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Abstract—Ranking the set of search results according to their
relevance to a user query is an important task in an Information
Retrieval (IR) systems such as a Web Search Engine. Learning the
optimal ranking function for this task is a challenging problem
because one must consider complex non-linear interactions be-
tween numerous factors such as the novelty, authority, contextual
similarity, etc. of thousands of documents that contain the user
query. We model this task as a non-linear ranking problem,
for which we propose Rank-PMBGP, an efficient algorithm to
learn an optimal non-linear ranking function using Probabilistic
Model Building Genetic Programming. We evaluate the proposed
method using the LETOR dataset, a standard benchmark dataset
for training and evaluating ranking functions for IR. In our
experiments, the proposed method obtains a Mean Average Pre-
cision (MAP) score of 0.291, thereby significantly outperforming
a non-linear baseline approach that uses Genetic Programming.

I. INTRODUCTION

The amount of information available on the Web continues
to grow exponentially by the day. It is no longer the case
that the information we seek do not exist in the Web, but
the problem is to find the relevant information from a large
collection of documents. Web search engines provide an
efficient interface to the Web. In a typical search session, a
user enters one or more keywords to a search engine, which
we refer to as a query. The search engine then returns a ranked
set of results in the descending order of their relevance to the
user query. Often, there are millions of documents that match a
user query and the task of ranking those documents according
to their relevance is a challenging but an important one to a
Web search engine [1].

Accurate ranking of search results is an important task for
a Web search engine. If a search engine often ranks irrelevant
results as the top hits, then users get dissatisfied with that
search engine and will soon move to more competitive search
engines. Adverts are a main source of income for search
engines. If a search engine does not display relevant adverts
to user queries, the users will not click on those adverts,
resulting in reduced revenue to the search engine. Therefore,
the problem of ranking search results in information retrieval
systems have received much attention from both academia as
well as from the industry. In particular, the Learning to Rank
(LETOR) project by Microsoft Research1, and the Yahoo!
learning to rank challenge2 are noteworthy initiatives.

1http://research.microsoft.com/en-us/um/beijing/projects/letor/
2http://learningtorankchallenge.yahoo.com

Ranking search results retrieved for a user query is a
difficult problem because of several challenges. First, there are
numerous factors a search engine must take into consideration
when determining the rank of a search result such as the
content of the document (i.e. web page) (i.e. whether the
document contains the words in the query), the structure of
the document (i.e. whether the query appears in the title of
the document, its body or in an anchor text pointing to the
document), link structure (i.e. the number of in-bound and
out-bound links to the document), authority (i.e. encyclopedic
resources edited by numerous authors vs. personal blogs), and
novelty (i.e. how often does the content in a document is
revised and the last updated time). The exact combination
of those heterogenous factors that produces the best possible
ranking for a set of documents is not obvious. Second, the
ranking function must be simple enough to compute and
scalable to be used in a Web search engine. If a search engine
takes a long time to rank the retrieved set of documents, it
might lead to user dissatisfaction. Third, any approach that
learns a ranking function for information retrieval must be
able to efficiently learn from large datasets. Search engines
record the search sessions such as the queries entered by the
users and the search results they visit. This process enables us
to collect large datasets that can be used as training data to
learn ranking functions. For example, LETOR dataset contains
over 25 million documents annotated with rank information
for numerous queries entered by users in real-world search
sessions.

We propose a method to learn a non-linear ranking function
for information retrieval using Probabilistic Model Building
Genetic Programming (PMBGP). We refer to our proposed
method as Rank-PMBGP. PMBGP is an extension of genetic
programming (GP) using probabilistic models. Although there
have been several approaches proposed in prior work that can
learn a linear ranking function, to the best of our knowledge,
Rank-PMBGP is the first approach to learn non-linear ranking
functions for information retrieval using evolutionary algo-
rithms. The ability to learn non-linear ranking functions is
particularly important for information retrieval. For example,
consider the two features: the number of occurrences of the
query in the document, and the authority of the document.
If the number of occurrences of a query in a document is
high, it indicates that the document is relevant to the query.
However, sometimes spam web sites include popular queries
to attract web traffic. Therefore, the number of occurrences
of a query in a document is a good indicator of relevance



only when the authority of the document is high. Such
conditional dependencies among factors that influence the rank
of a document can be captured only by non-linear ranking
functions. Consequently, non-linear ranking function learning
methods have shown superior performance over methods that
are limited to learning only linear ranking functions [2].

Our contributions in this paper can be summarized as
follows.
• We propose a method to learn non-linear ranking func-

tions for information retrieval using probabilistic model
building genetic programming. We propose two tech-
niques to overcome overfitting associated with non-linear
learning algorithms: the use of validation data for fitness
evaluation, and feature selection to reduce the function
space.

• We evaluate the proposed method using a standard
benchmark dataset that was previously proposed for
evaluating learning to rank methods for information re-
trieval. Our experimental results show that the proposed
method significantly outperforms a baseline method that
uses genetic programming to learn non-linear ranking
functions. Moreover, the performance reported by the
proposed method is comparable to that of the state-of-the-
art learning to rank methods that use evolutionary algo-
rithms. However, unlike prior work based on evolutionary
algorithms, our method can learn non-linear combinations
of features.

II. BACKGROUND

A. Learning to rank

The problem of learning a function that can assign ranks for
a set of items arises in numerous contexts. For example, in a
web search scenario, we must rank the set of documents (i.e.
web pages) according to their relevance to the query entered
by a user. As a result of the increasing importance of web
search engines as an efficient interface to the vast amounts of
information available on the Web, the problem of learning to
rank has received special attention in the information retrieval
community. There are two main stages involved in learning to
rank for information retrieval: (a) learning a ranking function
using a labeled dataset (i.e. training stage), (b) applying the
learnt ranking function to assign ranks to a set of documents
retrieved for a user-query (i.e. ranking stage).

In the training stage, a ranking function learning algorithm
is presented with a ranked list of documents retrieved for a
particular query. To formally define the learning problem, let
us denote the set of queries by Q = {q1, q2, . . . , q|Q|}, in
which we use the notation, |Q|, to represent the number of
elements (i.e. cardinality) in the set Q. Likewise, we represent
the set of documents by D = {d1, . . . , d|D|}. Then, the
training dataset can be represented as a set of query-document
pairs, (qi, dj) ∈ Q × D, in which each query-document pair,
(qi, dj), is assigned with a relevance judgement, y(qi, dj),
indicating the relevance of the document dj to the query qi.
The relevance judgement y(qi, dj) can be expressed in several

ways. The simplest approach is to indicate a binary relevance
y(qi, dj) ∈ {0, 1}, depending on whether the document dj
is relevant to the query qi (i.e. y(qi, dj) = 1), or irrelevant
(i.e. y(qi, dj) = 0). Alternatively, one can assign a real-valued
relevance judgement that can be used to induce a total ranking
among the documents retrieved for a particular query.

Web search engines record each search session in a log
file called the search log to obtain relevance judgements.
Clickthrough [3] is popular method to easily collect a large
collection of relevance judgements. In clickthrough approach,
a search engine records the urls that were clicked by a user
among all the urls displayed to that user for a particular query.
For example, let us assume three documents d1, d2, and d3 are
shown to a user, in that order, as the list of search results for
a particular query q. Moreover, let us assume that the user did
not click on the first document d1 and instead clicked on the
second document d2. This action is recorded by the search
engine before it directs the user to d2. In the clickthrough
approach to obtaining relevance judgements, we assume that
the document d2 is more relevant to the query q than the
document d1. Therefore, a relevance score is assigned such
that y(q, d2) > y(q, d1). However, no relevance judgements
are inferred for the documents such as d3 that are not clicked
on and appears below the lowest ranked document that is
clicked by a user for a particular query (i.e. d2 in this example).
Because web search engines are used by millions of users on
a daily basis, we have large search logs from which we can
extract large training datasets to learn ranking functions.

The goal of learning to rank is to learn a function f(q, d)
that assigns a ranking score indicating the degree of relevance
of a document d to a query q. First a query-document pair
(q, d) is represented by a feature vector φ(q, d). Numerous
features have been proposed in prior work in learning to rank
such as the number of occurrences of the query q in the title or
the body of a document d, and PageRank [4] of d. In Section
IV-A, we detail the numerous features that are used for training
by our proposed method. Most prior work on learning to rank
model the ranking function f(q, d) as a linearly weighted
combination of the features in φ(q, d) as follows,

f(q, d) = w>φ(q, d). (1)

Here, w is a vector representing the weight associated with a
particular feature in φ(q, d). We refer to the ranking function
given by Equation 1 as a linear ranking function because
it does not consider non-linear combinations of features in
φ(q, d). In contrast, our proposed method learns a non-linear
combinations of features, thus having a greater expressiveness.
Specifically, we model the problem of learning to rank as a
search problem, where we must find the optimal non-linear
combination of features representing a query-document pair
that assigns ranking scores similar to the scores assigned in
the training data.

Before we explain the search algorithm that we use to find
the optimal non-linear combination of features, we must first
devise a method to evaluate the fitness of a given combination
of features. Let us denote the ranking function corresponding



to some non-linear combination of features in φ(q, d) by
f(q, d). Then we can use f(q, d) to assign ranking scores to
the set of documents D(q) retrieved for the query q. Next,
we can compare the list of ranked documents produced by
f(q, d) against the ranks assigned to the documents in D(q)
in the training dataset. The degree to which the two lists of
ranks agree is an indicator of the fitness of the combination
of features we use to define f(q, d). Next, in Section II-B,
we introduce the evaluation measures that are popularly used
in the information retrieval community to asses the agreement
between a list of ranked documents by a ranking algorithm
and that by a human annotator.

B. Evaluation Measures

To evaluate a ranking produced by an algorithm for a set
of documents retrieved for a particular query, we can compare
it against the ranking induced by the scores assigned by a
human annotator for those documents. Precision at position
n (P@n), Mean Average Precision (MAP), and Normalized
Discounted Cumulative Gain (NDCG) are three widely used
rank evaluation measures in the information retrieval com-
munity. All those evaluation measures are in the range [0, 1],
where a method that produces the exact ranking as in the gold
standard achieves the score of 1. Next, we describe each of
those evaluation measures in detail.

Precision at rank n (P@n) [5] measure is defined as the
proportion of the relevant documents among the top n-ranked
documents,

P@n =
No. of relevant docs in top n results

n
. (2)

Average precision averages the P@n at over different n
values to produce a single measure for a given query as
follows,

AP =

∑N
n=1(P@n× rel(n))

No. of relevant docs for this query
. (3)

Here, N is the number of retrieved documents, and rel(n) is
a binary function that returns the value 1 if the n-th ranked
document is relevant to the query under consideration and 0
otherwise. Mean average precision (MAP) is computed as the
average of AP over all queries in the dataset.

NDCG considers the reciprocal of the logarithm of the rank
assigned to relevant documents. For a ranked list of documents
retrieved for a query, NDCG value at position n, NDCG@n,
is computed as follows,

NDCG@n = Zn

n∑
j=1

2r(j) − 1

log(1 + j)
. (4)

Here, r(j) is the rating of the j-th document in the ranked
list, and the normalization constant Zn is chosen such that a
perfectly ranked list would obtain an NDCG@n score of 1.
Specifically, it is given by,

Zn =
1∑n

j=1
1

log(1+j)

. (5)

Algorithm 1 Genetic Programming(GP)
1: g ← 0
2: Pg ← Initialize M individuals
3: while terminate criterion is False do
4: Evaluate Pg

5: g ← g + 1
6: Sg ← Select N (N ≤M) superior individuals
7: Pg ← Copy M × Pe elite individuals
8: Pg ← Generate M(1−Pe) individuals from Sg , using

crossover or mutation
9: end while

10: return Pg

We use Mean Average Precision (MAP) as the fitness function
because it provides a single value that we can use to determine
the fitness of the ranking function f(q, d). All three measures,
MAP, NDCG, and P@n, are used to compare the proposed
ranking function learning method against previously proposed
methods in Section IV-B.

C. Genetic Programming

Genetic Programming (GP) [6] is a widely used and suc-
cessful method for optimizing non-linear combinations of
features represented by tree structures. First, GP randomly
generates M tree structures each corresponding to some non-
linear combination of features. In subsequent iterations, indi-
vidual tree structures are evaluated using some fitness function
and the top M ×Pe individuals with the highest fitness values
are retained to the next generation. Here, Pe denotes the
elite rate that determines the number of individuals retained
for the next generation. From those retained individuals, GP
randomly selects N individuals and performs mutation and
cross-over to produce offspring. Mutation replaces a subtree in
a single individual with a different subtree, whereas crossover
partitions individuals into constituent subtrees and exchanges
subtrees between different individuals. Over the generations,
subtree structures that correspond to salient feature combina-
tions are retained in the population, which are referred to as
building blocks. The above-mentioned procedure is repeated
until some pre-defined termination criterion is met. The pseudo
code for GP is shown in Algorithm 1. Therein, Pg denotes the
population (i.e. set of individuals) at the g-th generation, and
Sg is an elite individual selected for reproduction at the g-th
generation.

D. Probabilistic Model Building GP

Probabilistic model building GPs (PMBGP) are a variant of
Estimation of Distribution Algorithms (EDA) [7], which are
generative models based evolutionary computation algorithms
for optimizing tree structures. PMBGPs estimate probability
distributions using individuals that have the highest fitness
values. New individuals are generated by sampling from the
estimated probability distribution. PMBGPs can be categorized
into two groups. The first type of PMBGPs exploit Probabilis-
tic Context Free Grammar (PCFG) to learn subtree building



TABLE I
TYPES OF NODES USED IN THE PROPOSED RANK-PMBGP.

Node name Node type Meaning
Sf function (trunk) the set of function nodes {+,-,*}
Sv terminal (leaf) the set of variable (feature) nodes
Sc terminal (leaf) the set of constant nodes

blocks [8], whereas the second type of PMBGPs use prototype
trees, which extend EDAs proposed for one dimensional arrays
to handle tree structures [9]. This property of prototype tree-
based PMBGPs enables us to incorporate techniques devised
in the field of EDAs. For example, sampling of individuals can
be done using Loopy Belief Propagation (LBP) [10]. Using
the notation we used in Algorithm 1, we show the pseudo
code for PMBGP in Algorithm 2. Although PMBGPs have
shown better performance than GPs in benchmark problems
[11], comparatively to GPs, PMBGPs are yet to be applied to
large-scale real-world problems such as the learning to rank for
information retrieval, which we study in this paper. We note
that besides PMBGP, there are other methods to model the
combinations of features for a learning task such as Genetic
Network Programming (GNP) [12] and its extension by EDA
[13]. Considering more expressive structures such as graphs
is in an interesting future research direction.

III. PROPOSED NON-LINEAR RANK LEARNING METHOD:
RANK-PMBGP

We propose Rank-PMBGP, a method to learn non-linear
ranking functions for information retrieval using PMBGP.
Specifically, we use Program Optimization with Linkage Es-
timation (POLE) [14] as the PMBGP method. POLE is a
prototype tree based PMBGP method, which first translates
tree structures to one-dimensional arrays and then apply EDAs
to those arrays. Individuals in POLE are initialized using
GROW, where PF is the selection rate for functions. POLE
uses truncate selection, in which M × Ps individuals are
selected and used for constructing a Bayesian network and
estimating parameters. POLE estimates multivariate dependen-
cies between nodes using Bayesian networks. POLE uses Ex-
panded Parse Trees (EPT) [15] to represent the chromosomes,
thereby reducing the number of symbols in the tree trunk. EPT
pushes terminal nodes on the tree trunk to the leaf nodes using
a special function node L. Given a list of arguments as the
input, the function L returns the first argument. Therefore, in
POLE, the symbols on the trunk are limited to functions. This
property of POLE simplifies the task of learning a Bayesian
network. This is particularly important in learning to rank for
information retrieval because the number of terminal symbols
(features) in our task is much higher than that in benchmark
problems such as MAX [16], or Royal Tree [17] for which
PMBGPs have been applied. The types of nodes used in Rank-
PMBGP are summarized in Table I. Rank-PMBGP considers
non-linear combinations of features by using multiplication
(shown by * in Table I) as a function node. We use MAP as
fitness function in Rank-PMBGP.

Algorithm 2 Probabilistic Model Building GP (PMBGP)
1: g ← 0
2: Pg ← Initialize M individuals
3: while terminate criterion is False do
4: Evaluate Pg

5: g ← g + 1
6: Sg ← Select N (N ≤M) superior individuals
7: Dg ← Estimate distribution from Sg
8: Pg ← Copy M × Pe elite individuals
9: Pg ← Sampling M(1− Pe) individuals from Dg

10: end while
11: return Pg

Rank-PMBGP consists of five steps as shown below.
Step 1: Input

Receive train, validation, and test data as the input.
Initialize the parameters in PMBGP.

Step 2: Training
For a feature combination p, we compute
MAP(p,Train), the MAP value we obtain if we
rank the documents in the train data using the ranking
function corresponding to p. We use MAP(p,Train) as
the fitness function in Algorithm 2 (Lines 3, 6, 8, 10).

Step 3: Output
After the PMBGP routine in Algorithm 2 has terminated,
we select the individual p∗ that maximizes the following,

MAP(p,Train) +MAP(p,Validation)

among all the individuals p in the final population. Here,
MAP(p,Validation) is the MAP of p over the validation
dataset. As described later in Section IV-A, we use
a set of queries with documents ranked according to
their relevancy to those queries, as a validation dataset
separately to the train dataset. The use of validation data
helps us to overcome overfitting to train data.

Step 4: Ranking
Rank the documents in the test dataset using the non-
linear ranking function corresponding to p∗.

IV. EXPERIMENTS AND RESULTS

A. Dataset

We use the LETOR (version 2.0) benchmark dataset [18]
that has been widely used in prior work on learning to rank
for information retrieval. The LETOR version 2.0 consists of
TD2003 and TD2004 datasets, which were part of the topic
distillation task of the Text REtrieval Conference (TREC) in
year 2003 and 2004. TD2003 dataset contains 50 queries and
TD2004 dataset contains 75 queries. The document collection
contains 1, 053, 110 documents together with 11, 164, 829
hyperlinks and is based on a January, 2002 crawl of the .gov
domain. Topic distillation aims to find a list of documents
relevant to a particular topic. The TREC committee provides
judgements for the topic distillation task. For each query
in TD2003 and TD2004 datasets, there are about 1, 000



TABLE II
FEATURES IN THE LETOR TD2003 AND TD2004 DATASETS.

Category Feature No. of
features

Content (low-level)

tf [5] 4
idf [5] 4
dl [5] 4
tfidf [5] 4

Content (high-level) BM25 [19] 4
LMIR [20] 9

Hyperlink

PageRank [4] 1
Topical PageRank [23] 1
HITS [21] 2
Topical HITS [23] 2
HostRank [22] 1

Hybrid Hyperlink-base relevance
propagation [24]

6

Sitemap-based relevance
propagation [25]

2

Total 44

documents listed. Each query-document pair is given a binary
judgement indicating whether a document is relevant or non-
relevant for a particular query.

A query-document pair in the LETOR dataset is represented
using 44 features as shown in Table II. The features include
numerous ranking heuristics popularly used in the information
retrieval community. The set of features includes low-level fea-
tures such as, term frequency (tf), inverse document frequency
(idf), document length (dl) combinations of low-level features
such as tf*idf [5], as well as high-level features such as BM25
[19] and LMIR [20]. Hyperlink structure provides useful clues
about the relevancy of a web page. Consequently, several
features are computed using the hyperlink information in
LETOR datasets such as PageRank [4], HITS [21], HostRank
[22], topical PageRank and topical HITS [23]. Following the
standard practice, all features are normalized to [0, 1] range
prior to training. For the TD2003 and TD2004 datasets, we
define two values of ratings 0 and 1 respectively corresponding
to relevant and non-relevant documents in order to compute
NDCG scores. In our evaluations, we report the average values
taken over all the queries in a dataset as P@n and NDCG@n.

B. Results

One major challenge involved in learning the optimal non-
linear combination of a large number of features (e.g. 44 in
TD2003) using a comparatively smaller number of training
instances (e.g. 50 queries) is overfitting. Because the possible
hypothesis space is much more complex with non-linear func-
tions relatively to linear functions, extra care must be taken
to reduce overfitting. As already mentioned under the Step 3
in Section III, the use of validation data to select the best in-
dividual provides a partial solution to the overfitting problem.
As a complementary solution, we reduce the complexity of the
search space by performing feature selection prior to learning
a non-linear ranking function with those features. In addition
to reducing overfitting, feature selection speed ups the training
process, enabling us to use large training datasets.

To select salient features for ranking, first, we train a linear
ranking function using all the features in a dataset. We use

TABLE III
SETTINGS FOR THE PROPOSED RANK-PMBGP METHOD

Parameters/Nodes Settings
Ps if population size is larger than 5000 use

0.05 otherwise use 0.2
Pe if population size is larger than 5000 use 1

otherwise use 0.005
PF 0.9
Sf {+,-,*} (all function takes two arguments)

Sv

11 features ( id : name)
5: dl of URL
7: HITS hub
8: HostRank
9: idf of body
10: idf of anchor
11: idf of title
12: idf of URL
18: LMIRJM of anchor
21: LMIRDIR of extracted title
23: LMIRABS of title
39: Hyperlink base score propagation
(weighted in-link) }

Sc {0.2, 0.4, 0.6, 0.8, 1.0}
The number of 16terminal symbols
depth limitation 8

the linear ranking function learning algorithm proposed by
Bollegala et al. [26] for this purpose. This method learns
a weight for each feature, which represents the influence
that feature has upon the ranking produced by the linear
combination of features as expressed in Equation 1. We select
the features with weights larger than 2 for Rank-PMBGP.
Table III shows the set of selected features and the values
of all parameters in Rank-PMBGP. To avoid any biases due to
initialization, we report the average results over 10 repetitions
for all the experiments described in this paper.

We compare the performance of the proposed method
against several previously proposed methods and a baseline.

RankSVM [27] extends Support Vector Machines, originally
proposed for binary classification, to rank learning.

RankBoost [28] combines a variety of ranking scores based
on AdaBoost. Individual features in LETOR are consid-
ered as weak classifiers for boosting. Performance for
both RankSVM and RankBoost are obtained from the
official LETOR report [18].

SwarmRank [29] learns a linear ranking function by maxi-
mizing MAP using Particle Swarm Optimization (PSO).

RankGP [30] applies GP to the rank learning problem.
However, this method is limited to learning linear ranking
functions.

RankDE [26] is a Differential Evolution (DE) based ranking
algorithm. It finds the optimal linear combination of
features that maximizes MAP over a dataset. To our
knowledge, RankDE is the current state-of-the-art among
the methods that use evolutionary algorithms.

Baseline Method: Following RankGP, we implement a
method using GP that can learn non-linear ranking func-
tions. This baseline serves two purposes. First, it demon-
strates the difference in performance between GP and
PMBGP in the context of learning to rank. Second, it acts



TABLE IV
PARAMETERS IN THE BASELINE METHOD.

Parameter Definition Value
Pe Elitist Reproduction Rate Only 1 individual
Pc Crossover Rate Initial value = 0.95, then change

dynamically using AMRT
Pm Mutation Rate Initial value = 0.05, then change

dynamically using AMRT
sizet Tournament Size 5
PF Functional Selection Rate 0.9

0.264	  

0.282	  

0.226	  
0.252	  

0.2	  
0.21	  
0.22	  
0.23	  
0.24	  
0.25	  
0.26	  
0.27	  
0.28	  
0.29	  
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Fig. 1. The effect of feature selection on Rank-PMBGP.

as a non-linear version of Rank-GP, thereby demonstrat-
ing any gain in performance due to non-linearities. We
use tournament selection with Adaptive Mutation Rate
Tuning (AMRT) [31] for this baseline. AMRT increases
the mutation rate and decreases the crossover rate when
the population is likely to converge. The parameter values
for this baseline are shown in Table IV.

Rank-PMBGP is our proposed method.

Table V compares the performance of the above-mentioned
methods on TD2003 using MAP, P@n, and NDCG. On MAP,
we see that Rank-PMBGP outperforms RankGP as well as
the Baseline method. This shows the superiority of non-linear
ranking functions over linear ranking functions in the context
of learning to rank for information retrieval. Moreover, only
RankDE performs better than Rank-PMBGP on TD2003.
Although RankDE can only learn linear ranking functions, its
good performance can be attributable to the DE-based learning
algorithm. Indeed, an interesting future research direction
would be to explore the possibility of using DE to learn
non-linear ranking functions. Overall, our proposed Rank-
PMBGP significantly outperforms RankSVM, RankBoost,
SwamRank, and the Baseline methods at 0.05 significance
level according to on a paired t-test.

Figure 1 shows the effect of feature selection on our
proposed Rank-PMBGP. We see a steep drop in MAP when the
number of features is increased, indicating a severe overfitting.
This shows that feature selection is an important step when
learning non-linear combinations of features.

We study the effect of the number of fitness evaluations
has upon the overall performance of the proposed Rank-

PMBGP and the Baseline. From Figure 2, we see that on both
TD2003 as well as TD2004, Rank-PMBGP performs better
than the Baseline at the end of the training. In particular, on
TD2003, initially the performance of Rank-PMBGP is lower
than that of the Baseline. However, the performance of the
Baseline method does not improve over the iterations whereas
Rank-PMBGP does. The fact that Rank-PMBGP constantly
outperforms the Baseline on two different datasets shows the
reliability of the proposed method.

V. RELATED WORK

Learning to rank methods can be divided into three ap-
proaches:pointwise, pairwise, and listwise. The pointwise ap-
proach [32], [33] deals with each query-document pair in-
dependently during entire training and ranking. Because the
pointwise approach dismisses the relative preferences between
query-document pairs for the same query, it often results in
poor performances.

Pairwise approach [27], [28], [34], [35] considers partially
ordered preferences between a pair of documents for the same
query. Representative methods for pairwise rank learning are
Ranking Support Vector Machines (RankSVM) [27], Rank-
Boost [28], and RankNet [34]. Despite the wide popularity of
pairwise approaches, they considers only a pair of documents
at a time, thus ignoring the remainder of the documents
retrieved for a query.

Listwise approach [36]–[39] considers the entire set of
documents retrieved for a particular query during training,
thereby overcoming the above-mentioned disfluencies in the
pointwise and pairwise approaches. In information retrieval,
we must apply the learnt ranking function to induce a total
ordering for a set of documents retrieved for a query. Listwise
approach models this situation well. Therefore, we follow the
listwise approach in this paper to learn a ranking function
from a given set of training data. Different loss functions
have been used in prior work on listwise rank learning,
leading to numerous algorithms such as ListNet [37] (cross
entropy), RankCosine [36] (cosine loss), and ListMLE [39]
(likelihood loss). However, these methods do not directly
optimize the evaluation criteria used in information retrieval
such as MAP or NDCG, and instead approximate them via the
above-mentioned loss functions. In contrast, Rank-PMBGP
directly optimizes those evaluation criteria, without requiring
any approximations.

Fan et al. [40]–[42] proposed a GP-based approach to learn
a term-weighting formula by combining numerous features.
First, they use an expression tree data structure to represent a
term-weighting formula, and then apply GP to select the best
performing function. Numerous operators such as addition,
subtraction, multiplication, division, square root, logarithm
etc. are considered. Almeida et al. [43] propose Combined
Component Approach (CCA), a GP-based ranking function,
that combines several term-weighting components such as
term frequency, collection frequency, etc. to generate ranking
functions. Yeh et al. [44] propose RankGP, a learning to rank
method using GP. RankGP regards linear ranking functions as



TABLE V
COMPARISON OF THE PERFORMANCES REPORTED BY DIFFERENT LEARNING TO RANK METHODS ON TD2003.

Method RankSVM RankBoost SwarmRank RankGP RankDE Baseline Rank-PMBGP
MAP 0.256 0.212 0.209 0.283 0.339 0.277 0.291
P@1 0.420 0.260 0.453 0.520 0.600 0.528 0.548
P@2 0.350 0.270 0.330 0.420 0.400 0.444 0.468
P@3 0.340 0.240 0.269 0.370 0.333 0.380 0.405
P@4 0.300 0.230 0.223 0.330 0.300 0.336 0.352
P@5 0.264 0.220 0.207 0.280 0.280 0.294 0.294
P@6 0.243 0.210 0.188 0.270 0.250 0.265 0.267
P@7 0.234 0.211 0.185 0.250 0.243 0.250 0.247
P@8 0.233 0.193 0.173 0.240 0.237 0.229 0.232
P@9 0.218 0.182 0.164 0.230 0.222 0.214 0.215
P@10 0.206 0.178 0.151 0.220 0.210 0.199 0.204
NDCG@1 0.420 0.260 0.453 0.520 0.600 0.528 0.548
NDCG@2 0.370 0.280 0.343 0.450 0.445 0.463 0.486
NDCG@3 0.379 0.270 0.307 0.420 0.388 0.413 0.438
NDCG@4 0.363 0.272 0.284 0.390 0.356 0.378 0.396
NDCG@5 0.347 0.279 0.278 0.380 0.336 0.345 0.353
NDCG@6 0.341 0.280 0.271 0.370 0.310 0.321 0.329
NDCG@7 0.340 0.287 0.273 0.360 0.300 0.306 0.311
NDCG@8 0.345 0.282 0.270 0.350 0.292 0.288 0.295
NDCG@9 0.342 0.282 0.267 0.350 0.279 0.275 0.280
NDCG@10 0.341 0.285 0.263 0.350 0.267 0.261 0.269

Fig. 2. The effect of the number of evaluations on the performance. TD2003 dataset on the left and TD2004 dataset on the right.

individuals and use adaptive mutation training method [31].
Diaz-Aviles et al. [29] propose SwamRank, a ranking method
that uses particle swam optimization (PSO). They use the
LETOR benchmark dataset and learn a linear combination
of different features that represent a query-document pair to
maximize MAP on train data.

Although most existing methods for learning to rank learns
only linear ranking functions, there are couple of notable
efforts to learn non-linear ranking functions. [41] creates
a non-linear ranking function using GP, and shows that it
outperforms BM25 using only simple features such as term
frequency(tf), inverse document frequency(idf), and document
length(dl). They do not evaluate their method on the LETOR
dataset that has richer set of features. Friedman et al. [45], [46]
proposed a method to learn a non-linear rank function using
Gradient Boosted Decision Trees (GBDT). GBDT was shown
to be a strong baseline at Yahoo! Learning to Rank Challenge
[2]. However, GBDT has not been evaluated on the LETOR
benchmark dataset.

VI. CONCLUSION

We proposed Rank-PMBGP, a method to learn non-linear
ranking functions for information retrieval using the Proba-
bilistic Model Building GP algorithm POLE. Rank-PMBGP
directly optimizes MAP, without requiring any convex ap-
proximations. We proposed two methods to overcome the
overfitting problem that is common to methods that learn
non-linear combinations of features. First, we select the best
individual based on the MAP scores on train dataset as well
as on an independent validation dataset. Second, we perform
feature selection using differential evolution, and then use the
selected features in Rank-PMBGP. We evaluated the proposed
method using LETOR benchmark dataset. Our experimental
results show that our proposed Rank-PMBGP method outper-
forms a GP-based baseline as well as numerous previously
proposed learning to rank methods. Moreover, we showed that
the proposed feature selection method can accurately select a
subset of features, thereby avoiding overfitting to train data.
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