Text Mining

February 282019

Part-of-Speech (POS) Tagging

- Symbolic
- Rule-based
- Transformation-based
- Probabilistic
- Hidden Markov Models
- Maximum Entropy Markov Models
- Conditional Random Fields

Part-of-Speech Tagging (POS)

- Task of tagging POS tags (Nouns, Verbs, Adjectives, Adverbs, ...) for words
- POS tags provide lot of information about a word
- knowing whether a word is noun or verb gives information about neighbouring words
- nouns are preceded by determiners; adjectives and verbs by nouns
- useful for Named entity recognition; Machine Translation; Parsing; Word sense disambiguation
- Given a word, we assume it can belong to only one of the POS tags.
- POS Tagging problem
- Given a sentence $S=w_{1} w_{2} \ldots w_{n}$ consisting of n words, determine the corresponding tag sequence $P=P_{1} P_{2} \ldots . P_{n}$

POS Tagging - Challenges

- Words often have more than one POS: e.g., back
- The back door $=$ adjective (JJ)
- On my back $=$ noun (NN)
- Win the voters back $=$ adverb (RB)
- Promised to back the bill = verb (VB)

POS Tagging - Tagset

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	
CD	cardinal number	one, two	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb base form	eat
FW	foreign word	mea culpa	VBD	verb past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb gerund	eating
JJ	adjective	yellow	VBN	verb past participle	eaten
JJR	adj., comparative	bigger	VBP	verb non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, sing.	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	\#	pound sign	\#
PDT	predeterminer	all, both	"	left quote	'or "
POS	possessive ending	's	"	right quote	, or "
PRP	personal pronoun	I, you, he	(left parenthesis	[,, , $2,<$
PRP\$	possessive pronoun	your, one's)	right parenthesis],), \}, >
RB	adverb	quickly, never	,	comma	
RBR	adverb, comparative	faster		sentence-final punc	! ?
RBS	adverb, superlative	fastest	:	mid-sentence punc	, ...
RP	particle	$u p$, off			

Figure: Penn Treebank POS Tags

POS Tagging - Brown Corpus

- Brown Corpus - standard corpus used for POS tagging task
- first text corpus of American English
- published in 1963-1964 by Francis and Kucera
- consists of 1 million words (500 samples of $2000+$ words each)
- Brown corpus is PoS tagged with Penn TreeBank tagset.
- $\approx 11 \%$ of the word types are ambiguous with regard to POS
- $\approx 40 \%$ of the word tokens are ambiguous
- ambiguity for common words. e.g. that
- I know that he is honest = preposition (IN)
- Yes, that play was nice $=$ determiner (DT)
- You can't to that far $=$ adverb (RB)

Automatic POS Tagging

- Symbolic
- Rule-based
- Transformation-based
- Probabilistic
- Hidden Markov Models
- Maximum Entropy Markov Models
- Conditional Random Fields

Automatic POS Tagging - Brill Tagger

- An example of Transformation-Based Learning
- Basic idea: do a quick job first (using frequency), then revise it using contextual rules.
- Painting metaphor from the readings
- Very popular (freely available, works fairly well)
- A supervised method: requires a tagged corpus

Automatic POS Tagging - Brill Tagger

- Start with simple (less accurate) rules...learn better ones from tagged corpus
- Tag each word initially with most likely POS
- Examine set of transformations to see which improves tagging decisions compared to tagged corpus
- Re-tag corpus using best transformation
- Repeat until, e.g., performance doesn't improve
- Result: tagging procedure (ordered list of transformations) which can be applied to new, untagged text

Automatic POS Tagging: Brill Tagger - Example

- Examples:
- They are expected to race tomorrow.
- The race for outer space.
- Tagging algorithm:

1. Tag all uses of "race" as NN (most likely tag in the Brown corpus)

- They are expected to race/NN tomorrow
- the race/NN for outer space

2. Use a transformation rule to replace the tag NN with VB for all uses of "race" preceded by the tag TO:

- They are expected to race/VB tomorrow
- the race/NN for outer space

Automatic POS Tagging: Brill Tagger - Sample Final Rules

```
Rules:
NN }->>\mathrm{ NNP if the tag of words i+1...i+2 is 'NNP'
NN }->\mathrm{ VB if the tag of the preceding word is 'TO'
NN -> VBD if the tag of the following word is 'DT'
NN }->\mathrm{ VBD if the tag of the preceding word is 'NNS"
NN }->>\mathrm{ JJ if the tag of the preceding word is 'DT', and the tag of the followi
ng word is 'NN'
NN }->\mathrm{ \ NNP if the tag of the preceding word is 'NN', and the tag of the follow
ing word is ','
NN -> NNP if the tag of words i+1...i+2 is 'NNP"
NN -> IN if the tag of the preceding word is '."
NNP }->>\mathrm{ NN if the tag of words i-3...i-1 is 'JJ'
NN -> JJ if the tag of the following word is 'JJ'
NN -> VBP if the tag of the preceding word is 'PRP"
WDT -> IN if the tag of the following word is "DT"
NN }->\mathrm{ JJ if the tag of the preceding word is 'IN', and the tag of the followi
ng word is 'NN"
NN }->>\mathrm{ VBN if the tag of the preceding word is 'VBP'
VBD }->>\mathrm{ VB if the tag of the preceding word is 'MD'
NN }->\mathrm{ > JJ if the tag of the preceding word is ' 'CC', and the tag of the followi
ng word is 'NN'
```


Automatic POS Tagging

- Symbolic
- Rule-based
- Transformation-based
- Probabilistic
- Hidden Markov Models (HMM)
- Maximum Entropy Markov Models (MEMM)
- Conditional Random Field (CRF)

Markov Chains

- Probabilistic graphical model for representing probabilistic assumptions in a graph.

- $Q=q_{1}, q_{2}, \ldots, q_{N}$: a set of states
- $A=a_{01}, a_{02}, \ldots . a_{n 1}, \ldots . ., a_{n n}: ~ a$ transition probability matrix A, each $a_{i j}$ representing the probability of moving from state i to state j, s.t. $\sum_{j=1}^{n} a_{i j}=1 \quad \forall i$
- $q_{0}, q_{\text {end }}$: a special start and end state which are not associated with observations

Markov Chains

$\pi_{1}, \pi_{2}, \ldots ., \pi_{N}$: an initial probability distribution over states. π_{i} is the probability that the Markov chain will start in state i.

- Markov Assumption:

$$
P\left(q_{i} \mid q_{1}, q_{2}, \ldots ., q_{i-1}\right)=P\left(q_{i} \mid q_{i-1}\right)
$$

- $P($ cold hot cold hot $)=$
$P($ cold $) P($ hot \mid cold $) P($ cold \mid hot $) P($ hot \mid cold $)$
$=0.3 \times 0.2 \times 0.2 \times 0.2$
$=0.0024$

Hidden Markov Model (HMM)

- Markov chains are useful for observed events
- However, in many cases the events are not observed - Example: POS tagging - POS tags are not observed

> Given a sequence of words (observed states) determine a sequence of state transitions (unobserved states)

- HMMs allows us to model both observed events (words that we see) and hidden events (POS tags).

Hidden Markov Model (HMM)

HMM - Definition

$Q=q_{1} q_{2} \ldots q_{N}$	a set of states $A=a_{01} a_{02} \ldots a_{n 1} \ldots a_{n n}$ a transition probability matrix A, each $a_{i j}$ rep- resenting the probability of moving from state i to state j, s.t. $\sum_{j=1}^{n} a_{i j}=1 \quad \forall i$
$O=o_{1} o_{2} \ldots o_{N}$	a set of observations, each one drawn from a vo- cabulary $V=v_{1}, v_{2}, \ldots, v_{V}$.
$B=b_{i}\left(o_{t}\right)$	A set of observation likelihoods:, also called emission probabilities, each expressing the
$q_{0}, q_{\text {end }}$	probability of an observation o_{t} being generated from a state i.
a special start and end state which are not asso- ciated with observation.	

Markov Assumption: $P\left(q-1 \mid q_{1}, \ldots . . q_{i-1}=P\left(q_{i} \mid q_{i-1}\right)\right.$

Output Independence Assumption:

$$
P\left(o_{i} \mid q_{1}, \ldots, q_{i}, \ldots, q_{n}, o_{1}, \ldots, o_{i}, \ldots, o_{n}\right)=P\left(o_{i} \mid q_{i}\right)
$$

A motivating example

Urn 1

\# of Red = 30
\# of Green $=50$
\# of Blue $=20$

Urn 2
\# of Red $=10$
\# of Green $=40$
\# of Blue = 50

Urn 3
\# of Red $=60$
\# of Green = 10
\# of Blue $=30$

Probability of transition to another Urn after picking a ball:

	U_{1}	U_{2}	U_{3}
U_{1}	0.1	0.4	0.5
U_{2}	0.6	0.2	0.2
U_{3}	0.3	0.4	0.3

A Motivating Example (contd.)

Given: Transition Probabilities

	U_{1}	U_{2}	U_{3}
U_{1}	0.1	0.4	0.5
U_{2}	0.6	0.2	0.2
U_{3}	0.3	0.4	0.3

Observation: RRGGBRGR

State Sequence (Urn chosen corresponding to each ball): ?

Diagrammatic Representation - 1

Transition Probabilities

	U_{1}	U_{2}	U_{3}
U_{1}	0.1	0.4	0.5
U_{2}	0.6	0.2	0.2
U_{3}	0.3	0.4	0.3

Output Probabilities

	R	G	B
U_{1}	0.3	0.5	0.2
U_{2}	0.1	0.4	0.5
U_{3}	0.6	0.1	0.3

Observation: RRGGBRGR State Sequence (Urn chosen corresponding to each ball): ?

Diagrammatic Representation - 2

Transition Probabilities

	U_{1}	U_{2}	U_{3}
U_{1}	0.1	0.4	0.5
U_{2}	0.6	0.2	0.2
U_{3}	0.3	0.4	0.3

Output Probabilities

	R	G	B
U_{1}	0.3	0.5	0.2
U_{2}	0.1	0.4	0.5
U_{3}	0.6	0.1	0.3

Observation: RRGGBRGR
State Sequence (Urn chosen corresponding to each ball):

Example (contd.)

Transition Probabilities (A)

- States Set: $S=\left\{U_{1}, U_{2}, U_{3}\right\}$
- Observation Set: $V=\{R, G, B\}$
- Observation Sequence:
- $O=\left\{O_{1} \ldots . O_{n}\right\}$
- State Sequence:
- $Q=\left\{q_{1} \ldots q_{n}\right\}$
- Initial Probability: ϵ
- $\epsilon_{i}=P\left(q_{i}=U_{i}\right)$

	U_{1}	U_{2}	U_{3}
U_{1}	0.1	0.4	0.5
U_{2}	0.6	0.2	0.2
U_{3}	0.3	0.4	0.3

Output Probabilities (B)

	R	G	B
U_{1}	0.3	0.5	0.2
U_{2}	0.1	0.4	0.5
U_{3}	0.6	0.1	0.3

Observations and states

	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}
OBS:	R	R	G	G	B	R	G	R
State:	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}

$S_{i}=U_{1} / U_{2} / U_{3}$; A particular state
S : State sequence
O: Observation sequence
$\mathrm{S}^{*}=$ 'best' possible state (urn) sequence
Goal: Maximize $P(S * \mid O$ by choosing 'best' S

- Goal: Maximize $P(S \mid O)$ where S is the State Sequence and O is the Observation Sequence
- $S^{*}=\operatorname{argmax}_{s}(P(S \mid O))$

	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}
OBS:	R	R	G	G	B	R	G	R
State:	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}

$P(S \mid O)=P\left(S_{1-8} \mid O_{1-8}\right)$
$P(S \mid O)=P\left(S_{1} \mid O\right) P\left(S_{2} \mid S_{1}, O\right) P\left(S_{3} \mid S_{1-2}, O\right) \ldots P\left(S_{8} \mid S_{1-7}, O\right)$
Markov Assumption: a state depends only on the previous state
$P(S \mid O)=P\left(S_{1} \mid O\right) P\left(S_{2} \mid S_{1}, O\right) P\left(S_{3} \mid S_{2}, O\right) \ldots P\left(S_{8} \mid S_{7}, O\right)$
Baye's Theorem
$P(A \mid B)=\frac{P(A) P(B \mid A)}{P(B)}$
$P(A)$: Prior $P(B \mid A)$: Likelihood
$\operatorname{argmax}_{s} P(S \mid O)=\operatorname{argmax}_{x} P(S) P(O \mid S)$

State Transitions Probability

$$
\begin{aligned}
& P(S)=P\left(S_{1-8}\right) \\
& P(S)=P\left(S_{1}\right) P\left(S_{2} \mid S_{1}\right) P\left(S_{3} \mid S_{1-2}\right) P\left(S_{4} \mid S_{1-3}\right) \ldots P\left(S_{8} \mid S_{1-7}\right)
\end{aligned}
$$

By Markov Assumption (k=1)
$P(S)=P\left(S_{1}\right) P\left(S_{2} \mid S_{1}\right) P\left(S_{3} \mid S_{2}\right) P\left(S_{4} \mid S_{3}\right) \ldots P\left(S_{8} \mid S_{7}\right)$

Observations Sequence Probability

$P(O \mid S)=$
$P\left(O_{1} \mid S_{1-8}\right) P\left(O_{2} \mid O_{1}, S_{1-8}\right) P\left(O_{3} \mid O_{1-2}, S_{1-8}\right) \ldots P\left(O_{8} \mid O_{1-7}, S_{1-8}\right)$
Assumption that ball drawn depends only on the Urn Chosen

$$
\begin{aligned}
& P(O \mid S)=P\left(O_{1} \mid S_{1}\right) P\left(O_{2} \mid S_{2}\right) P\left(O_{3} \mid S_{3}\right) \ldots P\left(O_{8} \mid S_{8}\right) \\
& P(S \mid O)=P(S) P(O \mid S) \\
& P(S \mid O)=P\left(S_{1}\right) P\left(S_{2} \mid S_{1}\right) P\left(S_{3} \mid S_{2}\right) P\left(S_{4} \mid S_{3}\right) \ldots P\left(S_{8} \mid S_{7}\right) P\left(O_{1} \mid S_{1}\right) \\
& P\left(O_{2} \mid S_{2}\right) P\left(O_{3} \mid S_{3}\right) \ldots P\left(O_{8} \mid S_{8}\right)
\end{aligned}
$$

	O_{0}	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}	
OBS:	ϵ	R	R	G	G	B	R	G	R	
State:	S_{0}	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}	S_{9}

$P(S) . P(O \mid S)$
$=\left[P\left(O_{0} \mid S_{0}\right) \cdot P\left(S_{1} \mid S_{0}\right)\right]$
[$\left.P\left(O_{1} \mid S_{1}\right) \cdot P\left(S_{2} \mid S_{1}\right)\right]$
[$\left.P\left(O_{2} \mid S_{2}\right) \cdot P\left(S_{3} \mid S_{2}\right)\right]$
$\left[P\left(O_{3} \mid S_{3}\right) \cdot P\left(S_{4} \mid S_{3}\right)\right]$
[$\left.P\left(O_{4} \mid S_{4}\right) \cdot P\left(S_{5} \mid S_{4}\right)\right]$
$\left[P\left(O_{5} \mid S_{5}\right) \cdot P\left(S_{6} \mid S_{5}\right)\right]$
[$\left.P\left(O_{6} \mid S_{6}\right) \cdot P\left(S_{7} \mid S_{6}\right)\right]$
[$\left.P\left(O_{7} \mid S_{7}\right) \cdot P\left(S_{8} \mid S_{7}\right)\right]$
$\left[P\left(O_{8} \mid S_{8}\right) \cdot P\left(S_{9} \mid S_{8}\right)\right]$

States S_{0} and S_{9} is introduced as initial and final states

After S_{8} the next state is S_{9} with probability 1, i.e., $P\left(S_{9} \mid S_{8}\right)==1$
O_{0} is ϵ-transition

	O_{0}	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}	
OBS:	ϵ	R	R	G	G	B	R	G	R	
State:	S_{0}	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}	S_{9}

$P\left(O_{k} \mid S_{k}\right) \cdot P\left(S_{k+1} \mid S_{k}\right)=P\left(S_{k} \xrightarrow{o_{k}} S_{k+1}\right)$

Three problems of HMM

- Problem 1 (Decoding): Given an observation sequence O and an HMM $\lambda=(A, B)$, discover the best hidden state sequence S.
- Problem 2 (Computing Likelihood): Given an $\mathrm{HMM} \lambda=(A, B)$ and an observation sequence O, determine the likelihood $P(O \mid \lambda)$.
- Problem 3 (Learning) : Given an observation sequence O and the set of states in the HMM, learn the HMM parameters A and B.
- Problem 1 (Decoding): Given an observation sequence O and an HMM $\lambda=(A, B)$, discover the best hidden state sequence S.

Why is it difficult?

Even if there were only four POS tags, then this is just one of $4 \times 4 \times 4 \times 4=256$ possible state sequences!

Viterbi Algorithm for the Urn problem (first two symbols)

HMM - Computational Complexity

HMM - Computational Complexity

- if the tree is grown in this manner
- RRGGBRGR - Observation Sequence length $=9$ (including epsilon)
- at each level multiply the node by 3
- level $1(\epsilon)-3^{1}$, at level $2(R)-3^{2}$, ..at level $9(R)-3^{9}$ (nodes at leaf)
- complexity without restriction $=|S|^{|0|}$
$|S|=$ Number o States, $|O|=$ length of the observation sequence

Viterbi Algorithm for the Urn problem (first two symbols)

- At every stage, we only keep three nodes
- at the end of observation sequence - we have three nodes (total nodes
-3×8)
- complexity comes down from $|S|^{|o|}$ to $|S| .|o|^{-}$

Probabilistic FSM

Probabilistic FSM (contd.)

Probabilistic FSM (contd.)

Tabular Representation of the Tree

	ϵ	a_{1}	a_{2}	a_{1}	a_{2}
S_{1}	1.0	$\left(1.0^{*} 0.1,0.0^{*} 0.2\right)$	$(0.02$,	$(0.009$,	$(0.0024$,
		$=(\mathbf{0 . 1}, 0.0)$	$\mathbf{0 . 0 9})$	$\mathbf{0 . 0 1 2)}$	$\mathbf{0 . 0 0 8 1})$
S_{2}	0.0	$\left(1.0^{*} 0.3,0.0^{*} 0.3\right)$	$(0.04$,	$(\mathbf{0 . 0 2 7}$,	$(0.0048$,
		$=(\mathbf{0 . 3}, 0.0)$	$\mathbf{0 . 0 6})$	$0.018)$	$0.0054)$

- Number of columns $=$ length of observation sequence $+1(\epsilon)$
- Rows - ending state

HMM - POS Tagging

Goal: choose the most probable tag sequence given the observation sequence of n words \hat{w}_{1}^{n}

$$
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(t_{1}^{n} \mid w_{1}^{n}\right)
$$

Using Bayes' rule

$$
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} \frac{P\left(w_{1}^{n} \mid t_{1}^{n}\right) P\left(t_{1}^{n}\right)}{P\left(w_{1}^{n}\right)}
$$

Simplifying further by dropping the denominator

$$
\hat{t}_{1}^{n}=\underset{n}{\operatorname{argmax}} P\left(w_{1}^{n} \mid t_{1}^{n}\right) P\left(t_{1}^{n}\right)
$$

HMM - POS Tagging

HMM makes two further assumptions:
(1) probability of a word depends only on its tag and is independent of neighbouring words and tags

$$
P\left(w_{1}^{n} \mid t_{1}^{n}\right) \approx \prod_{i=1}^{n} P\left(w_{i} \mid t_{i}\right)
$$

(2) probability of a word depends only on its tag and is independent of neighbouring words and tags

$$
P\left(t_{1}^{n}\right) \approx \prod_{i=1}^{n} P\left(t_{i} \mid t_{i-1}\right)
$$

Using these simplifications:

$$
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(t_{1}^{n} \mid w_{1}^{n}\right) \approx \underset{t_{1}^{n}}{\operatorname{argmax}} \prod_{i=1}^{n} \overbrace{P\left(w_{i} \mid t_{i}\right)}^{\text {emission transition }} \overbrace{P\left(t_{i} \mid t_{i-1}\right)}
$$

HMM - POS Tagging

Figure: Markov chain corresponding to the hidden states of HMM. The transition probabilities A are used to compute the prior probability.

HMM - POS Tagging

Figure: Observation likelihoods B for the HMM.

HMM - POS Tagging

Figure: Observation likelihoods B for the HMM.

Viterbi Algorithm - Pseudocode

function VITERBI(observations of len T,state-graph) returns best-path
num-states \leftarrow NUM-OF-STATES(state-graph)
Create a path probability matrix viterbi[num-states $+2, T+2$]
viterbi $[0,0] \leftarrow 1.0$
for each time step t from 1 to T do
for each state s from 1 to num-states do

$$
\begin{aligned}
& \text { viterbi }[\mathrm{s}, \mathrm{t}] \leftarrow \underset{1 \leq s^{\prime} \leq \text { num-states }}{\max } \text { viterbi }\left[s^{\prime}, t-1\right] * a_{s^{\prime}, s} * b_{s}\left(o_{t}\right) \\
& \text { backpointer }[\mathrm{s}, \mathrm{t}] \leftarrow \underset{1 \leq s^{\prime} \leq \text { num-states }}{\operatorname{argmax}} \text { viterbi }\left[s^{\prime}, t-1\right] * a_{s^{\prime}, s}
\end{aligned}
$$

Backtrace from highest probability state in final column of viterbi [] and return path

Figure 6.10 Viterbi algorithm for finding optimal sequence of tags. Given an observation sequence and an HMM $\lambda=(A, B)$, the algorithm returns the state-path through the HMM which assigns maximum likelihood to the observation sequence. Note that states 0 and $\mathrm{N}+1$ are non-emitting start and end states.

POS Tagging - Example

- Janet will back the bill
- Janet/NNP will/MD back/VB the/DT bill/NN

	NNP	MD	VB	JJ	NN	RB	DT
$\langle s>$	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

POS Tagging - Example

- Janet will back the bill
- Janet/NNP will/MD back/VB the/DT bill/NN

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0.000097	0
NN	0	0.000200	0.000223	0.000006	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

POS Tagging - Example

- Janet will back the bill
- Janet/NNP will/MD back/VB the/DT bill/NN

