Modularity in Logical Theories and Ontologies

Thanks to Thomas Schneider and Ernesto Jiménez Ruiz for examples & graphics
So far, we have discussed various properties of (various forms of) conservative extensions:

- decidability
- complexity
- robustness under vocabulary extensions, joins, replacement

Today, we look a little bit closer on how can we use these insights to help ontology engineers re-use ontologies

- in a controlled way
- without (unwanted) side-effects
Since approx. 2000, people have been designing ontology languages:
 - useful, expressive KR formalisms (suitable to describe application domain) with
 - useful, interesting, implementable inference problems

OWL has been and **OWL2** is being standardized within W3C:
 - extensions of \mathcal{ALC} with
 - inverse roles, transitive roles, role hierarchies, . . .
 - nominals (concept names denoting single elements)
 - number restrictions
 - datatypes (not discussed here)
 - with standardized syntaxes & semantics and interesting fragments (called profiles)
 - **reasoners** for consistency, subsumption hierarchy, query answering, . . .
 - **editors** to design, maintain, analyze ontologies
 - **users** from biology, clinical sciences, chemistry, engineering, etc.
Motivation: Modularity for Re-Use of Ontologies

Let’s have a look at a real example:

- Build an ontology \(JRAO \) that describes \(JRA \) (Juvenile Rheumatoid Arthritis)
- Describe \(JRA \) subkinds by
 - Joints affected
 - Occurrence of concomitant symptoms, e.g., fever
 - Treatment with certain drugs
- Re-use information provided by biomedical ontologies
 - \(NCI \): diseases, drugs, proteins etc.
 - \(Galen \): human anatomy
Motivation: Modularity for Re-Use of Ontologies

- Arthropathy
 - Arthritis
 - Atrophic Arthritis
 - Polyarthritis
 - Rheumatoid Arthritis
 - Juvenile Chronic Polyarthritis
 - Autoimmune Disease
 - Rheumatologic Disorder

Arthritis diseases

NCI

JRAO

Galen

- Affects
- isTreatedBy

Joints

Drugs
Motivation: Modularity for Re-Use of Ontologies

Why re-use ontology?

- Saves time & effort
- Provides access to well-established knowledge & terminology
- Doesn’t require expertise in drugs, proteins, anatomy etc.

This implies that a tool supporting re-use should guarantee that

 importing terms doesn’t change their meaning (safe)
 import only (but all) relevant parts of external ontologies (economic)
 the order of imports doesn’t matter (independence)

Does this sound like conservativity?
Guarantees by Example

Safety: concerns the usage of (imported) terms in importing ontology:

\[JRAO \cup NCI \models JRA \sqsubseteq \text{GeneticDisorder}, \]

for \(JRA, \text{GeneticDisorder} \in \text{sig}(NCI) \)

iff

\[NCI \models JRA \sqsubseteq \text{GeneticDisorder} \]

Economy: concerns what we would consider a module:

\[JRAO \cup NCI \models JRA \sqsubseteq \text{GeneticDisorder}, \]

iff

\[JRAO \cup NCI\text{-module} \models JRA \sqsubseteq \text{GeneticDisorder} \]

Independence: if \(JRAO \) is safe for \textit{Galen} and for \textit{NCI}, then

\(JRAO \cup NCI\text{-module} \) is still safe for \textit{Galen} and

\(JRAO \cup \text{Galen-module} \) is still safe for \textit{NCI}
Safety for an ontology:

\(\mathcal{O}_1 \) imports \(\mathcal{O}_2 \) in an \(\mathcal{L} \)-safe way

(or \(\mathcal{O}_1 \) is safe for \(\mathcal{O}_2 \) w.r.t. \(\mathcal{L} \)) if

\(\mathcal{O}_1 \cup \mathcal{O}_2 \) is a deductive conservative extension of \(\mathcal{O}_2 \) w.r.t \(\mathcal{L} \)

(and \(\Sigma = \text{sig}(\mathcal{O}_2) \).)

Problems:

- which \(\mathcal{L} \) to choose?
 - for ontology design: subsumptions between (possibly complex?) concepts
 - for ontology usage: my favourite query language

- we might not have control over \(\mathcal{O}_2 \), e.g.,
 \(\mathcal{O}_2 = NCI \) might change over time, and we want the latest version

Solution: Safety for a signature!
Definition: \(\mathcal{O}_1 \) is safe for \(\Sigma \) w.r.t. \(\mathcal{L} \) if,

for every \(\mathcal{L} \)-ontology \(\mathcal{O}_2 \) with \(\text{sig}(\mathcal{O}_1) \cap \text{sig}(\mathcal{O}_2) \subseteq \Sigma \),
\(\mathcal{O}_1 \cup \mathcal{O}_2 \) is a deductive \(\Sigma \)-conservative extension of \(\mathcal{O}_2 \) w.r.t \(\mathcal{L} \).

Theorem:
1. If \(\mathcal{O} \) is a model \(\Sigma \)-conservative extension of \(\emptyset \),
then \(\mathcal{O} \) is safe for \(\Sigma \) w.r.t. \(\mathcal{L} \).

2. Let \(\mathcal{L} \) be robust under replacements.
 Then \(\mathcal{O}_1 \) is safe for \(\Sigma \) w.r.t. \(\mathcal{L} \) iff \(\mathcal{O}_1 \equiv^\Sigma_\mathcal{L} \emptyset \).

Observation: \((\mathcal{ALC}, \mathcal{ALC}) \) isn’t robust under replacements. Frank’s example rephrased: consider \(\mathcal{O}_1 = \{ A \sqsubseteq \exists r.B \} \)

Then \(\mathcal{O}_1 \equiv^{\Sigma}_{\mathcal{ALC}} \emptyset \), but \(\mathcal{O}_1 \) is not safe for \(\Sigma = \{ A, B \} \) because
\(\mathcal{O}_1 \cup \{ A \models \top, B \models \bot \} \models \top \sqsubseteq \bot \)
and is thus not a d. \(\Sigma \)-c.d. of \(\{ A \models \top, B \models \bot \} \).

Importance of the right query language, e.g., \(\mathcal{QL}_{\mathcal{ALC}}^B \)
Module for an ontology:

\[\mathcal{O}'_2 \subseteq \mathcal{O}_2 \] is a module for \(\mathcal{O}_1 \) in \(\mathcal{O}_2 \) w.r.t. \(\mathcal{L} \) if
\[\mathcal{O}_1 \cup \mathcal{O}_2 \] is a deductive \(\text{sig}(\mathcal{O}_1) \)-c.e. of \(\mathcal{O}_1 \cup \mathcal{O}'_2 \) w.r.t. \(\mathcal{L} \).

Problems: 1. which \(\mathcal{L} \) to chose?

- for ontology design: subsumptions between (possibly complex?) concepts
- for ontology usage: my favourite query language

2. the module shouldn't depend on the importing ontology, but only on the signature we want to use

Solution: Module for a signature!
Module for a Signature

Definition: \(O'_2 \subseteq O_2 \) is a module for \(\Sigma \) in \(O_2 \) w.r.t. \(L \) if,

for every \(L \)-ontology \(O_1 \) with \(\text{sig}(O_1) \cap \text{sig}(O_2) \subseteq \Sigma \), \(O'_2 \) is a module for \(O_1 \) in \(O_2 \) w.r.t. \(L \)

i.e., \(O_1 \cup O_2 \) is a deductive \(\text{sig}(O_1) \)-c.e. of \(O_1 \cup O'_2 \) w.r.t. \(L \).

Observation: 1. Let \(L \) be robust under replacements. Then

\[O'_2 \subseteq O_2 \text{ is a module for } \Sigma \text{ in } O_2 \text{ w.r.t. } L \iff \]

\[O_2 \setminus O'_2 \equiv_{\Sigma} \emptyset \]

2. If \(O'_2 \subseteq O_2 \) and \(O_2 \) is a model \(\Sigma \)-conservative extension of \(O'_2 \),

then \(O'_2 \) is a module for \(\Sigma \) in \(O_2 \) (w.r.t. FO)
The following is immediate by the previous observations:

Let $\mathcal{O}_1, \mathcal{O}_2 \subseteq \mathcal{O}_2$ be ontologies in \mathcal{L} and Σ a signature. Then

1. \mathcal{O}_1 is safe for \mathcal{O}_2 w.r.t. \mathcal{L} iff \emptyset is a module for \mathcal{O}_2 in \mathcal{O}_1 w.r.t. \mathcal{L}
 (iff \mathcal{O}_1 constrains interpretation of terms in \mathcal{O}_2 as much as \emptyset)

2. If $\mathcal{O}_2 \setminus \mathcal{O}_2'$ is safe for $\mathcal{O}_1 \cup \mathcal{O}_2'$ w.r.t. \mathcal{L}, then \mathcal{O}_2' is a module for \mathcal{O}_1 in \mathcal{O}_2 w.r.t. \mathcal{L}
 (because $\mathcal{O}_2 \setminus \mathcal{O}_2'$ doesn’t constrain interpretation of terms from $\mathcal{O}_1 \cup \mathcal{O}_2'$)

3. \mathcal{O}_1 is safe for Σ w.r.t. \mathcal{L} iff \emptyset is a Σ-module in \mathcal{O}_1 w.r.t. \mathcal{L}
 (iff \mathcal{O}_1 constrains interpretation of terms in Σ as much as \emptyset)

4. If $\mathcal{O}_2 \setminus \mathcal{O}_2'$ is safe for $\Sigma \cup \text{sig}(\mathcal{O}_2')$ w.r.t. \mathcal{L},
 then \mathcal{O}_2' is a Σ-module in \mathcal{O}_2 w.r.t. \mathcal{L}
 (because $\mathcal{O}_2 \setminus \mathcal{O}_2'$ doesn’t constrain interpretation of terms from $\Sigma \cup \text{sig}(\mathcal{O}_2')$)
A basic requirement if we want to 'import' ontologies in parallel/independently:

Independence: safety is preserved under imports:

if O_1 is safe for Σ_i/O_i, then

$O_1 \cup O_j$ is still safe for Σ_i/O_i.

Observation: Independence is difficult to guarantee:

- if Σ_i share terms, then Independence isn’t guaranteed:
 e.g., $O_1 = \{A \sqsubseteq \top\}$ is safe for $\Sigma = \{A, B\}$, but
 $O_1 \cup \{A \sqsubseteq B\}$ is not safe for Σ

- even if Σ_i don’t share terms, Independence is difficult:
 E.g., $O_1 = \{A_2 \sqsubseteq A_3\}$ is safe for $\Sigma_i = \{A_i\}$, but
 $O_1 \cup \{A_3 \sqsubseteq \bot\}$ is not safe for Σ_2 and
 $O_1 \cup \{A_2 \models \top\}$ is not safe for Σ_3
Given 'our' ontology O_1 and ontologies O_i we want to re-use terms Σ_i from,

1. make sure that O_1 is safe for Σ_i

2. determine modules for Σ_i from O_i – but which?
 (a) did engineer 'forget something' when specifying Σ_i?
 (b) should modules be as small as possible?
 (c) even minimal modules are not unique (see next slide) – which one to use?

3. add modules O'_i to O_1
 (a) static/call-by-value: determine and add O'_i
 (b) dynamic/call-by-name: always use 'freshest' O'_i — how?
 (we need to provide mechanisms/syntax for this)
Example

Suppose *Galen* contains:

1. \[\text{Knee} \; \triangleq \; \text{Joint} \sqcap \exists \text{hasPart. Patella} \sqcap \exists \text{hasFunct. Hinge} \]
2. \[\text{Patella} \sqsubseteq \text{Bone} \sqcap \text{Sesamoid} \]
3. \[\text{Ginglymus} \; \triangleq \; \text{Joint} \sqcap \exists \text{hasFunct. Hinge} \]
4. \[\text{Joint} \sqcap \exists \text{hasPart.} (\text{Bone} \sqcap \text{Sesamoid}) \sqsubseteq \text{Ginglymus} \]
5. \[\text{Ginglymus} \; \triangleq \; \text{HingeJoint} \]
6. \[\text{Meniscus} \; \triangleq \; \text{FibroCartilage} \sqcap \exists \text{locatedIn. Knee} \]

Both \{1, 2, 4, 5\} and \{1, 3, 5\} are \(\subseteq\)-minimal modules for \{Knee, HingeJoint\}.

Note: a module for \(\Sigma\) does not necessarily contain all axioms that use terms from \(\Sigma\).
Bad News for expressive DLs/ontology languages such as OWL?

Big, sad theorem: Let $O_1, O'_2 \subseteq O_2$ be ontologies in L and Σ a signature.

(1) Determining whether O_1 is safe for O_2 w.r.t. L or whether O'_2 is a module for O_1 in O_2 w.r.t. L is

- ExpTime-complete for $L = EL$ (only \sqcap and $\exists r.C$, more tomorrow),
- $2-\text{ExpTime-complete}$ for $\text{ALC} \leq L \leq \text{ALCQI}$, and
- undecidable for $L = \text{ALCQIO}$ and therefore for OWL

(2) Determining whether a O_1 is safe for a signature Σ or whether O'_2 is a Σ-module in O_2 w.r.t. L is

undecidable w.r.t. $L = \text{ALCO}$ (even if O_1 is in ALC).
Bad News for expressive DLs/ontology languages such as OWL?

Proof: (1) easy consequence of results on deductive conservative extensions (dces):
 • (upper bounds) transfer by definition of safety/modules
 • (lower bounds) any algorithm for deciding safety/modules can be used to
decide dces:
 \[\mathcal{O} \supseteq \mathcal{O}' \text{ is a dce of } \mathcal{O}' \text{ w.r.t. } \mathcal{L} \]
 \text{iff}
 \[\emptyset \text{ is a module for } \mathcal{O}' \text{ in } \mathcal{O} \setminus \mathcal{O}' \text{ w.r.t. } \mathcal{L}. \]
(2) Variation of construction by [Lutz+07], uses reduction of tiling problem:
well known that
 • periodically tilable domino systems \(\mathcal{D}_{pt} \) and
 • untilable domino systems \(\mathcal{D}_u = \mathcal{D} \setminus \mathcal{D}_t \)
are recursively inseparable, i.e., no decidable \(\mathcal{D}' \) with \(\mathcal{D}_{pt} \subseteq \mathcal{D}' \subseteq \mathcal{D}_t \).
Continuation of proof of (2)

Plan: (i) for domino system $D \in \mathcal{D}$, construct \mathcal{O}_D with 1 \mathcal{ALC} axiom for, signature $\Sigma(D)$, and set

$$\mathcal{D}' := \{ D \mid \mathcal{O}_D \text{ is not safe for } \Sigma(D) \text{ w.r.t. } \mathcal{ALCO} \},$$

(ii) then show that,

- if $D \in \mathcal{D}'$, then $D \in \mathcal{D}_t$, i.e., \mathcal{D}' is not too large
- if $D \not\in \mathcal{D}'$, then $D \not\in \mathcal{D}_{pt}$, i.e., \mathcal{D}' is large enough

i.e., we have indeed $\mathcal{D}_{pt} \subseteq \mathcal{D}' \subseteq \mathcal{D}_t$.

Let's describe the usual tiling conditions, i.e.,

$$C_D := (T_1 \sqcup \ldots \sqcup T_k) \sqcap \neg (T_1 \cap T_2) \sqcap \neg (T_1 \cap T_3) \sqcap \ldots \neg T_1 \sqcup (\exists h. \bigcup_{(T_1,T) \in H} T \cap \exists v. \bigcup_{(T_1,T) \in V} T) \sqcap \neg T_2 \sqcup (\exists h. \bigcup_{(T_2,T) \in H} T \cap \exists v. \bigcup_{(T_2,T) \in V} T) \sqcap \ldots$$
\(O_D \) uses \(C_D \) to describe an “illegal” part of a model of \(\top \sqsubseteq C_D \), i.e.,
\[
O_D := \{ \top \sqsubseteq \exists s. (\neg C_D \sqcup ((\exists h. \exists v. B) \cap (\exists v. \exists h. \neg B))) \}
\]

Set \(\Sigma(D) = \{ h, v, T_1, T_2 \ldots T_k \} \), i.e., \(s, B \not\in \Sigma(D) \).

(a) if \(O_D \) is not safe for \(\Sigma(D) \) (iff \(D \in \mathcal{D}' \)), show that \(D \in \mathcal{D}_t \) (by contraposition):

if \(D \in \mathcal{D}_u \), then every \(\Sigma(D) \)-interpretation \(\mathcal{I} \) can be extended to a model of \(O_D \) by connecting every element, via \(s^\mathcal{I} \), with either

- an instance of \(\neg C_D \) or, if \(\mathcal{I} \) is a model of \(\top \sqsubseteq C_D \) with

- an element for which \(h^\mathcal{I} v^\mathcal{I} \) and \(v^\mathcal{I} h^\mathcal{I} \) are “not confluent”

Hence \(O_D \) is safe for \(\Sigma(D) \).
\(O_D \) uses \(C_D \) to describe a “non-grid” part of a model of \(\top \subseteq C_D \), i.e.,

\[
O_D := \{ \top \subseteq \exists s. (\neg C_D \sqcup ((\exists h. \exists v. B) \cap (\exists v. \exists h. \neg B))) \}
\]

Set \(\Sigma(D) = \{ h, v, T_1, T_2 \ldots T_k \} \), i.e., \(s, B \not\in \Sigma(D) \).

(b) if \(O_D \) is safe for \(\Sigma(D) \) (iff \(D \not\in D' \)), show that \(D \not\in D_{pt} \) (by contraposition):

from a periodic tiling, say \(n \times m \), construct an \(\text{ALCO} \) ontology \(O_p \) with

\[
\text{sig}(O_p) \cap \text{sig}(O_D) \subseteq \Sigma(D)
\]

such that \(O_D \cup O_p \models \top \subseteq \bot \):

\(n \times m \) nominals \(a_{i,j} \) are used to describe finite model with periodic, cyclic tiling:

\[
O_p := \{ a_{0,0} \sqsubseteq \exists h. a_{1,0} \sqcap \forall h. a_{1,0} \sqcap \exists v. a_{0,1} \sqcap \forall v. a_{0,1}, \\
a_{0,1} \sqsubseteq \exists h. a_{1,1} \sqcap \forall h. a_{1,1} \sqcap \exists v. a_{0,2} \sqcap \forall v. a_{0,2}, \\
\ldots \ldots \ldots \\
a_{n,m} \sqsubseteq \exists h. a_{0,m} \sqcap \forall h. a_{0,m} \sqcap \exists v. a_{n,0} \sqcap \forall v. a_{n,0}, \\
\top \sqsubseteq a_{0,0} \cup a_{1,0} \cup \ldots \cup a_{n,m} \}
\]
Deciding safety/modules is highly complex/undecidable for expressive DLs.

Question: What to do?
- give up? No: modules/safety clearly too important
- reduce expressivity of logic? Yes – more tomorrow!
- approximate for expressive logics? Yes – but from the ’right’ direction!

Next, we will see 2 approximations, i.e., sufficient conditions for safety:

1. based on semantic locality
2. based on syntactic locality
To capture that we have numerous ways of approximating safety, introduce safety class:

Definition: a safety class \(S : \Sigma \mapsto 2^{\cup \mathcal{O}} \) for \(\mathcal{L} \) maps a signature to a set of ontologies such that, for each \(\mathcal{O} \in S(\Sigma) \), \(\mathcal{O} \) is safe for \(\Sigma \) w.r.t. \(\mathcal{L} \).

Remarks:
1. each \(S \) can be seen as a safety test, but there can be many
2. we assume that \(\emptyset \in S(\Sigma) \)
3. interesting properties of \(S \):
 (a) anti-monotonic: \(\Sigma_1 \subseteq \Sigma_2 \) implies \(S(\Sigma_2) \subseteq S(\Sigma_1) \)
 (b) compact: \(\mathcal{O} \in S(\Sigma) \) implies \(\mathcal{O} \in S(\Sigma \cap \text{sig}(\mathcal{O})) \)
 (c) subset-closed: \(\mathcal{O}_1 \subseteq \mathcal{O}_2 \) and \(\mathcal{O}_2 \in S(\Sigma) \) implies \(\mathcal{O}_1 \in S(\Sigma) \)
 (d) union-closed: \(\mathcal{O}_1, \mathcal{O}_2 \in S(\Sigma) \) implies \(\mathcal{O}_1 \cup \mathcal{O}_2 \in S(\Sigma) \)
Approximating Modules and Safety

Remember: \(\mathcal{O} \) is \(\Sigma \)-safe w.r.t. \(\mathcal{L} \) if \(\mathcal{O} \) is a model \(\Sigma \)-c.e. of \(\emptyset \), i.e., for each \(\mathcal{I} \), there is \(\mathcal{J} \models \mathcal{O} \) with \(\mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma} \).

Definition: we call a set of interpretations \(\mathcal{I} \) \(\Sigma \)-local if for each \(\mathcal{I} \), there exists \(\mathcal{J} \in \mathcal{I} \) with \(\mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma} \).

Let \(\mathcal{I}(\cdot) \) be a mapping that associates a signature \(\Sigma \) with a set of interpretations \(\mathcal{I}(\Sigma) \).

We say that a safety class \(\mathcal{S}(\cdot) \) is based on \(\mathcal{I}(\cdot) \) if, for all \(\Sigma \), \(\mathcal{S}(\Sigma) = \{ \mathcal{O} \mid \text{each } \mathcal{I} \in \mathcal{I}(\Sigma) \text{ is a model of } \mathcal{O} \} \).

Consider \(\mathcal{I}^0(\cdot) \) with \(\mathcal{I}^0(\Sigma) = \{ \mathcal{I} \mid A^\mathcal{I} = \emptyset = r^\mathcal{I} \text{ for all } r, A \not\in \Sigma \} \).

- each \(\mathcal{I}^0(\Sigma) \) is \(\Sigma \)-local, hence we call \(\mathcal{I}^0(\cdot) \) local
- consider \(\mathcal{S}(\cdot) \) based on \(\mathcal{I}^0(\Sigma) \) as follows: \(\mathcal{S}(\Sigma) = \{ \mathcal{O} \mid \mathcal{O} \text{ contains only axioms } \alpha \text{ with } \mathcal{I} \models \alpha, \forall \mathcal{I} \in \mathcal{I}^0(\Sigma) \} \)
- indeed, \(\mathcal{S}(\cdot) \) is a safety class!
Theorem: if $I(\cdot)$ is local and $S(\cdot)$ based on it, then $S(\cdot)$ is a safety class, and $S(\cdot)$ subset-closed and union-closed.

Remark: other properties transfer from classes of interpretations to safety classes

Question: are there other local classes of interpretations?

Yes: e.g., consider

$I^\Delta(\Sigma) = \{ I | A^I = \Delta^I \text{ for all } A \not\in \Sigma \text{ and } r^I = \Delta^I \times \Delta^I \text{ if } r \not\in \Sigma \}$

or

$I^\emptyset(\Sigma) = \{ I | A^I = \Delta^I \text{ for all } A \not\in \Sigma \text{ and } r^I = \emptyset \text{ if } r \not\in \Sigma \}$

or ...

But which ones are useful in practice?
And whose safety classes can we decide in practice?
Remember: let \(S^\emptyset (\cdot) \) be the safety class based on \(I^\emptyset (\cdot) \).

Then \(\mathcal{O} \in S^\emptyset (\Sigma) \) if,

for each \(\alpha \in \mathcal{O} \) and each \(\mathcal{I} \) where all \(r, A \not\in \Sigma \) are interpreted as \(\emptyset \),

we have \(\mathcal{I} \models \alpha \).

Algorithm: Input: \(\Sigma, \mathcal{O}, ALC \) TBox

Set safe = true

For each \(C_1 \sqsubseteq C_2 \in \mathcal{O} \) with \(C_i \) in NNF,

replace all \(A \not\in \Sigma \) with \(\bot \)

replace all \(\exists r. C \) with \(r \not\in \Sigma \) with \(\bot \)

replace all \(\forall r. C \) with \(r \not\in \Sigma \) with \(\top \)

Call result \(C'_1 \sqsubseteq C'_2 \)

Set safe = false if \(C'_1 \sqcap \neg C'_2 \) is satisfiable % can find countermodel

Return(safe)

The algorithm answers “true” iff \(\mathcal{O} \in S^\emptyset (\Sigma) \)

and can be extended to more expressive DLs easily.
Our algorithm decides $S^0(\Sigma)$, and thus can be used to test for Σ-safety.

But:

1. there are many kinds of locality, and together they only approximate Σ-safety.

2. we still need to perform reasoning:
 for each axiom α, test satisfiability of $C'_1 \sqcap \neg C'_2$

 there are highly optimised reasoners available to do so, but...

 isn’t there a cheaper approximation?

 testing satisfiability in \mathcal{ALC} is ExpTime-complete!

Answer: we can use syntactic approximation of locality!
Using safety, we can guarantee independence as follows:

Lemma: Let O_1, O_2 be ontologies and Σ_2, Σ_3 disjoint signatures and let X be \emptyset or Δ. If

1. $O_1 \in S^X(\Sigma_3)$,
2. $\text{sig}(O_2) \cap \Sigma_3 = \emptyset$, and
3. $O_2 \in S^X(\emptyset)$,

then $O_1 \cup O_2 \in S^X(\Sigma_3)$.

Note: for the above “scenario” to work, we would, additionally, require that O_1 is safe for O_2, e.g., because $O_1 \in \Sigma^Y(\Sigma_2)$ and $\text{sig}(O_1) \cap \text{sig}(O_2) \subseteq \Sigma_2$.
We call an axiom α syntactically Σ-local if it is of the form $C \subseteq C^\Delta$ or $C^\emptyset \subseteq C$, for C^\emptyset and C^Δ given by the following grammars:

start with A^Σ, r^Σ terms not in Σ, and r, C any term

$$C^\emptyset ::= A^\Sigma | \neg C^\Delta | C \cap C^\emptyset | C^\emptyset \cap C | \exists r. C | \exists r. C^\emptyset$$

$$C^\Delta ::= \top | \neg C^\emptyset | C^\emptyset \cap C^\Delta$$

An ontology is syntactically Σ-local if it contains only syntactically Σ-local axioms.

Example:

\begin{align*}
\bar{B} & \subseteq A & \text{form } C \subseteq C^\emptyset, \text{ thus not } \{\bar{B}, \ldots\}\text{-local,}
A & \subseteq \bar{B} \cap \exists r. \bar{C} & \text{form } C^\emptyset \subseteq C, \text{ thus } \{\bar{B}, \bar{C}\}\text{-local,}
X \cap A & \subseteq Y & \text{is } \Sigma\text{-local if, e.g., } A \not\in \Sigma,
\bar{B} \cap \exists r. \bar{C} & \subseteq A & \text{is } \{\bar{B}, \bar{C}\}\text{-local,}
\bar{A} & \subseteq \bar{A} \cup \bar{B} & \text{is not } \{\bar{A}, \bar{B}\}\text{-local, yet a tautology!}
\end{align*}

Theorem: syntactic Σ-locality implies Σ-locality implies Σ-safety
In JRAO: we can 'syntactically safely' write

\[\text{JRA} \models \text{Arthritis} \cap \exists \text{affects}.(\text{Joint} \cap \exists \text{locatedIn}.\text{Juvenile}) \]
\[\text{KJRA} \models \text{JRA} \cap \exists \text{affects}.\text{Knee} \]

i.e., we can reference and refine existing terms from NCI and Galen

If we want to generalise terms, we use different syntactic locality: based on \(I^\Delta(\cdot) \).
Remember: if $O'_2 \setminus O_2$ is safe for $\Sigma \cup \text{sig}(O'_2)$ w.r.t. \mathcal{L}, then O'_2 is a Σ-module in O_2 w.r.t. \mathcal{L}.

\[\Rightarrow \] a poly-time algorithm to determine whether O'_2 is a Σ-module in O_2 or to compute a Σ-module in O_2:

Algorithm:

- Input: Σ, O TBox
- $M := \emptyset$, $\Sigma_o := \Sigma_n := \Sigma$
- Repeat $\Sigma_o := \Sigma_n$
 - For each $\alpha \in O_2 \setminus M$
 - if α is not Σ_n-safe, then add α to M and $\text{sig}(\alpha)$ to Σ_n
- Until $\Sigma_o = \Sigma_n$
- Return(M, Σ_n)

Observation: M is a Σ_n-module in O and therefore a Σ-module (since $\Sigma \subseteq \Sigma_n$ and $\mathcal{S}(\cdot)$ based on $I^\emptyset(\cdot)$ is anti-monotonic)
• clearly, we can use other safety checks (e.g., for safety based on $I^\Delta(\cdot)$) in our algorithm
• we can combine syntactic with semantic locality:
 1. compute syntactically Σ-local module \mathcal{O}'_2
 which is hopefully much smaller than \mathcal{O}_2
 2. try to make \mathcal{O}'_2 smaller using semantic locality:
 guess axiom $\alpha \in \mathcal{O}'_2$ and
 check whether it can be removed, i.e., whether
 $\mathcal{O}_2 \setminus (\mathcal{O}'_2 \setminus \{\alpha\})$ is semantically $\Sigma \cup \text{sig}(\mathcal{O}'_2 \setminus \{\alpha\})$-local
This line of research is 'new' for DLs & ontology languages, and many questions are (half)open:

- how can we support designer of \mathcal{O}_1 to pick \mathcal{O}_2, Σ, \mathcal{L} so that
 - they want to import Σ-module in \mathcal{O}_2?
 - they want to make sure that \mathcal{O}_1 remains Σ-safe?
- how can we show \mathcal{O}_2', a Σ-module in \mathcal{O}_2 to designer of \mathcal{O}_1 to ensure that they really want to import it?
- how can we ensure safety of \mathcal{O}_1 for various signatures if 'imported' ontologies are unknown?
- how can we use (semantic and syntactic) locality to compute 'good' modules?
- how can we visualise the modular structure of an ontology – see crop circle demo
- how can we explain that X is not safe for Y?
- how can we use modules to speed up reasoning?
Links

- **Stuff around OWL from Manchester**: http://owl.cs.manchester.ac.uk/
- **OWL2 working group**: http://www.w3.org/2007/OWL/
- **OWLED**: http://www.webont.org/owled/

Tomorrow: Modularity for Lightweight Description Logics

Thanks for your interest and please feel free to ask questions, discuss things, etc.