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Short and sparse texts such as tweets, search engine snippets, product reviews, chat messages are abundant on the Web. Classifying

such short-texts into a pre-defined set of categories is a common problem that arises in various contexts, such as sentiment classification,

spam detection, and information recommendation. The fundamental problem in short-text classification is feature sparseness – the

lack of feature overlap between a trained model and a test instance to be classified. We propose ClassiNet – a network of classifiers

trained for predicting missing features in a given instance, to overcome the feature sparseness problem. Using a set of unlabeled

training instances, we first learn binary classifiers as feature predictors for predicting whether a particular feature occurs in a given

instance. Next, each feature predictor is represented as a vertex vi in the ClassiNet where a one-to-one correspondence exists between

feature predictors and vertices. The weight of the directed edge ei j connecting a vertex vi to a vertex vj represents the conditional

probability that given vi exists in an instance, vj also exists in the same instance.

We show that ClassiNets generalize word co-occurrence graphs by considering implicit co-occurrences between features. We

extract numerous features from the trained ClassiNet to overcome feature sparseness. In particular, for a given instance x , we find

similar features from ClassiNet that did not appear in x , and append those features in the representation of x . Moreover, we propose

a method based on graph propagation to find features that are indirectly related to a given short-text. We evaluate ClassiNets on

several benchmark datasets for short-text classification. Our experimental results show that by using ClassiNet, we can statistically

significantly improve the accuracy in short-text classification tasks, without having to use any external resources such as thesauri for

finding related features.
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2 Danushka Bollegala, Vincent Atanasov, Takanori Maehara, and Ken-ichi Kawarabayashi

1 INTRODUCTION

Short-texts are abundant on the Web and appear in various different formats. For example, in Twitter, users are

constrained to a 140 character upper limit when posting their tweets [Kwak et al. 2010]. Even when there are no strict

upper limits, users tend to provide brief answers in QA forums, review sites, SMS, email, and chat messages [Cong

et al. 2008; Thelwall et al. 2010]. Unlike lengthy responses that take time to both compose and to read, short responses

have gained popularity particularly in social media contexts. Considering the steady growth of mobile devices that are

physically restricted to compact keyboards, which are suboptimal for entering lengthy text inputs, it is safe to predict

that the amount of short-texts will continue to grow in the future. Considering the importance and the quantity of the

short-texts in various web-related tasks, such as text classification [dos Santos and Gatti 2014; kun Wang et al. 2012],

and event prediction [Sakaki et al. 2010], it is important to be able to accurately represent and classify short-texts.

Compared to performing text mining on longer texts [Guan et al. 2009; Su et al. 2011; Yogatama and Smith 2014], for

which dense and diverse feature representations can be created relatively easily, handling of shorter texts poses several

challenges. First, the number of features that are actually present in a short-text will be a small fraction of the set of all

features that exist in all of the train instances. Although this feature sparseness is problematic even for longer texts, it is

critical for shorter texts. In particular, when the diversity of the feature space increases as with longer n-gram lexical

features, (a) the number of occurrences of a feature in a given instance (i.e., term frequency), as well as (b) the number

of instances in which a particular feature occurs (i.e., document frequency), will be small. Therefore, it is difficult to

reliably estimate the salience of a feature in a particular class in supervised learning tasks.

Second, the shorter length means that there is less redundancy in terms of the features that exist in a short-text.

Consequently, most of the related words of a particular word might be missing in a short-text. For example, consider

a review on iPhone 6 that says “I liked the larger screen size of iPhone 6 compared to that of its predecessor”. Although

iPhone 6 plus, a product similar to iPhone 6, has also a larger screen compared to its predecessors, this information is

not included in this short review. On the other hand, we might observe such positive sentiments associated with iPhone

6 plus but not with iPhone 6 in other train instances, which will result in a high positive score for iPhone 6 plus in a

classifier trained from those train reviews. Unfortunately, we will not be able to infer that this particular user would

also likely be satisfied with iPhone 6 plus, thereby not recommending iPhone 6 plus for this user.

To overcome the above-mentioned challenges encountered when handling short-texts, we propose a feature ex-

pansion method analogous to the query expansion methods used in information retrieval (IR) [Salton and Buckley

1983] to improve the agreement between search queries input by the users and documents indexed by the search

engine [Carpineto and Romano 2012]. We assume short-texts are already represented using some feature vectors,

which we refer to as instances in this paper. Lexical features such as unigrams or bigrams of words, part-of-speech

(POS) tag sequences, and dependency relations have been frequently used in prior work on text classification. Our

proposed method does not assume any particular type of features, and can be used with any discrete feature set. First,

we train binary classifiers which we call feature predictors for predicting whether a particular feature vi occurs in a

given instance x . For example, given the previously discussed short review, we would like to predict whether iPhone 6

plus is likely to occur in this review.

The training instances required to learn feature predictors are automatically selected from unlabeled texts. Specifically,

given a feature vi , we select texts in which vi occurs as the positive training instances for learning a feature predictor

for vi . On the other hand, negative training instances for learning the feature predictor for vi are randomly sampled

from the unlabeled texts, where vi does not occur. Using those positive and negative training instances we learn a
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ClassiNet – Predicting Missing Features for Short-Text Classification 3

binary classifier to predict whether vi occurs in a given instance. Any binary classification algorithm, such as support

vector machines, logistic regression, naive Bayes classifier etc. can be used for this purpose, and it is not limited to

linear classifiers. We define ClassiNet as a directed weighted graph G (V, E,W) of feature predictors, where each vertex

vi ∈ V corresponds to a feature predictor. The directed edge ei j ∈ E from vi to vj is assigned the weight 1 ≥ wi j ≥ 0,

which is the conditional probability that given vi is predicted for a particular instance, vj is also predicted for the same

instance.

It is noteworthy that we obtain both positive and negative instances for learning feature predictors from unlabeled

data, and do not require any labeled data for the target task. For example, consider the case that we are creating a

ClassiNet to find missing features in sentiment classification. In this case, the target task is sentiment classification.

However, we do not require any labeled data for the target task such as sentiment annotated reviews when creating

the ClassiNet that we are subsequently going to use for finding missing features. Therefore, the training of ClassiNets

can be conducted in a purely unsupervised manner, without requiring any manually labeled data for the target task.

Moreover, the decoupling of ClassiNet training from the target task enables us to use the same ClassiNet to expand

feature vectors for different target tasks. As we discuss later in Section 3.4, ClassiNets can be seen as a generalized

version of the word co-occurrence graphs that have been well-studied in the NLP community [Mihalcea and Radev

2011]. However, ClassiNets consider both explicit as well as implicit co-occurrences of words in some context, whereas

word co-occurrence graphs are limited to explicit co-occurrences.

Given a ClassiNet created from unlabeled data as described above, we propose several strategies for finding related

features for a given instance that do not occur in the original instance. Specifically, we compare both local feature

expansion methods that consider the nearest neighbours of a particular feature in an instance (Section 4.1), as well as

global feature expansion methods that propagate the features that exist in an instance over the entire set of vertices

in ClassiNet (Section 4.2). We evaluate the performance of the proposed feature expansion methods on short-text

classification benchmark datasets. Our experimental results show that the proposed global feature expansion method

significantly outperforms several local feature expansion methods„ and several sentence-level embedding methods on

multiple benchmark datasets proposed for evaluating short-text classification methods. Considering that (a) ClassiNets

can be created using unlabeled data, (b) the same ClassiNet can be used in principle for predicting features for different

target tasks, (c) arbitrary features could be used in the feature predictors, not limited to lexical features, we believe that

ClassiNets can be applied to a broad-range of machine learning tasks, not limited to short-text classification.

Our contributions in this paper can be summarised as follows:

• We propose a method for learning a network of feature predictors that can predict missing features in feature

vectors. The proposed network, which we refer to as the ClassiNet, can be learnt in an unsupervised manner,

without requiring any labeled data for the target task in which we are going to apply the ClassiNet to expand

features (Section 3.2).

• We propose an efficient method to learn ClassiNets from large datasets. Specifically, we show that the

edge-weights of ClassiNets can be computed efficiently using locality sensitive hashing (Section 3.3).

• Having proposed ClassiNets, we describe its relationship to word co-occurrence graphs that have a long

history in the NLP community. We show that ClassiNets can be considered as a generalised version of word

co-occurrence graphs (Section 3.4).

• We propose several methods for finding related features for a given instance using the created ClassiNet. In

particular, we consider both local methods (Section 4.1) that consider the nearest neighbours in ClassiNet of
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4 Danushka Bollegala, Vincent Atanasov, Takanori Maehara, and Ken-ichi Kawarabayashi

the features that exist in an instance, as well as global methods (Section 4.2) that consider all vertices in the

ClassiNet.

2 RELATEDWORK

Feature sparseness is a common problem that is encountered in various text mining tasks. Two main approaches for

overcoming the feature sparseness problem in short-texts can be identified in the literature: (a) embedding the train/test

instances in a dense, lower-dimensional feature space thereby reducing the number of zero-valued features in the

instances, and (b) predicting the values of the missing features. Next, we discuss prior work that belong to each of those

two approaches.

An effective technique frequently used in prior work on short-texts to overcome the feature sparseness problem is to

represent the texts in some lower-dimensional dense space, thereby reducing the feature sparseness. Several methods

have been used to obtain such lower-dimensional representations such as topic-models [kun Wang et al. 2012; Yan

et al. 2013; Yang et al. 2015], clustering [Dai et al. 2013; Rangrej et al. 2011], and dimensionality reduction [Blitzer et al.

2006; Pan et al. 2010]. Wang et al. [kun Wang et al. 2012] used latent dirichlet allocation (LDA) to identify features that

are useful for identifying a particular class. Higher weights are assigned to the identified features, thereby increasing

their contribution towards the classification decision. However, applying LDA at sentence-level is problematic because

the number of words in a sentence is much smaller than that in a document. Consequently, Yan et al. [Yan et al. 2013]

proposed the bi-term topic model that models the co-occurrence patterns between words accumulated over the entire

corpus. An alternative solution that uses an external knowledge-base in the form of a phrase list is propsed by Yang et

al. [Yang et al. 2015] to overcome the feature sparseness problem when learning topics from short-texts. The phrase list

is automatically extracted from the entire collection of short-texts in a pre-processing step.

Cluster-based methods have been proposed for representing documents to overcome the feature sparseness problem.

First, some clustering algorithm is used to cluster the documents into a group of clusters. Next, each document is

represented by the clusters to which it belongs. Dai et al. [Dai et al. 2013] used a hierarchical clustering algorithm

with purity control to generate a set of clusters, and use the similarity between a document and each of the clusters

as augmented features to enrich the document representation. Their method significantly improves the classification

accuracy for short web snippets in a support vector machine classifier. Feature mismatch is a fundamental problem in

domain adaptation, where we must learn a classifier using labeled data from a source domain and apply it to predict

labels for the test instances in a different target domain. Pan et al. [Pan et al. 2010] proposed Spectral Feature Alignment

(SFA), a method to overcome the feature mismatch problem in cross-domain sentiment classification. They created a

bi-partite graph between domain-specific and domain-independent features, and then used a spectral clustering method

to obtain a domain-independent lower-dimensional embedding.

In structural correspondence learning (SCL) [Blitzer et al. 2007, 2006], a set of features that are common to both

source and the target domains, referred to as pivots, is identified using mutual information with the sentiment label.

Next, linear classifiers that can predict those pivots are learnt from unlabeled reviews. The weight vectors corresponding

to the learnt linear classifiers are arranged as rows in a matrix, on which subsequently singular value decomposition is

applied to compute a lower-dimensional projection. Feature vectors representing train source reviews are projected

into this lower-dimensional space, in which a binary sentiment classifier is trained. During test time, feature vectors

representing test target reviews are also projected to the same lower-dimensional space and the trained binary classifier

is used to predict the sentiment labels. However, domain adaptation methods such as SCL and SFA require data from at
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ClassiNet – Predicting Missing Features for Short-Text Classification 5

least two (source vs. target) different domains (e.g. reviews on products in different categories) to overcome the missing

feature problem, whereas in this work we assume the availability of data from one domain only.

Instead of representing documents using lexical features, which often results in high-dimensional and sparse feature

vectors, by embedding documents in low-dimensional dense spaces we can effectively overcome the feature sparseness

problem [dos Santos and Gatti 2014; Le and Mikolov 2014; Lu and Li 2013]. These methods jointly learn character-level

or word-level embeddings as well as document-level embeddings [Hill et al. 2016a; Kiros et al. 2015] such that the learnt

embeddings capture the similarity constraints satisfied by a collection of short-texts. First, each word in the vocabulary

is assigned a fixed dimensional word vector. We can initialize the word vectors randomly or using pre-trained word

representations. Next, the word vectors are updated such that we can accurately predict the co-occurrences of words in

some context, such as a window of tokens, a sentence, a paragraph, or a document. Different loss functions encoding

different co-occurrence measures have been proposed for this purpose [Mikolov et al. 2013; Pennington et al. 2014]. As

shown later in Section 6.2, ClassiNets perform competitively against sentence-level embedding methods on several

short-text classification tasks.

A single word can have multiple senses. For example, the word bank could mean a financial institution or a river bank.

Therefore, it is inadequate to represent different senses of a word using a single embedding [Camacho-Collados et al.

2015; Hu et al. 2016; Iacobacci et al. 2015a; Johansson and Nieto Piña 2015; Li and Jurafsky 2015; Reisinger and Mooney

2010; Song et al. 2016]. Several solutions have been proposed in the literature to overcome this limitation and learn sense

embeddings, which capture the sense related information of words. For example, Reisinger and Mooney [2010] proposed

a method for learning sense-specific high dimensional distributional vector representations of words, which was later

extended by Huang et al. [2012] using global and local context to learn multiple sense embeddings for an ambiguous

word. Neelakantan et al. [2014] proposed a multi sense skip-gram (MSSG), an online cluster-based sense-specific word

representations learning method, by extending Skip-Gram with Negative Sampling (SGNG) [Mikolov et al. 2013]. Unlike

SGNG, which updates the gradient of the word vector according to the context, MSSG predicts the nearest sense first,

and then updates the gradient of the sense vector.

Aforementioned methods apply a form of word sense discrimination by clustering a word contexts, before learning

sense-specific word embeddings based on the induced clusters to learn a fixed number of sense embeddings for each

word. In contrast, a nonparametric version of MSSG (NP-MSSG) [Neelakantan et al. 2014] estimates the number of

senses per word and learn the corresponding sense embeddings. On the other hand, Iacobacci et al. [2015b] used a Word

Sense Disambiguation (WSD) tool to sense annotate a large text corpus and then used an existing prediction-based word

embeddings learning method to learn sense and word embeddings with the help of sense information obtained from the

BabelNet [Iacobacci et al. 2015b] sense inventory. Similarly, Camacho-Collados et al. [2015] used the knowledge in two

different lexical resources: WordNet [Miller 1995] and Wikipedia. They use the contextual information of a particular

concept from Wikipedia and WordNet synsets prior to learning two separate vector representations for each concept.

A single word can be related to multiple different topics, without necessarily corresponding to different senses of

the word. Revisiting our previous example, we might have a collection of documents about retail banks, commercial

banks, investment banks and central banks. All these different banks are related to the financial sense of the word bank.

However, in a particular task (eg. classifying documents related to the different types of financial banks), we might

require different embeddings for the different topics in which the word bank appears. Liu et al. [2015a] proposed three

methods for learning topical word embeddings, where they first cluster words into different topics using LDA [Blei

et al. 2003] and then learn word embeddings using SGNS. Liu et al. [2015b] modelled the interactions among topics,
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6 Danushka Bollegala, Vincent Atanasov, Takanori Maehara, and Ken-ichi Kawarabayashi

contexts and words using a tensor and obtained topical word embeddings via tensor factorisation. Instead of clustering

words prior to embedding learning, Shi et al. [2017] proposed a method to jointly learn both words and topics, thereby

considering the correlations between multiple senses of different words that occur in different topics. TopicVec [Li et al.

2016a] learns vector representations for topics in a document by modelling the co-occurrence between a target word

and a context word considering both words’ word embeddings as well as the topic embedding of the context word.

Our proposed methods for feature expansion using ClassiNet can be seen as an explicit feature prediction method,

whereas methods that learn lower-dimensional dense embeddings of texts can be seen as implicit feature prediction

methods. For example, if we use lexical features such as unigrams or bigrams to create a ClassiNet, then the features

predicted by that ClassiNet will also be lexicalised features, which are easier to interpret than dimensions in a latent

embedded space. Although for text classification purposes it is sufficient to represent short-texts in implicit feature

spaces, there are numerous tasks that require explicit interpretable predictions such as query suggestion in information

retrieval [Carpineto and Romano 2012], reverse dictionary mapping [Hill et al. 2016b], and hashtag suggestion in social

media [Weston et al. 2014]. Therefore, the potential applications of ClassiNets as an explicit feature expansion method

goes beyond short-text classificaion. It would be an interesting future research direction to combine implicit and explicit

feature expansion methods to construct better representations for texts.

Recently there has been several methods proposed for learning embeddings (lower-dimensional implicit feature

representations) for the vertices of undirected or directed (and weighted) graphs [Li et al. 2016b; Perozzi et al. 2014;

Tang et al. 2015]. For example, in language graphs [Tang et al. 2015], the vertices can correspond to words and the

weight of the edge between two vertices represent the strength of the co-occurrences between two words in a corpus.

Alternatively, in a co-author network, the vertices correspond to authors and the edges represent the number of papers

two people have co-authored. DeepWalk [Perozzi et al. 2014] performs a random walk over an undirected graph

to generate a pseudo-corpus, which is then used to learn word (vertex) embeddings using skip-gram with negative

sampling (SGNS) [Mikolov et al. 2013]. Li et al. [Li et al. 2016b] proposed a discriminative version of DeepWalk by

including a discriminative supervised loss that evaluates how well the learnt vertex embeddings perform on some

supervised tasks. Tang et al. [Tang et al. 2015] used both first-order and second-order co-occurrences in a graph to learn

separate vertex embeddings, which were subsequently concatenated to create a single vertex embedding. Although in

this paper we consider graphs where vertices correspond to words, the objective of creating ClassiNets is fundamentally

different from the above-mentioned vertex embedding methods. In graph (vertex) embedding, we are given a graph and

a goal is to learn embeddings for the vertices such that structural information of the graph is preserved in the learnt

embeddings. On the other hand, in ClassiNets, we learn feature predictors which can be used to predict whether a

particular feature is missing in a given context. The connection between co-occurrence graphs and ClassiNets is further

discussed in Section 3.4. Moreover, in Section 4, we propose and evaluate several methods for expanding feature vectors

using the ClassiNets we create, which is not relevant for vertex embedding methods.

3 CLASSINETS

3.1 Overview

Our proposed method for classifying short-texts consists of two steps. First, we create a network of classifiers which

we refer to as the ClassiNet in this paper. In Section 3.2, we describe the details of the method we propose to create

ClassiNets. In Section 4, we describe several methods for using the learnt ClassiNet to expand feature vectors to

overcome the feature sparseness problem.
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ClassiNet – Predicting Missing Features for Short-Text Classification 7

Definition 3.1. We define a ClassiNet as a directed weighted graph G (V, E,W), in which a vertex vi ∈ V =

{v1, . . . ,vn } corresponds to a binary classifier (feature predictor) hi that predicts the occurrence of a feature vi

in an instance. We assume that each train/test instance x is already represented by a d-dimensional vector x =

(x1,x2, . . . ,xd )
⊤
, in which the i-th dimension corresponds to the value xi of the i-th feature representing the instance

x . The label predicted by hi for an instance x is denoted by hi (x ) ∈ {0, 1}. The weightwi j associated with the edge ei j

connecting the vertex vi to vj represents the conditional probability, p (hj (x ) = 1|hi (x ) = 1), that vj is predicted to

occur in x , given that vi is also predicted to occur in x .

Several remarks can be made about the ClassiNets. First, there is a one-to-one correspondence between the vertices

vi in the ClassiNet and the feature predictors hi . Therefore, a ClassiNet can be seen as a network of binary classifiers,

as is implied by its name. In general, the set of features S that we use for representing instances x (hence for learning

feature predictors), and the set of verticesV in ClassiNet need not be the same. As we discuss later, vertices in the

ClassiNet are used as expansion features to augment instances x , thereby overcoming the feature sparseness problem in

short-text classification. Therefore, we are free to select a subset of features from all the features used for representing

instances as the vertices in ClassiNet. For example, we might use the most frequent features in the train data as vertices

in ClassiNet thereby setting V ⊂ S (n < d). Alternatively, we could use all the features in the feature space of the

instances as vertices in the ClassiNet, where we haveV = S (and n = d). In the remainder of the paper, we consider

the general case where we haveV ⊆ S (n ≤ d).

Second, as we discuss later in Section 3.2, we do not require labeled data for the target task when creating ClassiNets.

For example, let us consider binary sentiment classification of product reviews as the target task. We might have

both sentiment rated reviews (labeled instances), and reviews without sentiment ratings (unlabeled instances) at our

disposal. We can use both those types of reviews, and ignore the label information when computing the ClassiNet. This

is particularly attractive for two reasons: (a) obtaining unlabeled instances is often easier for most tasks compared

to obtaining labeled instances, (b) because a ClassiNet created from a particular corpus is independent of the label

information unique to a target task, in principle, the same ClassiNet can be used to expand features for different target

tasks. The second property is attractive in multi-task learning settings, where we must perform different tasks on

the same data. For example, consider the two tasks: (a) predicting whether a given tweet is positive or negative in

sentiment, and (b) predicting whether a given tweet would get favorited or not. Both those tasks can be seen as binary

classification tasks. We could learn two binary classifiers – one for predicting the sentiment and the other for predicting

whether a tweet would get favorited. However, to overcome the feature sparseness problem in both those tasks, we can

use the same ClassiNet.

As long as an instance (for example a sentence or a document) is represented using any bag-of-features (unigrams,

bigrams, trigrams, dependency paths, syntactic paths, POS sequences, semantic roles, frames etc.) we can use the

proposed method to create a ClassiNet. The first step in creating a ClassiNet is to learn feature predictors (Section 3.2).

The feature predictors use the features available in an instance to as features to train a binary classifier. Therefore, it

does not matter whether these features are n-grams or more complex types of features as listed above. The remainder

of the steps in the proposed method (measuring the correlations between feature predictors to build the ClassiNet,

applying feature expansion) use only the learnt feature predictors. Therefore, our proposed method can be used with

any feature representation of instances, not limiting to lexical n-gram features.
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Table 1. Confusion matrix for the labels predicted by the feature predictors learnt for two features vi and vj .

hj (x ) = 1 hj (x ) = 0

hi (x ) = 1 M11 M10

hi (x ) = 0 M01 M00

3.2 Learning ClassiNets

Let us assume that we are given a setDu = {x (k ) }Nk=1 of unlabeled feature vectors x
(k ) ∈ Rd representing N short-texts.

GivenDu we construct a ClassiNet in two steps: (a) learn feature predictors hi for each vertex vi ∈ V , and (b) compute

the conditional probabilities p (hj (x ) = 1|hi (x ) = 1) using the labels predicted by the feature predictors hi and hj for an

instance x . As positive training instances for learning a binary feature predictor for a feature vi , we randomly select a

setD
(+)
i ⊂ Du of N

(+)
i instances where vi occurs, and remove vi from those selected instances. Likewise, we randomly

select a set D
(−)
i ⊂ Du of N

(−)
i instances where vi does not occur. Instances that have few features are not informative

for learning accurate feature predictors. Therefore, we select instances that have more non-zero features than the

average number of non-zero features in an instance in Du . We found that, on average, there are ca. 15 features in an

instance.

Compared to the number of instances containing a particular feature vi in the dataset, the number of instances that

do not contain vi is significantly larger. Considering that we are randomly sampling negative instances from a larger

set of instances, it is likely that those selected negative instances are not very informative about why vi is missing in a

given instance. In other words, the randomly sampled negative instances might already be further from the decision

hyperplane, therefore do not provide sufficient specialization in the hypothesis space. Consequently, it has shown in

prior work that use pseudo-negative instances for training classifiers [Bollegala et al. 2007] that it is effective to select

a larger number of pseudo-negative instances than that of positive instances (i.e., N
(+)
i < N

(−)
i ). We note that it is

possible to set the number of positive and negative train instances dynamically for each feature vi . For example, some

features might be popular in the dataset resulting in a larger positive sample than the others. For simplicity, in this

paper, we select all instances in which a particular feature occurs as the positive training instances for that feature, and

select twice that number of negative instances from the remainder of the instances (i.e., N
(−)
i = 2N (+)

). An extensive

study of different sampling methods and N
(−)
i /N

(+)
i ratios is beyond the scope of the current paper.

Once we have selected D
(+)
i , and D

(−)
i as described above, we train a binary classifier to predict whether vi occurs

in a given instance. We note that any binary classification algorithm, not limited to linear classifiers, can be used for

this purpose. In our experiments, we use ℓ2 regularized logistic regression for its simplicity. We tune the regularization

coefficient in each feature predictor using 5-fold cross-validation. Being a probabilistic discriminative classifier, it is

possible to obtain not only the predicted labels but also the class conditional probabilities from the trained logistic

regression classifier. However, we only require the predicted labels for constructing the edge weights in ClassiNets as

we describe next. Therefore, in theory, we can use even binary classifiers that do not produce confidence scores for

creating ClassiNets, which extends the applicability of ClassiNets to wider contexts.

Let us denote the label predicted by the feature predictor hi for an instance x by hi (x ) ∈ {0, 1}. For two features

vi and vj , we compute the confusion matrix M shown in Table 1. Here, Mab denotes the number of instances x for

which hi (x ) = a and hj (x ) = b. In particular,M11 is the number of instances where both vi and vj are predicted to be

co-occurring by the learnt feature predictors.
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ClassiNet – Predicting Missing Features for Short-Text Classification 9

Given the counts in Table 1,wi j is computed as follows:

wi j =
M11

M11 +M10

(1)

Several practical issues must be considered when estimating the edge-weights using (1). First, the set of instances we

use for predicting labels when computing the confusion matrix in Table 1 must contain at least some instances in which

vi or vj occur (i.e.,M11 +M10 > 0, andM11 +M01 > 0). Otherwise, even if the feature predictors hi , hj are accurately

learnt, we will still get unreliable sparse counts for M11 and M10. Therefore, we randomly sample a set of instances

D(i, j ) ⊆ Du such that there exist equal numbers of instances containing vi , and vj .

Let the total number of elements in D(i, j ) be d
′
. We use those d ′ instances when computing the values in the

confusion matrix shown in Table 1. We ensure that there is no overlap between the test instances D(i, j ) and the train

instances we use to learn feature predictors. This is important because if the feature predictors are overfitting we will

not get accurate predictions using the ClassiNet during test time. Using non-overlapping train and test instance sets,

we can check whether the learnt feature predictors are overfitting. Although we use a ratio of one-third when sampling

D(i, j ) above, we can use different ratios for sampling as long as both vi and vj are sufficiently represented in D(i, j ) .

3.3 Efficient Computation of ClassiNets

ClassiNets can be learnt offline during the training stage, prior to expanding test instances. Therefore, we are allowed

to perform more computationally intensive processing steps compared to what we are allowed at test time, which is

required to be real-time for most tasks that involve short-texts such as tweet classification. Nevertheless, we propose

several methods to speed-up the the construction process when the number of vertices n in the ClassiNet grows.

Compared to learning feature predictors for the vertices we use in the ClassiNet, which is linear in the number of

vertices n in the ClassiNet, to compute weightswi j we must consider all pairwise combinations between the vertices in

the ClassiNet. If we assume that the cost of learning a binary classifier for a vertex to be a constant c and is independent

of the feature, then the overall computational complexity of creating a ClassiNet can be estimated as O (cn + Nn2d ).

The first term is simply the complexity of computing n feature predictors at the constant cost of c . This operation can

be easily parallelised because each feature predictor can be learnt independently of the others. Moreover, it is linear in

the number of vertices in ClassiNet. Therefore, the first term can be ignored in most practical scenarios.

In cases where computational cost of the linear predictors is non-negligible, we can use several techniques to speed

up this computation. First, we could resort to more computationally efficient liner classifiers such as the perceptron.

Perceptrons can be trained in an online manner, without having to load the entire training dataset to the memory.

Second, note that only the features vj that co-occur with a particular vertex vi in any train instance will be useful for

predicting the occurrence of vi . Therefore, we can limit the features that we use in the predictor for vi to be the set of

features vj that occur at least once in the training data. We can efficiently compute such feature co-occurrences by

building an inverted search index. We can further speed up this computation by resorting to approximate methods

where we require a context feature vj to co-occur a predefined minimum number of times with the target feature vi for

which we must compute a predictor. Setting this cut-off threshold to higher values will result in smaller, sparser and

less noisier feature spaces and speed up the predictor computation. However, larger cut-off thresholds are likely to

remove important contextual features, thereby decreasing the accuracy of the feature predictors. The optimal cut-off

threshold could be determined using cross-validation or held-out data.
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10 Danushka Bollegala, Vincent Atanasov, Takanori Maehara, and Ken-ichi Kawarabayashi

On the other hand, the second term corresponds to learning edge-weights, and involves three factors: (a) n2, the

number of pairwise comparisons we must perform between the n vertices in the ClassiNet, (b) N , the maximum number

of instances for which we must predict labels for each pair of feature predictors when we compute the confusion

matrices as shown in Table 1, and (c) d , the number of features we must consider when computing the label of a predictor.

For example, if we use linear classifiers as feature predictors, during test time we must compute the inner-product

between the weight vector of the classifier and the feature vector of the instance to be classified, both of which are

d-dimensional. The dimensionality d of the vectors that represent instances will depend on the type of features we

use. For example, if we limit to lexical features from the short-text, then the number of non-zero features in any given

instance will be small. However, if we use dense features such as word embeddings, then the number of non-zero

features in an instance might be large.

However, the factors (a) and (b) require careful consideration. First, we must compare all pairs of predictors, which

is quadratic in the number of vertices in the ClassiNet. Second, to obtain the label for an instance we must classify

that instance using the learnt prediction model. For example, in the case of linear classifiers we must compute the

inner-product between two d-dimensional vectors: feature vector representing the instance to be classified, and the

weight vector corresponding to the feature predictor. For nonliner classifiers such as the ones that use polynomial

kernels, the number of feature combinations can grow exponentially resulting in slower prediction times for large

batches of test instances.

As a solution to this problem, we first represent each feature predictor hi by a d ′(< d ) dimensional vector hi (D(i, j ) ),

where each element corresponds to the label predicted for a particular instance x ∈ D(i, j ) . We randomly sample

D(i, j ) ⊆ Du following the procedure detailed in Section 3.2, where we include equal numbers of instances that contain

vi , vj , and neither of those two. Therefore, hi (D(i, j ) ) ∈ Id ′ and Id ′ is the d ′-dimensional simplex. We name hi (D(i, j ) )

as the label vector because it is a vector of predicted labels for all the instances in D(i, j ) by hi , the feature predictor

learnt for the feature vi . We can explicitly compute the label vector for the i-th feature predictor as follows:

hi (D(i, j ) ) = (hi (x1), . . . ,hi (xd ′ ))
⊤

(2)

In practice, d ′ ≪ N because only a small number of instances in Du will contain vi , or vj , and we select equal

proportions of instances that do not contain both instances. The following theorem states the relationship between

neighbouring feature predictors in the original d-dimensional space and the projected d ′-dimensional space.

Theorem 3.2. Consider two (possibly nonlinear) feature predictorshi (x ) = σ (µi⊤x ), andhj (x ) = σ (µ j⊤x ), parametrized

by µi , µ j ∈ Rd , and a transformation function σ (·) ∈ {1, 0}. Let θ (µi , µ j ) be the angle between µi and µ j . The following

relation holds between θ (µi , µ j ) and the probability of agreement p
(
hi (D(i, j ) ) = hj (D(i, j ) )

)
,

θ (µi , µ j ) = π
(
1 − p

(
hi (D(i, j ) ) = hj (D(i, j ) )

)
1/d ′

)
.

The proof of Theorem 3.2 is given below, and follows from the properties of locality sensitive hashing (LSH) [Andoni

and Indyk 2008; He and Niyogi 2003; Indyk and Motwani 1998].

Proof of Theorem 1

Let us consider the agreement of the feature predictors hi and hj on the k-th instance xk ∈ D(i, j ) . The probability of

agreement can be written as,

p
(
hi (xk ) = hj (xk )

)
= 1 − p

(
hi (xk ) , hj (xk )

)
. (3)
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ClassiNet – Predicting Missing Features for Short-Text Classification 11

From the symmetry in the half-plane, the disagreement probability on the right side in (3) can be written as twice the

probability of one parameter vector being projected positive and the other negative, given by:

p
(
hi (xk ) , hj (xk )

)
= 2p

(
µi
⊤xk ≥ 0, µ j

⊤xk < 0

)
(4)

However, the vector xk must exist inside the dyhedral angle θ (µi , µ j ) formed by the intersection of the two half-panes

spanned by µi and µ j . Therefore, the probability in (4) can be estimated as the ratio between angles given by,

p
(
µi
⊤xk ≥ 0, µ j

⊤xk < 0

)
=

θ (µi , µ j )

2π
. (5)

From (3), (4), and (5), we obtain,

p
(
hi (xk ) = hj (xk )

)
= 1 −

θ (µi , µ j )

π
. (6)

If we assume that the instances in D(i, j ) are i.i.d., then the agreement of the entire two d ′-dimensional label vectors

can be computed as the product of agreement probabilities of each dimension, given by,

p
(
hi (D(i, j ) ) = hj (D(i, j ) )

)
=

d ′∏
k=1

p
(
hi (xk ) = hj (xk )

)
=

(
1 −

θ (µi , µ j )

π

)d ′
. (7)

From (7) it follows that,

θ (µi , µ j ) = π
(
1 − p

(
hi (D(i, j ) ) = hj (D(i, j ) )

)
1/d ′

)
□

Theorem 3.2 states that we can measure the agreement between labels predicted by two feature predictors using the

angle between their corresponding parameter vectors. More importantly, Theorem 3.2 provides us with a heuristic to

approximately find the nearest neighbours of each vertex without having to compute the confusion matrices for all

pairs of vertices in the ClassiNet. We compute the nearest neighbours for each feature predictor in the d ′-dimensional

space. Computation of p
(
hi (D(i, j ) ) = hj (D(i, j ) )

)
is closely related to the calculation of hamming distance between the

label vectors hi (D(i, j ) ) and hj (D(i, j ) ). The Point Location in Equal Balls (PLEB) algorithm [Indyk and Motwani 1998]

can be used to compute the hamming distance in an efficient manner. This algorithm considers random permutations

of the bit streams and their sorting to find the vector with the closest hamming distance [Charikar 2002]. We use the

variant of this algorithm proposed by Ravichandran and Hovy [Ravichandran et al. 2005] that extends the original

algorithm to find the k-nearest neighbours. Specifically, we use this algorithm to find the k-nearest neighbours for

each feature vi , and compute edge-weightswi j for each vi and its nearest neighbours vj using the contingency table.

Note that although we find the nearest neighbours using the approximate method described above, the edge-weights

computed between the selected neighbours are precise because they are based on the confusion matrix.

To estimate the size of the neighbourhood k that we must select in order to obtain a reliable approximation of the

neighbours that we would have in the original d-dimensional space, we use the following procedure. First, we randomly

select a small number α (≪ N ) of vertices from the trained ClassiNet, and compute the confusion matrices with each

of those α vertices and the remainder of the vertices in the ClassiNet. We then compute the weightswi j of the edges

that connect the selected α vertices to the rest of the vertices in the ClassiNet. Following this procedure we compute

the nearest neighbours of each vertex in α without using the projection trick described above. Second, we apply the

projection method described above for all the vertices in the ClassiNet, and compute the nearest neighbours of the α

vertices that we selected. We then compare the overlap between the two sets of neighbourhoods. In our preliminary
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experiments, we found that setting the neighbourhood size k = 10 to be an admissible trade-off between the accuracy

of the neighbourhood computation and the speed. Therefore, all experiments described in the paper use edge-weights

computed with this k value.

3.4 ClassiNets vs. Co-occurrence Graphs

Before we describe how to use the trained ClassiNets to classify short-texts, it is worth discussing the connection

between word co-occurrence graphs and ClassiNets. Representing the association between words using co-occurrence

graphs has a long history in NLP [Mihalcea and Radev 2011]. Word co-occurrences could be measured using symmetric

measures, such as the Pointwise Mutual Information (PMI), Log-Likelihood Ratio (LLR), or asymmetric measures such

as KL-divergence, or conditional probability [Manning and Schutze 1999]. In a co-occurrence graph, vertices correspond

to words, and the weight of the edge connecting two vertices represents the strength of association between the

corresponding two words. However, in a co-occurrence graph, two words vi and vj to be connected by an edge, vi and

vj must explicitly co-occur within the same context.

On the other hand, in ClassiNets, we have edges between vertices not only for the words that co-occur within the

same context, but also if they are predicted for the same instance even though none of those features might actually be

occurring in that instance. For example, for an instance x where xi = x j = 0, we might still have hi (x ) = hj (x ) = 1.

Therefore, ClassiNets consider implicit occurrences of features which would not be captured by co-occurrence graphs. In

fact, ClassiNets can be thought to be a generalized version of co-occurrence graphs that subsumes explicit co-occurrences.

To see this, let us define feature predictors hi and hj as follows:

hi (x ) = 1[xi , 0] (8)

hj (x ) = 1[x j , 0] (9)

Here, 1 is the indicator function defined as follows:

1(δ ) =



1 δ = TRUE

0 δ = FALSE

(10)

Then,M11 in Table 1 can be written as,

M11 =
∑

x ∈D(i, j )

1[xi , 0]1[x j , 0], (11)

which is the number of instances in which both features vi and vj would co-occur. Therefore, ClassiNet reduces to

co-occurrence graphs when the feature predictor is simply the indicator function for a single feature. However, in

general, feature predictors would consider not just a single feature but a combination (potentially non-linear) of multiple

features, thereby capturing broader information than in a word co-occurrence graph.

4 FEATURE EXPANSION

In this Section, we describe several methods to use the ClassiNets created in Section 3 for predicting missing features in

instances, thereby overcoming the feature sparseness problem. We refer to this operation as feature expansion. Given a

train or a test instance x = (x1, . . . ,xd )
⊤
, we use the non-zero features, xi , 0 in x and find similar vertices vj ∈ V

from the created ClassiNet. In Section 4.1, we describe local feature expansion methods that consider only the nearest

neighbours of the vertices in the ClassiNet that correspond to non-zero features in an instance, whereas in Section 4.2
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we propose a global feature expansion method that propagates the original features across the ClassiNet to predict the

related features.

4.1 Local Feature Expansion

Given a ClassiNet, we propose several feature expansion methods that consider the local neighbourhood of the non-zero

features that occur in an instance. We refer to such methods collectively as local feature expansion methods.

4.1.1 Independent Expansion. The first local feature expansion method we propose expands each feature in an

instance independently of the others. Specifically, we predict whether vi occurs in a given instance x using the feature

predictor hi we trained from the unlabeled instances. If hi (x ) = 1, then we append vi as an expansion feature to x ,

otherwise we ignore vi . We repeat this process for all the vertices vi ∈ V and append the positively predicted vertices

to the original instance x . If the i-th feature xi already appears in x and also predicted by hi (x ) then we set its feature

value to xi + hi (x ). In the case where we have binary feature representations we will have xi ∈ {0, 1}. Therefore, in

the binary feature setting if a feature that already exists in an instance is predicted, then it will result in doubling the

feature weight (∵ xi + hi (x ) = 1 + 1 = 2). Moreover, instead of predicting the label, in a probabilistic classifier, such as

the logistic regression, we can use the posterior probability instead of the predicted label as hi (x ) to compute feature

values for the expansion features.

4.1.2 Local Path Expansion. This method extends the independent expansion method described in Section 4.1.1

by including all the vertices along the shortest paths that connect predicted features to the original features over the

ClassiNet. For example, let us assume that a feature xi = 0 in an instance x . If hi (x ) = 1, we will append vi as well as

all the vertices along the shortest paths that connect vi to each feature x j , 0 that exists in the instance x . Because all

expanded features are connected to the original non-zero features that exist in the instance via some local path, we

refer to this approach as the local path expansion. By construction, the set of expansion candidates produced by the

local path expansion method subsumes that of the independent expansion method.

4.1.3 All Neighbour Expansion. In this expansion method, first, we use edge-weights to find the k-nearest neighbours

of each vertex vi , and connect all the neighbours for each vertex to create a k-nearest neighbour graph from the trained

ClassiNet. The k-nearest neighbour graph that we create from the ClassiNet in this manner is a subgraph of the

ClassiNet. Two vertices vi and vj are connected by an edge in this k-nearest neighbour graph if and only if vi is among

the top k most similar vertices to vj as well as vj is among the top k most similar vertices to vi . The weights of all the

edges in this k-nearest neighbour graph are set to 1.

Next, for each non-zero feature in an instance x , we use its nearest neighbours as expansion features. This method

ignores the absolute values of the edge-weights in the ClassiNet, and considers only their relative strengths. If we

increase the value of k , we will have a larger set of candidate expansion features. However, it will also result in

considering less relevant features to the original features. Therefore, there exists a trade-off between the number of

expansion candidates we can use for feature vector expansion, and the relevancy of the expansion features to the

original features. Using development data, we constructed k-nearest neighbour graphs for varying k values, and found

that k > 4 settings often result in noisy neighbourhoods. Consequently, when using neighbour expansion, we set k = 4.

4.1.4 Mutual Neighbour Expansion. Themutual neighbour expansion method also uses the same k-nearest neighbour

graph as used by the all neighbour expansion method described in Section 4.1.3. The mutual neighbour expansion

Manuscript submitted to ACM



677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Danushka Bollegala, Vincent Atanasov, Takanori Maehara, and Ken-ichi Kawarabayashi

method selects a vertex vj in ClassiNet as an expansion candidate, if there exists at least two distinct vertices vi , vk in

the ClassiNet for which xi , 0, and xk , 0 in the instance x to be expanded. This method can be seen as a conservative

version of the all neighbour expansion method described in Section 4.1.3 because, we would ignore vertices vj that are

nearest neighbours of only a single feature in the original feature vector. The mutual neighbour expansion method

addresses the issue associated with previously proposed local feature expansion methods, which select expansion

candidates separately for each non-zero feature in the feature vector to be expanded, ignoring the fact that the feature

vector represents a single coherent short-text. However, this conservative expansion candidate selection strategy of the

mutual neighbour expansion method means that we will have a smaller set of expansion candidates in comparison to,

for example, the all neighbour expansion method.

4.2 Global Feature Expansion

The local feature expansion methods described in Section 4.1 consider only the vertices in the ClassiNet that are directly

connected to a feature in an instance as expansion candidates. Even in the case of local path expansion (Section 4.1.2), the

expansion candidates are limited to the local neighbours of the original features and the predicted features. Considering

that ClassiNet is a directed graph, we can perform label propagation on ClassiNet to find features that are not directly

connected nor appearing in the local neighbourhood of a feature in a short-text but still relevant.

For example, assume that Google and Microsoft are not local neighbours in a ClassiNet. Consequently none of the

local neighbour expansion methods will be able to predict Microsoft as a relevant feature for expanding a short-text

containing Google. However, if Bing, a Web search engine similar to Google, appears in the local neighbourhood of

Google in the ClassiNet, and if we can propagate from Bing to its parent company Microsoft via the ClassiNet, then we

will be able to predict Microsoft as a relevant feature for Google. The propagation might be over multiple hops, thereby

reaching beyond the local neighbourhood of a feature.

Propagation over ClassiNet can also help to reduce the ambiguity in feature expansion. For example, consider

the sentence “Microsoft and Apple are competing for the tablet computer market.”. If we do not perform word sense

disambiguation prior to feature expansion, and we expand each feature independently of the others, then it is likely that

we might incorrectly expand apple by other types of fruits such as banana or orange. Such phenomena are observed in

prior work on set expansion and is referred to as semantic drift [Kozareva and Hovy 2010]. However, if we find the

expansion candidates jointly, such that they are relevant to all the features (words) in the sentence, then they must be

relevant to both Microsoft as well as Apple, which encourages other IT companies, such as Google or Yahoo for example.

All local feature expansion methods described in Section 4.1 except the independent expansion method address this

issue by ranking expansion candidates depending on how well they are related to all the features in a short-text. Label

propagation can solve this ambiguity problem in a more systematic manner by converging multiple random walks

initiated at different features that exist in a short text. Next, we describe a global feature expansion method based on

propagation over ClassiNet.

First, let us describe the proposed global feature expansion method using the ClassiNet shown in Figure 6. Here, we

consider expanding an instance x = (x1,x2)
⊤
with two non-zero features v1 = x1 and v2 = x2 (x1 , 0, and x2 , 0). We

would like to compute the likelihood p (v∗ |x ) of a vertex v∗ as an expansion candidate for the instance x . From Figure 6

we see that there are two possible paths reaching v∗ starting from the original features x1 and x2. Assuming that the

two paths are independent, we compute p (v∗ |x ) as follows:

p (v∗ |x ) = p (x1)p (v3 |x1)p (v
∗ |v3) + p (x2)p (v4 |x2)p (v

∗ |v4) (12)
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v₁=x₁ v₂=x₂

v₃ v₄

v*

Fig. 1. Computing the feature value of an expansion feature v∗ for an instance that has v1 = x1 and v2 = x2 as non-zero features.

The computation described in Figure 6 can be generalized for an arbitrary ClassiNet G (V, E,W), and an instance

x = (x1, . . . ,xd )
⊤
. For this purpose, let us define the set of non-cyclic paths connecting two vertices vi , vj in G to be

Γ(vi ,vj ). For the example shown in Figure 6 we have the two paths x1 → v3 → v∗, and x2 → v4 → v∗. We compute

the likelihood p (v∗ |x ) of a vertex v∗ ∈ V being an expansion candidate of x as follows:

p (v∗ |x ) =
d∑
k=1

*.
,
xkp (xk = vk )

∏
(a,b )∈Γ(xk ,v∗ )

p (b |a)+/
-

(13)

If a feature xk = 0, then the likelihoods corresponding to paths starting from xk will be ignored in the computation of

(13). The prior probabilities of features p (xk ) can be estimated from train data by dividing the number of instances that

contain xk by the total number of instances. Alternatively, we could set a uniform prior for p (xk ) thereby considering

all the words that occur in an instance equally. We follow the latter approach in our experiments.

The sum-product computation over paths can be efficiently computed by observing that it can be modeled as a label

propagation problem over a directed weighted graph, where an instance x is the initial state vector and the transition

probabilities are given by the weight matrix W. Vertices that can be reached after q hops are given by

∑q
i=1W

ix .

Neighbours that are distantly located in the ClassiNet are less reliable as expansion candidates. To reduce the noise due

to distant (and potentially irrelevant) vertices during the propagation, we introduce a damping factor 0 < γ ≤ 1 in the

summation,

∑q
i=1 γ

iWix . In Section 6.4, we experimentally study the effect of the level of damping on the classification

accuracy of short-text classification.

The feature expansion methods we described above are used to predict missing features for both train and test

instances. We expand feature vectors representing the train/test instances, and assign unique identifiers to the expansion

features, thereby distinguishing between the original features and the expanded features. For example, given the positive

sentiment labeled train sentence “I love dogs”, we can represent it using the feature vector, [(I, 1), (love, 1), (dog, 1)]. Here,

we assume that lemmatization has been conducted on the input and the feature dogs has been converted to its singular

form dog. Let us further assume that from the trained ClassiNet we were able to predict that cat is a related feature for

dog, and the candidate score p (cat |doд) = 0.8. Next, we add the feature (EXP=cat, 0.8) to the feature vector representing

this train instance, where the prefix EXP= indicates that it is a feature introduced by the expansion method and not

a feature that existed in the original train instance. Distinguishing original vs. expansion features is useful when we
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would like to learn different weights for the same feature depending on whether it is expanded or not. For example, if

a particular feature is not very useful as an expansion feature, it will be assigned a lower weight thereby effectively

pruning that feature out from the model learnt by the classifier.

The first step of learning a ClassiNet is learning the feature predictors. In this regard, any word embedding learning

method can be used for the purpose of learning feature predictors. Once the feature predictors are learnt, we can create

a ClassiNet in the same manner as we propose in this paper and use the ClassiNet created to perform feature expansion

using local/global feature expansion methods we propose in the paper. This view of ClassiNets illustrates the general

applicability of the proposed method.

5 A THEORETICAL ANALYSIS OF CLASSINETS

Before we empirically evaluate the performance of the proposed ClassiNets for feature expansion in short-text classi-

fication, let us analyze some interesting properties of ClassiNets. To simplify the analysis, let us assume that we are

using a ClassiNet for learning a linear classifier ϕ ∈ Rd for a binary classification task. Specifically, let us assume that

we are given a train dataset {(x (k ) ,y (k ) )}Nk=1 consisting of N instances, where each train instance k is represented by a

feature vector x (k ) ∈ Rd . The binary target label assigned to the k-th train instance is denoted by y (k ) ∈ {1,−1}. For

correctly classified train instances x (k )
we have, y (k )ϕ⊤x (k ) > 0.

We use the trained linear classifier ϕ, and predict the label ŷ of an unseen test instance x̂ as follows:

ŷ =



1 if ϕ⊤x̂ > 0

−1 otherwise

(14)

Let us assume that we have learnt a feature predictor hi that predicts whether the i-th feature exists in a given

instance. As described in Section 3.1, we can use any classification algorithm to learn the feature predictors. However,

as a concrete case, let us consider linear classifiers in this analysis. In the case of linear classifiers, we can represent the

feature predictor learnt for the i-th feature by the vector µi . Following the notation introduced in Section 3.1, we can

write the feature predictor hi as follows:

hi (x ) =



1 if µi⊤x > 0

−1 otherwise

(15)

In the ClassiNets described in the paper so far, we used the predicted discrete labels as the values of the predicted

features during feature expansion. However, in this analysis let us consider the more general case where we use the

actual prediction score, µi⊤x as the contribution of the feature expansion towards the i-th feature.

We can construct the expanded feature vector, x∗ ∈ Rd , of the feature vector x ∈ Rd considering the inner-product

between x and each of the feature predictors µi as in (16).

x∗ = [(x1 + µi
⊤x ), . . . , (xi + µi

⊤x ), . . . , (xd + µd
⊤x )]⊤ (16)

Here, we denote the i-th dimension of the feature vectorx byxi .We can transform the given train dataset {(x (k ) ,y (k ) )}Nk=1
by expanding each feature vector separately using (16), and use the expanded feature vectors to train a binary linear

classifier ϕ∗. Following (14), we can use ϕ∗ to predict the label for a test instance x∗ based on the prediction score given
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by

ϕ∗⊤x∗ =

d∑
i=1

ϕ∗i
(
xi + µi

⊤x
)

=

d∑
i=1

ϕ∗i xi +
d∑
i=1

ϕ∗i µi
⊤x

= ϕ∗⊤x + ϕ∗⊤Lx (17)

= ϕ∗⊤ (I + L) x (18)

Here, I ∈ Rd×d is a unit matrix, and L ∈ Rd×d is the matrix formed by arranging the feature predictors µi in rows. In

other words, L = [µ1 . . . µd ]
⊤
.

The first term in (17) corresponds to classifying the non-expanded (original) instance x using the classifier trained

using the expanded train dataset. The second term in (17) represents the prediction score due to feature expansion.

From (18) we see that performing feature expansion on a feature vector x is equivalent to multiplying the matrix (I + L)
into x . Therefore, local feature expansion methods described in Section 4.1 can be seen as projecting the train feature

vectors into the same d-dimensional feature space spanned by the features that exist in the train instances. As a special

case, we see that when we do not learn feature predictors we have L = 0, for which (17) reduces to the prediction score

ϕ∗⊤x of the binary linear classifier trained using non-expanded train instances.

5.1 Edge weights of ClassiNets

Recall that,wi j the weight of the edge connecting the vertex i to vertex j in a ClassiNet was defined by (1). In the case

of binary linear feature predictors µi and µ j we considered in the previous section, let us estimate the value of wi j .

Using the indicator function 1 defined by (10), we computeM11 and (M11 +M10) in (1) as follows:

M11 =

N∑
k=1

1[(y (k )x (k )⊤µi>0) ∧ (y (k )x (k )⊤µ j>0)] (19)

M11 +M10 =

N∑
k=1

1[(y (k )x (k )⊤µi > 0)] (20)

Let us assume that we sample instances x from the train dataset randomly according to the distribution p (x ). Then the

expected counts in M̂11 and M̂10 in (19) and (20) can be expressed using the expected number of the correct classifications

made by the feature predictors µi and µ j as follows:

M̂11 = Ep (x )

[
1[(yx ⊤µi > 0) ∧ (yx ⊤µ j > 0)]

]
(21)

M̂11 + M̂10 = Ep (x )

[
1[(yx ⊤µi > 0)]

]
(22)

Using the expected counts given by (21) and (22) we can compute the approximate value of the edge weight ŵi j as

follows:

ŵi j =
Ep (x )

[
1[(yx⊤µi > 0) ∧ (yx⊤µ j > 0)]

]

Ep (x ) [1[(yx⊤µi > 0)]]
(23)

If we have a sufficiently large train dataset, then (23) provides an alternative procedure for estimating the edge

weights. We could randomly select samples from the train dataset, predict the features i and j for those samples, and

compute the expectations as ratio counts. We can repeat this procedure many times to obtain better approximations for

the edge weights. Although this is a theoretically feasible procedure for approximately computing the edge weights, it
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can be slow in practice and might require many samples before we obtain a reliable approximation for the edge weights.

Therefore, the edge weight computation method described in Section 3.3 is more appropriate for practical purposes.

5.2 Analysis of the Global Feature Expansion Method

We already showed in (18) that local feature expansion methods can be considered as feature vector transformation

methods by a matrix (I + L). However, an important strength of ClassiNet is that we can propagate the predicted

features over the network using the global feature expansion method described in Section 4.2.

Let us denote the edge-weight matrix of the ClassiNet G byW. The (i, j )-th element ofW is denoted bywi j . The

connection between edge weights wi j and the feature predictors µi and µ j is given by (23). In the global feature

expansion method, we repeatedly propagate the predicted features across the network, which can be seen as a repeated

multiplication using γW, where γ is the damping factor described in Section 4.2. Observing this connection, we can

derive the prediction score under the global feature expansion method similar to (18) as follows:

ϕ∗⊤x∗ = ϕ∗⊤
(
I + γW + . . . + γqWq ) x

= ϕ∗⊤ (I − γW)−1 (I − γ (q+1)W(q+1) )x (24)

For the summation shown in (24) to hold, and the matrix (I − γW) to be invertible, for all eigenvalues λr of W we

require γ |λr | < 1. This requirement can be met in practice by a sufficiently small damping factor. For example, we could

set γ = 1/(1 + |λmax | |), where |λmax | is the eigenvalue ofW with the maximum absolute value.

As a special case where we propagate the features without truncating, we have q → ∞, for which we obtain the

prediction score given in (25).

ϕ∗⊤x∗ = ϕ∗⊤ (I − γW)−1x (25)

From (25), we see that, similar to the local feature expansion methods, the global feature expansion method can also be

seen as projecting the input feature vector x using the matrix (I − γW)−1.

6 EXPERIMENTS

We create a ClassiNet using 257,306 unlabeled sentences from the Large Movie Review dataset
1
. Each word in this dataset

is uniquely represented by a vertex in the ClassiNet. We learn linear predictor for each feature using automatically

selected positive (reviews where the target feature appears) and negative (reviews where the target feature does not

appear) training instances. The ClassiNet created from this dataset contains 489, 000 vertices. This ClassiNet is used in

all the experiments described in the remainder of this paper.

For evaluation purposes we use four binary classification datasets: the Stanford sentiment treebank (TR)2 (903

positive test instances and 903 negative test instances), movie reviews dataset (MR) [Pang and Lee 2005] (5331 positive

instances and 5331 negative instances), customer reviews dataset (CR) [Hu and Liu 2004] (925 positive instances and

569 negative instances), and subjectivity dataset (SUBJ) [Pang and Lee 2004] (5000 positive instances and 5000 negative

instances). We perform five-fold cross-validation in all datasets, except in the Stanford sentiment treebank where there

exists a pre-defined test and train split. In each dataset, we use the train portion to learn a binary classifier. Next, we use

the trained ClassiNet to expand the feature vectors for the test instances. We then measure the classification accuracy

1http://ai.stanford.edu/~amaas/data/sentiment/
2http://nlp.stanford.edu/sentiment/treebank.html
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of the binary classifier on the expanded test instances. If high classification accuracies are obtained using a particular

feature expansion method, then that feature expansion method is considered superior.

We use a CPU server containing 48 cores of 2.5GHz Intel Xeon CPU and 512GB RAM in our experiments. The entire

training pipeline of training feature predictors, building the ClassiNet and expanding training instances using Global

feature expansion method takes approximately 1.5 hours. The testing phase is significantly faster because we can use

the created ClassiNet to expand test instances and use the trained model to make predictions. For example, for the

SUBJ dataset, which is the largest among all datasets used in our experiments, it takes only 5 minutes to both expand

(using Global feature expansion) and predict (using logistic regression).

6.1 Binary Classification of Short-Texts

Direct evaluation of the features predicted by the ClassiNet is difficult because there is no gold standard for feature

expansion. Instead, we perform an extrinsic evaluation of the created ClassiNet by using it to expand feature vectors

representing sentences in several binary text classification tasks. If we can observe any increase (or decrease) in

classification accuracy for the target classification task when we use the features predicted by the ClassiNet, then

it can be directly associated with the effectiveness of the ClassiNet. For the purpose of training a binary classifier,

we represent a sentence by a real-valued vector, in which elements correspond to the unigrams extracted from that

sentence. The feature values are computed using the tfidf measure. We train a binary logistic regression model, where

the L2 regularisation coefficient is tuned using development data selected from the Stanford sentiment treebank dataset.

We use classification accuracy, which is defined as the ratio between the correctly classified test sentences and the

total number of test sentences in the Stanford sentiment treebank. In addition to reporting the overall classification

accuracies, we report classification accuracies separately for the positively labeled instances and the negatively labeled

sentences. Because this is a binary classification task, a random classifier would obtain an accuracy of 50%. There are 903

positive and 908 negative sentiment labeled test sentences in the Stanford sentiment treebank test dataset. Therefore, a

baseline that assigns the majority label would obtain an accuracy of 50.13% on this dataset.

Table 2 compares the sentiment classification accuracies obtained by the following methods:

No Expansion: This baseline does not perform any feature expansions. It trains a binary logistic regression classifier

using the train sentences, and applies it to classify sentiment of the test sentences. This baseline demonstrates the level

of performance we would obtain if we had not performed any feature expansion. It can be seen as a lower-baseline for

this task.

Independent Expansion: This method is described in Section 4.1.1.

Local Path Expansion: This method is described in Section 4.1.2.

All neighbour Expansion: This method is described in Section 4.1.3.

Mutual neighbour Expansion: This method is described in Section 4.1.4.

WordNet: Using lexical resources such as thesauri to find related words is a popular technique used in query

expansion [Fang 2008; Gong et al. 2005]. To simulate the performance that we would obtain if we had used an external

resource such as the WordNet to find the expansion candidates, we implement the following baseline. In the WordNet,

words that are semantically related are grouped into clusters called synsets. For each feature in a test instance, we

search the WordNet for that feature, and use all words listed in synsets for that feature as its expansion candidates. We

consider all synonyms in a synset to be equally relevant as expansion candidates of a feature.
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Table 2. Binary classification accuracies.

Method TR MR CR SUBJ

No Expansion 76.31 73.35 81.54 88.95

Independent Expansion 75.32 74.11 78.19 87.15

Local Path Expansion 76.97 73.73 81.87 88.05

All neighbour Expansion 77.36 72.93 82.55 88.75

Mutual neighbour Expansion 77.13 74.15 80.87 88.95

WordNet 76.58 66.09 79.86 77.95

SCL [Blitzer et al. 2006] 78.02 74.44 81.20 89.25

FTS [Man 2014] 76.47 66.83 62.41 50.15

CBOW 77.52 73.31 79.87 88.88

Global Feature Expansion 78.30 81.20∗ 83.89∗ 89.70

SCL: Domain adaptation methods attempt to overcome the feature mismatch between source and target domains by

predicting missing features and/or learning a lower-dimensional embedding common to the two domains. Although

we do not have two domains in our setting, we can still apply domain adaptation methods such as the structural

correspondence learning (SCL) proposed by Blitzer et al. [Blitzer et al. 2006] to predict missing features in a given

short-text. SCL was described in detail in Section 2. Specifically, we train SCL using the same set of vertices as used by

the ClassiNet as pivots. This enables us to conduct a fair comparison between SCL and methods that use ClassiNet

because the performance between SCL and methods that use ClassiNet can be directly attributable to the projection

method used in SCL and not due to any differences of the expansion set. We then train linear predictors for those

pivots using logistic regression. We arrange the trained linear predictors as rows in a matrix, on which we subsequently

perform singular value decomposition to obtain a lower-dimensional projection. Following the recommendations in

[Blitzer et al. 2006], we set the dimensionality of the projection to 50. Both train and test instances are first projected to

this lower-dimensional space and we append the projected features to the original feature vectors. Next, we train a

binary sentiment classifier using logistic regression with ℓ2 regularisation. The regularisation coefficient is set using a

held-out set of review sentences.

FTS: FTS is the frequent term sets method proposed by Man [Man 2014]. First, co-occurrence and class-orientation

relations are defined among features (terms). Next, terms that are frequent in those relations more than a pre-defined

threshold (support) are selected as expansion candidates. Finally, for each feature in a short text, the frequent term sets

containing this feature are appended as expansion features to the original feature vector representing the short-text.

FTS can be considered as a method that uses clusters of features induced from the data instances to overcome the

feature sparseness problem.

CBOW: To compare the explicit feature expansion approach used by ClassiNets against implicit text representation

methods, we use pre-trained word embeddings to represent a short-text in a lower-dimensional space. Specifically, we

create 300 dimensional word embeddings using the same corpus used by ClassiNets to create continuous bag-of-words

(CBOW) [Mikolov et al. 2013] embeddings, and add the word embedding vectors for all the words in a short text to

create a 300 dimensional vector that represents the given short-text.

Global Feature Expansion: This method propagates the original features across the trained ClassiNet, and is

described in Section 4.2. It is the main method proposed in this paper.
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We summarise the classification accuracies obtained with different approaches discussed on the four test datasets in

Table 2. For each dataset we indicate the best performing method using boldface font, whereas an asterisk indicates

if the best performance reported is statistically significantly better than the second best method on the same dataset

according to a two-tailed paired t-test under 0.01 confidence level. From Table 2, we see that the proposed Global
Feature Expansion method obtains the best performance in all four datasets. Moreover, inMR and CR datasets its

performance is significantly better than the second best methods (respectively SCL and All Neigbour Expansion) on
those two datasets .

Among the four local expansion methods, All neighbour Expansion reports the best performance in TR and

CR datasets, whereas the Mutual neighbour Expansion reports the best performance in MR and SUBJ datasets.
Independent Expansion method performs worse than the No Expansion baseline in TR, CR, and SUBJ datasets
indicating that by individually expanding each feature in a short-text we introduce a significant level of noise into the

short-text. This result shows the importance for a feature expansion methods to consider all the features in an instance

when adding related features to an instance. None of the local feature expansion methods are able to outperform the

global feature expansion method in any of the datasets. In particular, in the SUBJ dataset we see that none of the local
feature expansion methods outperform the No Expansion baseline. This result implies that it is not sufficient to simply

create a ClassiNet, but it is also important to use an appropriate feature expansion method on the built ClassiNet to find

expansion features to overcome the feature sparseness problem in short-text classification.

FTS method performs poorly in all our experiments. This indicates that the frequency of a feature is not a good

indicator of its effectiveness as an expansion candidate. On the other hand, WordNet method that uses synsets as

expansion candidates performs much better than FTS method. Not surprisingly, this result shows that synonyms

are useful as expansion candidates. However, a prerequisite of this approach is the availability of a thesauri that are

either manually or semi-automatically created. Such linguistic resources might not be available or incomplete for some

languages. On the other hand, our proposed method does not require such linguistic resources.

CBOW and SCLmethods perform competitively with the Global Feature Expansionmethod in all datasets. Given that

both CBOW and SCL are using word-level embeddings to compute a representation for a short text, this result shows

the effectiveness of word-level embeddings as a method to overcome feature sparseness in short-text classification tasks.

We compare non-compositional sentence-level embedding methods against the proposed Global Feature Expansion
method later in Section 6.2.

6.2 Comparisons against sentence-level embeddings

An alternative direction for representing short-texts is to project the entire text directly to a lower-dimensional space,

without applying any compositional operators to word-level embeddings. The expectation is that the overlap between

short-texts in the projected space will be higher than that in the original space such as a bag-of-word representation of a

short-text. Skip-thought vectors [Kiros et al. 2015], FastSent [Hill et al. 2016a], and Paragraph2Vec [Le and Mikolov 2014]

are popular sentence-level embedding methods that have reported state-of-the-art performance on text classification

tasks. In contrast to our proposed method which explicitly append features to the original feature vectors to overcome

the feature sparseness problem, sentence-level embedding methods can be seen as an implicit feature representation

method.

In Table 3, we compare the proposed method against the state-of-the-art sentence-level embedding methods. We use

the published results in [Kiros et al. 2015] onMR,CR, and SUBJ datasets for Skip-thought, FastSent, and Paragraph2Vec,
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without re-training those methods. All three methods are trained on the Toronto books corpus [Zhu et al. 2015].

Performance of these methods on the TR dataset were not available. As a multiclass classification setting, we used

the TREC question-type classification dataset. In this dataset, each question is manually classified to 6 question types

depending on the information asked in the question such as abbreviation, entity, description, human, location and

numeric. We use the same classinet as we used in the binary classification tasks to predict features for 5500 train and

500 test questions. A multiclass logistic regression classifier is trained on feature vectors with missing features predicted

and tested on the feature vectors for the test questions with missing features predicted.

Next, we briefly describe themethods compared in Table 3. Skip-thought [Kiros et al. 2015] is a sequence-to-sequence
model that encodes sentences using a Recurrent Neural Network (RNN) with Gated Recurrent Units (GRUs) [Cho et al.

2014]. FastSent [Hill et al. 2016a] is similar to Skip-thought in that both models predict the words in the next and

previous sentences given the current sentence. However, unlike Skip-though which considers the word-order in a

sentence, FastSent models a sentence as a bag-of-words. Paragraph2Vec [Le and Mikolov 2014] learns a vector for

every short-text (eg. a sentence) in a corpus jointly with word embeddings for every word in that corpus such that the

word embeddings are shared across all short-texts in the corpus. Sequential Denoising Autoencoder (SDAE) [Hill et al.
2016a] is an encoder-decoder model with a Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber 1997] unit.

We use the SDAE version that uses pre-trained CBOW embeddings to initialise the word embeddings because of its

superior performance over the SDAE version that uses randomly initialised word embeddings.

We use Convolutional Neural Networks (CNN) for creating sentence-level embeddings as a baseline. For this purpose,

we follow the model architecture proposed by Kim [2014]. Specifically, each word vi in a sentence is represented

by a d-dimensional word embedding vi ∈ R
d
, and the word embeddings are concatenated to create a fixed-length

sentence embedding. The maximum length n of a sentence is used to determine the length of this initial sentence-

level embedding, where sentences with words less than this maximum length are padded using null vectors. Next,

a convolution operator defined by a filter w ∈ Rhd is applied on windows of consecutive h tokens in sentences to

produce new feature vectors for the sentences. We use several convolutional filters by varying the window size. Next,

max-over-time pooling [Collobert et al. 2011] is applied on this feature map to select the maximum value corresponding

to a particular feature. This operation produces a sentence-level embedding that is independent of the length of the

sentence. Finally, a fully connected layer with dropout [Srivastava et al. 2014] and a softmax output unit is applied on

top of this sentence representation that can predict the class label of a sentence. Pre-trained CBOW embeddings are

used in the CNN-based sentence encoder as well.

From Table 3 we see that the proposed Global Feature Expansion method obtains best classification accuracies

on MR and CR datasets with statistically significant improvements over the corresponding second-best methods,

whereas Skip-thought reports the best results on the SUBJ and TREC datasets. However, unlike Skip-thought that
is trained for two weeks on a GPU cluster, ClassiNets can be trained in less than 6 hours end-to-end on a single core

CPU. The computational efficiency of ClassiNets is particularly attractive when continuously classifying large amounts

of short-texts such as, for example, sentiment classification of tweets coming in as a continuous data stream.

6.3 Qualitative evaluation

In Table 4, we show the expansion candidates predicted by the proposed Global Feature Expansion method for some

randomly selected short-reviews. The gold standard sentiment labels associated with each short review in the test

dataset are shown within brackets. All the reviews shown in Table 4 are misclassified if we had used only the features in
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Table 3. Comparison against sentence-level embedding methods.

Method MR CR SUBJ TREC

Skip-thought 76.5 80.1 93.6∗ 92.2

Paragraph2Vec 74.8 78.1 90.5 59.4

FastSent 70.8 78.4 88.7 76.8

SDAE 74.6 78.0 90.8 77.6

CNN 76.1 79.8 89.6 83.4

Global Feature Expansion 81.2∗ 83.89∗ 89.7 88.3

Table 4. Example short-reviews and the features predicted by ClassiNet. The correct label (+/-) is shown within brackets. All these
instances were misclassified when classified using the original features. However, when we use the features predicted by the ClassiNet
all those instances are correctly classified.

Review Predicted features

On its own cinematic terms, it successfully showcases

the passions of both the director and novelist Byatt. (+)

writer, played, excellent, thriller, story, writing, subject,
script, animation, films, role, storyline, experience, episode,
cinematography.

What Jackson has accomplished here is amazing on a

technical level. (+)

beautiful, perfect, fantastic, good, brilliant, great, won-
derful, excellent, fine, strong.

This is art playing homage to art. (+) cinema, modern, theme, theater, reality, style, experience,
British, drama, documentary, history, period, acting, cin-
ematography.

About as satisfying and predictable as the fare at your

local drive through. (-)

terrible, ridiculous, annoying, least, horrible, poor, slow,
awful, dull, scary, boring, stupid, bad, silly.

Fig. 2. Portion of the created ClassiNet from movie reviews. Vertices denote features and the edge-weights are shown on arrows.

the original review. However, by appending the expansion features found from the ClassiNet, we can correctly predict

the sentiment for those short reviews. From Table 4, we see that many semantically related features are found by the

proposed method.
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Fig. 3. The effect of the damping factor on the classification accuracy out.

Figure 2 shows an extract from the ClassiNet we create from the Large Movie Review dataset. To avoid cluttering of

edges, we show only the edges for a sparse k = 4 mutual neighbour graph created from the original densely connected

ClassiNet. First, for each vertex vi in the ClassiNet we compute its top k similar vertices according to the edge weights.

Next, we connect a vertex vi to a vertex vj in the k-mutual neighbour graph if vj is among the top k similar vertices of

vi , and vi is among the top k similar vertices of vj . We see that synonyms, such as awful, and horrible are connected by

high weighted edges in Figure 2. It is interesting to see that antonyms, such as good, and bad are also among the mutual

nearest neighbours because those terms frequently occur in similar contexts (e.g., good movie vs. bad movie). Moreover,

Figure 2 shows the importance of propagating over the ClassiNet, instead of simply considering the directly connected

vertices as the expansion candidates. For example, although being highly related features, there is no direct connection

from horrible to boring in the ClassiNet. However, if we consider two-hop connections then we can find a path through

awful.

6.4 Effect of the Damping Factor

To empirically study the effect of the damping factor on the classification accuracy of short-texts under the Global
Feature Expansion method, we randomly select 1000 positive and 1000 negative sentiment labeled sentences from

the Large Movie Review dataset as validation data, and evaluate the sentiment classification accuracy of the Global
Feature Expansion method with different γ values. The result is shown in Figure 3. Note that smaller γ values will

reduce the propagation than larger γ values, restricting the expansion candidates to a smaller local neighbourhood

surrounding the original features. From Figure 3 we see that initially when increasing γ the classification accuracy

increases and reaches a peak at γ = 0.85. This shows that it is indeed important to find expansion neighbours by

propagating over the ClassiNet as done by the global feature expansion method. However, setting γ > 0.85 results in a

drop of classification accuracy, which is due to distant and potentially irrelevant expansion candidates. Interestingly,

γ = 0.85 has been found to be the optimal value for different graph-based propagation tasks such as the PageRank [Page

et al. 1999].
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6.5 Number of Expansion Features

In this Section we analyse the number of feature appended to train/test instances by the different feature expansion

methods using a fixed ClassiNet. Recall that none of the feature expansion methods we proposed has any predefined

number of expansion features. In contrast, the number of expansion features depends on several factors: (a) the number

of features in the original (prior to expansion) feature vector, (b) the size and the connectivity of the ClassiNet and (c)

the feature expansion method. For example, if a particular feature vector has n features, which are all present in the

ClassiNet, then on average under the All Neighbour Expansion method, we will append dn number of features to this

instance where d is the out degree of the ClassiNet. More precisely, the actual number of expansion features will be

different from dn due to several reasons. First, some vertices in ClassiNet might have different numbers of neighbours,

not necessarily equal to the out degree. Second, the out degree considers the weight of the edges and not simply the

different number of vertices connected via outbound edges. Third, some of the expansion features might already be in

the original feature vector, thereby not increasing the number of features. Finally, the same expansion feature might be

suggested by different vertices, therefore doubly counting the number of expansion features.

To empirically analyse the number of expansion features, we build a ClassiNet containing 700 vertices and count the

number of features expanded on the SUBJ train dataset. The out degree d is given by (26).

d =
1

N

∑
i

∑
j ∈N (vi )

wi j (26)

Here, N is the total number of vertices in the ClassiNet,N (vi ) is the set of neighbours connected to vi by an out bound

link, andwi j is the weight of the edge connecting vertex vi to vj .

Figure 4 shows the degree distribution for the ClassiNet with degree d = 263.35. We see that most vertices are

connected to 240 − 300 other vertices in the ClassiNet. Given that this ClassiNet contains 700 vertices, this is a tightly

connected, dense graph. For each train instance in the SUBJ dataset, we compute the expansion ration, ratio between

the number of features after and before feature expansion, for the All Neighbour Expansion (Figure 5) and Global

Feature Expansion (Figure 6). We see that the expansion ratio is higher for the global feature expansion (ca. 25-30)

compared to that for all neighbour expansion (ca. 1.5-2.5). Given that the global feature expansion considers a broader

neighbourhood surrounding the initial features in an instance this is not surprising. Moreover, it provides an explanation

for the superior performance of the global feature expansion. Although expanding too much using not only relevant

nearby features but also potentially irrelevant broader neighbourhoods is likely to degrade performance, we see that at

the level of expansions done by the global feature expansion this is not an issue. Therefore, we conclude that under the

global feature expansion method, we do not need to impose any predefined limitations to the number of expansion

features.

7 CONCLUSION

We proposed ClassiNet, a network of binary classifiers for predicting missing features to overcome the feature sparseness

problem observed in short-text classification. We select positive and negative training instances for learning the feature

predictors using unlabeled data. In ClassiNets, the weight of the edge connecting the vertex vi to vj represents the

probability that given vi is predicted to occur in an instance, vj is also predicted to occur in the same instance. We

proposed an efficient method using locality sensitive hashing to approximately compute the neighbourhood of a vertex,

thereby avoiding all-pair computation of confusion matrices. We propose local and global methods for feature expansion

using ClassiNets. Our experimental results show that the global feature expansion method significantly improves the
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Fig. 4. Out degree distribution of the ClassiNet.

Fig. 5. All neighbour Expansion.

classification accuracy of a sentence-level sentiment classification tasks outperforming previously proposed methods

such as structural correspondence learning (SCL), and frequent term sets (FTS), Skip-thought vectors, FastSent, and

Paragraph2Vec on multiple datasets. Moreover, close inspection of the expanded feature vectors show that features that

are related to an instance are found as expansion candidates for that instance. In the future, we plan to apply ClassiNets

to other tasks that require missing feature prediction such as recommendation systems.
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