Survey on two-dimensional packing

1 Strip packing

In the two-dimensional strip packing problem, we are given a strip of a finite width W but
infinite height, and a set of rectangular items each of width at most . The objective is to
pack all the items into the strip to minimize the height used. The items may neither overlap
nor be rotated. We describe here a list of efficient (off-line) packing algorithms. A common
approach is level-oriented, the items are packed from left to right, in rows forming levels.
Within the same level, all items are packed so that their bottoms align. The first level is the
bottom of the strip and subsequent levels are defined by the height of the tallest item on the
previous level. Some algorithms start by sorting the items by non-increasing height, they
are usually named Decreasing Height (DH). The first three DH algorithms reviewed below
are level-oriented. Given an approximation algorithm A, let A(I) and OPT(I) denote the
height used by A and the optimal algorithm, respectively, for an instance /. The asymptotic
bounds stated below assume that the width of the strip and the items is normalized so that
the strip is of width 1.

1. First-Fit Decreasing Height (FFDH) algorithm
FFDH packs the next item R (in non-increasing height) on the first level where R fits.
If no level can accommodate R, a new level is created.
Time complexity of FFDH: O(nlogn).
Approximation ratio: FFDH(I) < 1£OPT(I) + 1; the asymptotic bound of {Z is
tight [6].

2. Next-Fit Decreasing Height (NFDH) algorithm
NFDH packs the next item R (in non-increasing height) on the current level if R fits.
Otherwise, the current level is “closed” and a new level is created.
Time complexity: O(nlogn).
Approximation ratioo NFDH(I) < 20PT(I) + 1; the asymptotic bound of 2 is
tight [6].

3. Best-Fit Decreasing Height (BFDH) algorithm
BFDH packs the next item R (in non-increasing height) on the level, among those that
can accommodate R, for which the residual horizontal space is the minimum. If no
level can accommodate R, a new level is created.
Time complexity: 77
Approximation ratio: 77

4. Bottom-Left (BL) Algorithm
BL first order items by non-increasing width. BL packs the next item as near to the



bottom as it will fit and then as close to the left as it can go without overlapping with
any packed item. Note that BL is not a level-oriented packing algorithm.

Time complexity: O(n?).

Approximation ratio: BL(I) < 30PT(I) [?].

. Baker’s Up-Down (UD) algorithm [1]

UD uses a combination of BL. and a generalization of NFDH. The width of the strip
and the items are normalized so that the strip is of unit width. UD orders the items
in non-increasing width and then divides the items into five groups, each with width
in the range (3,1], (3,3], (3,3], (3, %), (0,£]. The strip is also divided into five re-
gions Ry, ---, Rs. Basically, some items of width in the range (H%, %], for 1 <i <4,
are packed to region R; by BL. Since BL leaves a space of increasing width from top to
bottom at the right side of the strip, UD takes this advantage by first packing the item
to R; for j = 1,---,4 (in order) from top to bottom. If there is no such space, the
item is packed to R; by BL. Finally, items of size at most % are packed to the spaces in
Ry,---, Ry by the (generalized) NFDH algorithm. Again if there is no space in these
regions, the item is packed to R; using NFDH.

Time complexity: 77

Approximation ratio: UD(I) < 3 OPT(I) + % H, where H is the maximum height of
the items; the asymptotic bound of 2 is tight [1].

. Reverse-fit (RF) algorithm [12]

RF also normalizes the width of the strip and the items so that the strip is of unit
width. RF first stacks all items of width greater than % Remaining items are sorted in
non-increasing height and will be packed above the height Hj reached by those greater
than % Then RF repeats the following process. Roughly speaking, RF packs items
from left to right with their bottom along the line of height H, until there is no more
room. Then packs items from right to left and from top to bottom (called reverse-level)
until the total width is at least % Then the reverse-level is dropped down until (at
least) one of them touches some item below. The drop down is somehow repeated and
we refer the reader to [10] for more details.

Time complexity: 77

Approximation ratio: RF(/) <2OPT(I) [10].

. Steinberg’s algorithm [12]

Steinberg’s algorithm, denoted as M in the paper, estimates an upper bound of the
height H required to pack all the items such that it is proved that the input items
can be packed into a rectangle of width W and height H. They then define seven
procedures (with seven conditions), each to divide a problem into two smaller ones and
solve them recursively. It has been showed that any tractable problem satisfies one of
the seven conditions.

Time complexity: 77

Approximation ratio: M(I) <20PT(I).

. Split-Fit algorithm (SF) [6]

SF' divides items into two groups, L; with width greater than % and Lo at most % All
items of L, are first packed by FFDH. Then they are arranged so that all items with
width more than Z are below those with width at most 2. This creates a rectangle R
of space with width % Remaining items in L, are then packed to R and the space

2

tight? ref?



above those packed with L; using FFDH. The levels created in R are considered to be
below those created above the packing of L.

Time complexity: 77

Approximation ratio: SF(I) < 2 OPT(I) + 2; the asymptotic bound of 3 is tight [6].

9. Sleator’s algorithm [11]
Sleater’s algorithm consists of four steps: (1) all items of width greater than % are
packed on top of one another in the bottom of the strip. Suppose hq is the height of
the resulting packing All subsequent packing will occur above hy. (2) Remaining items
are ordered by non-increasing height. A level of items are packed (in non-increasing
height order) from left to right along the line of height hy. (3) A vertical line is then
drawn in the middle to cut the strip into two equal halves (note this line may cut an
item that is packed partially in the right half). Draw two horizontal line segments of
length one half, one across the left half (called the left baseline) and one across the
right half (called the right baseline) as low as possible such that the two lines do not
cross any item. (4) Choose the left or right baseline which is of a lower height and
pack a level of items into the corresponding half of the strip until the next item is too
wide. A new baseline is formed and Step (4) is repeated on the lower baseline until all
items are packed.
Time complexity: O(nlogn).
The approximation ratio of Sleator’s algorithm is 2.5 which is tight [11].

2 Bin packing

In the two-dimensional bin packing problem, we are given an unlimited number of finite
identical rectangular bins, each having width W and height H, and a set of n rectangular
items with width w; < W and height h;, for 1 < j < n. The problem is to pack, without
overlap, all the items into the minimum number of bins. The items cannot be rotated.

Most of the off-line algorithm in the literature are of greedy type, and can be classified
into two families:

e one phase algorithms directly pack the items into the finite bins;

e two phase algorithms start by packing the items into a single strip, i.e., a bin having
width W and infinite height. In the second phase, the strip solution is used to construct
a packing into finite bins.

2.1 Two-phase algorithms

The following two phase algorithms make use of some level-oriented algorithms to obtain a
strip packing. Suppose Hq, Hs, - - - are the heights of the resulting levels of the strip packing.
A finite bin packing solution is then obtained by solving a one-dimensional bin packing
problem (with item size H; and bin capacity H).

1. Hybrid First-Fit (HFF) [4]
In the first phase, a strip packing is obtained by the FFDH algorithm. The second
phase adopts the First-Fit Decreasing (FFD) algorithm, which packs an item to the
first bin that it fits or start a new bin otherwise.



Time complexity: O(nlogn).
The approximation ratio of HFF is i [4]. The bound is not proved to be tight: the
best lower bound of HFF known is £I.

Hybrid Next-Fit (HNF) [5]

NFDH is adopted in the first phase. In the second phase, the one-dimensional bin
packing problem is solved by the Next-Fit Decreasing (NFD) algorithm, which packs
an item to the current bin if it fits, or start a new bin otherwise.

Time complexity: O(nlogn).

The approximation ratio of HNF is 3.382 [5].

Hybrid Best-Fit (HBF) [2]

In the first phase, BFDH strategy is adopted. The second phase adopts the Best-
Fit Decreasing (BFD) algorithm, which packs an item to the best bin (one with the
smallest space left) that it fits or start a new bin otherwise.

Time complexity: 77

Approximation ratio: 77

. Floor-Ceiling (FC) algorithm [7, 9]

Consider a particular level, the horizontal line defined by the top (resp. bottom) edge
of the tallest item is called the ceiling (resp. floor) of the level. In the first phase, FC
packs an item into a level either from left to right with their bottom edge on the level
floor or from right to left, with their top edge on the level ceiling. The first item packed
on a ceiling must be one which cannot be packed on the floor in the same level. The
order of preference when FC packs an item in the first phase: (i) on a ceiling (provided
that the requirement above is satisfied), using best-fit (BF) algorithm; (ii) on a floor,
using BF algorithm; (iii) on the floor of a new level.

In the second phase, the levels are packed into finite bins, either by BFD or by an
exact algorithm for the one-dimensional bin packing problem, halted after a prefixed
number of iterations.

Time complexity: The implementation of the first phase given in [8] requires O(n?*)
time, while the complexity of the second one depends on the selected algorithm.
Approximation ratio: 77

One-phase

. Finite Next-Fit (FNF) [2]

FNF directly packs the items into finite bins in the same way as HNF.
Time complexity: O(nlogn).
Approximation ratio: 7?7

. Finite First-Fit (FFF) 2]

FFF adopts instead the FFDH strategy. An item is packed on the lowest level of the
first bin where it fits; if no level can accommodate it, a new level is created in the first
bin having sufficient vertical space, otherwise, the new level is created in a new bin.
Time complexity: O(nlogn).

Approximation ratio: 77



3. Finite Bottom-left (FBL) [2]
FBL does not pack the items by levels. = Berkey and Wang [2] proposed the BL
approach for the finite bin case. Their Finite Bottom-Left (FBL) algorithm initially
sorts the items by non-increasing width. The next item is packed in the lowest position
of any existing bin, left justified; if no bin can allocate it, a new one is started.
Time complexity: Both Chazelle |3] and Berkey and Wang [2] have provided an O(n?)
implementation of the algorithm.
Approximation ratio: ??

4. Next Bottom-left (NBL) [2]
NBL is similar to FBL except that at any time only one bin is opened for packing.
Once an item cannot be packed a bin, the bin is closed and will not be used for further
packing.

5. Alternate Directions (AD)

Lodi et al. [9] proposed a different non-level approach, called alternate directions (AD).
The algorithm first open L bins (L being a lower bound on the optimal number of bins
required). AD first packs to the bottom of these L bins a subset of items using BFD.
The remaining items are packed, one bin at a time, into bands, alternatively from left
to right and from right to left. When no item can be packed in either direction in the
current bin, the next existing bin or a new empty bin becomes the current one.

Time complexity: O(n?).

Approximation ratio: 77

References

[1] B.S. Baker, D.J. Brown, and H.P. Katseff. A 5/4 algorithm for two-dimensional packing.
Journal of Algorithms, 2:348-368, 1981.

[2] J.O. Berkey and P.Y. Wong. Two dimensional finite bin packing algorithms. Journal of
Operational Research Society, 2:423-429, 1987.

[3] B. Chazelle. The bottom-left bin packing heuristic: An efficient implementation. IEEE
Transactions on Computers, 32:697-707, 1983.

[4] F.K.R. Chung, M.R. Garey, and D.S. Johnson. On packing two-dimensional bins. STAM
J. Algebraic Discrete Methods, 3:66-76, 1982.

[5] J.B. Frenk and G.G. Galambos. Hybrid next-fit algorithm for the two-dimensional
rectangle bin-packing problem. Computing, 39:201-217, 1987.

|6] E.G. Coffman Jr, M.R. Garey, D.S. Johnson, and R.E. Tarjan. Performance bounds
for level-oriented two-dimensional packing algorithms. SIAM Journal on Computing,
9:808-826, 1980.

[7] A.Lodi, S. Martello, and D. Vigo. Neighborhood search algorithm for the guillotine non-
oriented two-dimensional bin packing problem. In S. Voss, S. Martello, .H. Osman, and
C. Roucairol, editors, Meta-Heuristics: Advances and Trends in Local Search Paradigms
for optimization, pages 125-139. Kluwer Academic Publishers, Boston, 1998.



|8] A. Lodi, S. Martello, and D. Vigo. Approximation algorithms for the oriented two-
dimensional bin packing problem. Journal of Operational Research Society, 112:158-166,
1999.

[9] A. Lodi, S. Martello, and D. Vigo. Heuristic and metaheuristic approaches for a class of
two-dimensional bin packing problems. INFORMS Journal on Computing, 11:345-357,
1999.

[10] I. Schiermeyer. Reverse-fit: A 2-optimal algorithm for packing rectangles. In Proceed-
ings of the Second European Symposium on Algorithms, pages 290-299, Utrecht, The
Netherlands, August 1994.

[11] D.D. Sleator. A 2.5 times optimal algorithm for packing in two dimensions. Information
Processing Letters, 10(1):37-40, 1980.

[12] A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM
Journal on Computing, 9:401-409, 1997.



