(w_i|t_i)$$

Probability of a word depends only on its tag and is independent of neighbouring words and tags

$$P(t_1^n) \approx \prod_{i=1}^n P(t_i|t_{i-1})$$

Using these simplifications:

February 28 2019

40 / 47

Figure: Markov chain corresponding to the hidden states of HMM. The transition probabilities *A* are used to compute the prior probability.

▲ □ ► ▲ □ ► ▲

February 28 2019

41 / 47

Figure: Observation likelihoods *B* for the HMM.

Figure: Observation likelihoods *B* for the HMM.

Viterbi Algorithm - Pseudocode

```
function VITERBI(observations of len T,state-graph) returns best-path

num-states \leftarrow NUM-OF-STATES(state-graph)

Create a path probability matrix viterbi[num-states+2,T+2]

viterbi[0,0] \leftarrow 1.0

for each state s from 1 to T do

for each state s from 1 to num-states do

viterbi[s,t] \leftarrow \max_{1 \le t' \le num-states} viterbi[s',t-1] * a_{s',s} * b_s(o_t)

backpointer[s,t] \leftarrow \max_{1 \le t' \le num-states} viterbi[s',t-1] * a_{s',s}

Backtrace from highest probability state in final column of viterbi[] and return path
```

Figure 6.10 Viterbi algorithm for finding optimal sequence of tags. Given an observation sequence and an HMM $\lambda = (A, B)$, the algorithm returns the state-path through the HMM which assigns maximum likelihood to the observation sequence. Note that states 0 and N+1 are non-emitting *start* and *end* states.

POS Tagging - Example

- Janet will back the bill
- Janet/NNP will/MD back/VB the/DT bill/NN

	NNP	MD	VB	JJ	NN	RB	DT
$\langle s \rangle$	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

イロト イ理ト イヨト イヨト 二日

POS Tagging - Example

- Janet will back the bill
- Janet/NNP will/MD back/VB the/DT bill/NN

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0.000097	0
NN	0	0.000200	0.000223	0.000006	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

POS Tagging - Example

- Janet will back the bill
- \bullet Janet/NNP will/MD back/VB the/DT bill/NN

