
Background on Decidability and
Complexity



Decidability (in logic)

Instead of defining the terms “decidable” and “undecidable” in a formal way,
we give some examples.

The problem whether
T |= C v D

for EL-TBoxes T and EL-concepts C,D, is decidable because there exists an
algorithm (e.g., the one given in the lectures) that terminates after finitely many
steps for any EL-TBox T and EL-concepts C,D and

• outputs YES if T |= C v D;

• outputs NO if T |= C v D.

Ontology Languages 2



Decidability (in logic)

Instead of defining the terms “decidable” and “undecidable” in a formal way,
we give some examples.

The problem whether
T |= C v D

for EL-TBoxes T and EL-concepts C,D, is decidable because there exists an
algorithm (e.g., the one given in the lectures) that terminates after finitely many
steps for any EL-TBox T and EL-concepts C,D and

• outputs YES if T |= C v D;

• outputs NO if T |= C v D.

For all the description logics discussed in this module (logics in the DL-Lite family,
ALC and its extension by number restrictions, inverse, and nominals) the basic
reasoning problems are decidable.

Ontology Languages 2



Decidability

One can argue that decidability of basic reasoning tasks is a necessary condi-
tion for an ontology language to be useful in practice. If basic query answering
(e.g., deciding T |= C v D) is undecidable, then it is impossible to implement
an algorithm that gives a correct answer to every possible query. Thus, it is not
possible to implement software for which it is guaranteed that a user will always
get a correct answer to a query.

Ontology Languages 3



Decidability

One can argue that decidability of basic reasoning tasks is a necessary condi-
tion for an ontology language to be useful in practice. If basic query answering
(e.g., deciding T |= C v D) is undecidable, then it is impossible to implement
an algorithm that gives a correct answer to every possible query. Thus, it is not
possible to implement software for which it is guaranteed that a user will always
get a correct answer to a query.

For first-order predicate logic, the basic reasoning problems are undecidable:
there does not exist an algorithm that decides whether a first-order predicate
logic sentence follows from a finite set of first-order predicate logic sentences.

This explains why unrestricted first-order predicate logic should not be used as
an ontology language.

Ontology Languages 3



Complexity

Decidability alone does not guarantee that one can implement an algorithm
that gives correct answers within a reasonable amount of time/space.

Ontology Languages 4



Complexity

Decidability alone does not guarantee that one can implement an algorithm
that gives correct answers within a reasonable amount of time/space.

To analyse whether one can implement an algorithm that gives correct answers
within a reasonable amount of time, one can investigate how the time/space
required to solve an instance of the problem grows with the size of the instance.

Ontology Languages 4



Example: Propositional Logic

• A propositional formula is constructed from propositional variables p1, p2, . . .

using the connectives ∧, ∨, and ¬.

Ontology Languages 5



Example: Propositional Logic

• A propositional formula is constructed from propositional variables p1, p2, . . .

using the connectives ∧, ∨, and ¬.

• A propositional formula P is satisfiable if there exists an assignment a of
truth values 0, 1 to the propositional variables in P such that a(P ) = 1.

Ontology Languages 5



Example: Propositional Logic

• A propositional formula is constructed from propositional variables p1, p2, . . .

using the connectives ∧, ∨, and ¬.

• A propositional formula P is satisfiable if there exists an assignment a of
truth values 0, 1 to the propositional variables in P such that a(P ) = 1.

• An (inefficient) way of checking satisfiability of P is to compute for all as-
signments a the value a(P ) and output “Yes” if a(P ) = 1 for at least one
a. Otherwise output “No”.

Ontology Languages 5



Example: Propositional Logic

• A propositional formula is constructed from propositional variables p1, p2, . . .

using the connectives ∧, ∨, and ¬.

• A propositional formula P is satisfiable if there exists an assignment a of
truth values 0, 1 to the propositional variables in P such that a(P ) = 1.

• An (inefficient) way of checking satisfiability of P is to compute for all as-
signments a the value a(P ) and output “Yes” if a(P ) = 1 for at least one
a. Otherwise output “No”.

• In the worst case, the algorithm requires at least 2n steps, where n is the
number of variables in P .

Ontology Languages 5



Example: Propositional Logic

• A propositional formula is constructed from propositional variables p1, p2, . . .

using the connectives ∧, ∨, and ¬.

• A propositional formula P is satisfiable if there exists an assignment a of
truth values 0, 1 to the propositional variables in P such that a(P ) = 1.

• An (inefficient) way of checking satisfiability of P is to compute for all as-
signments a the value a(P ) and output “Yes” if a(P ) = 1 for at least one
a. Otherwise output “No”.

• In the worst case, the algorithm requires at least 2n steps, where n is the
number of variables in P .

• This is an exponential time algorithm.

Ontology Languages 5



Example: our EL subsumption algorithm

Let us assume the size of the input “T |= A v B?” is the length of the corre-
sponding word. We assume T is in normal form. Let a single rule application
(updating S or R) be a step of the algorithm.

Ontology Languages 6



Example: our EL subsumption algorithm

Let us assume the size of the input “T |= A v B?” is the length of the corre-
sponding word. We assume T is in normal form. Let a single rule application
(updating S or R) be a step of the algorithm.

• We apply the rule corresponding to an inclusion in C v D in T at most
once to update S(A) for a fixed A and as most once to update R(r) for
a fixed r.

Ontology Languages 6



Example: our EL subsumption algorithm

Let us assume the size of the input “T |= A v B?” is the length of the corre-
sponding word. We assume T is in normal form. Let a single rule application
(updating S or R) be a step of the algorithm.

• We apply the rule corresponding to an inclusion in C v D in T at most
once to update S(A) for a fixed A and as most once to update R(r) for
a fixed r.

• Let MC be the number of concept names in T , MR be the number of role
names in T , and N be the number of inclusions in T .

Ontology Languages 6



Example: our EL subsumption algorithm

Let us assume the size of the input “T |= A v B?” is the length of the corre-
sponding word. We assume T is in normal form. Let a single rule application
(updating S or R) be a step of the algorithm.

• We apply the rule corresponding to an inclusion in C v D in T at most
once to update S(A) for a fixed A and as most once to update R(r) for
a fixed r.

• Let MC be the number of concept names in T , MR be the number of role
names in T , and N be the number of inclusions in T .

• Then at most (MC + MR)×N rule applications are possible.

Ontology Languages 6



Example: our EL subsumption algorithm

Let us assume the size of the input “T |= A v B?” is the length of the corre-
sponding word. We assume T is in normal form. Let a single rule application
(updating S or R) be a step of the algorithm.

• We apply the rule corresponding to an inclusion in C v D in T at most
once to update S(A) for a fixed A and as most once to update R(r) for
a fixed r.

• Let MC be the number of concept names in T , MR be the number of role
names in T , and N be the number of inclusions in T .

• Then at most (MC + MR)×N rule applications are possible.

• Let n be the size of T . We have MC + MR ≤ n and N ≤ n.

Ontology Languages 6



Example: our EL subsumption algorithm

Let us assume the size of the input “T |= A v B?” is the length of the corre-
sponding word. We assume T is in normal form. Let a single rule application
(updating S or R) be a step of the algorithm.

• We apply the rule corresponding to an inclusion in C v D in T at most
once to update S(A) for a fixed A and as most once to update R(r) for
a fixed r.

• Let MC be the number of concept names in T , MR be the number of role
names in T , and N be the number of inclusions in T .

• Then at most (MC + MR)×N rule applications are possible.

• Let n be the size of T . We have MC + MR ≤ n and N ≤ n.

• Thus at most n2 rule applications are possible.

Ontology Languages 6



Example: our EL subsumption algorithm

Let us assume the size of the input “T |= A v B?” is the length of the corre-
sponding word. We assume T is in normal form. Let a single rule application
(updating S or R) be a step of the algorithm.

• We apply the rule corresponding to an inclusion in C v D in T at most
once to update S(A) for a fixed A and as most once to update R(r) for
a fixed r.

• Let MC be the number of concept names in T , MR be the number of role
names in T , and N be the number of inclusions in T .

• Then at most (MC + MR)×N rule applications are possible.

• Let n be the size of T . We have MC + MR ≤ n and N ≤ n.

• Thus at most n2 rule applications are possible.

• This is a polynomial time algorithm.

Ontology Languages 6



Tractable Problems

For most applications, a problem can be regarded as tractable if there exists
an algorithm that solves the problem in polynomial time:

Ontology Languages 7



Tractable Problems

For most applications, a problem can be regarded as tractable if there exists
an algorithm that solves the problem in polynomial time:

there exists a polynomial function p(n) (e.g. the linear function n, the quadratic
function n2, the cubic function n3) such that for any input of some size n >

0, the algorithm terminates with the correct answer after at most p(n) steps
(we use an intuitive notion of “step” of a computation here without making it
precise.

Ontology Languages 7



Tractable Problems

For most applications, a problem can be regarded as tractable if there exists
an algorithm that solves the problem in polynomial time:

there exists a polynomial function p(n) (e.g. the linear function n, the quadratic
function n2, the cubic function n3) such that for any input of some size n >

0, the algorithm terminates with the correct answer after at most p(n) steps
(we use an intuitive notion of “step” of a computation here without making it
precise.

Typically, a problem can be regarded as non-tractable if there exists no such
polynomial function. In practice, this means that the best algorithm solving the
problem requires more than polynomial time in some case.

Ontology Languages 7



Classifying non-tractable Problems

Problems that are decidable but not in polytime can be further classified ac-
cording to the time/space it takes to solve them. Important classes of problems
are

• NP-complete problems

• ExpTime-complete problems

• and problems even harder than ExpTime.

For our purposes, it is enough to know that any algorithm solving such a problem
requires exponential time (roughly 2n) for some inputs of size n (“in the worst
case”).

Ontology Languages 8



Classifying non-tractable Problems

Problems that are decidable but not in polytime can be further classified ac-
cording to the time/space it takes to solve them. Important classes of problems
are

• NP-complete problems

• ExpTime-complete problems

• and problems even harder than ExpTime.

For our purposes, it is enough to know that any algorithm solving such a problem
requires exponential time (roughly 2n) for some inputs of size n (“in the worst
case”).

We distinguish here between NP-complete and ExpTime: For NP-complete prob-
lems there is currently no proof that no polytime algorithm exists (P equals NP
problem). For ExpTime-complete and harder problems we can actually prove
that no polytime algorithm exists.

Ontology Languages 8


