
The description logic ALC:
terminological part

The description logic ALC

We have investigated (the terminological part of) two types of lightweight de-
scription logics:

• EL which has been designed to represent large-scale ontologies such as
SNOMED CT and in which terminological reasoning is tractable;

• the DL-Lite family which has been designed to access data using concep-
tual models such as ER and UML diagrams and in which corresponding
querying tasks are often tractable.

We now consider the basic expressive description logic ALC. All other expres-
sive description logics are defined as extensions of ALC.

Unfortunately, reasoning in ALC is not tractable!

Ontology Languages 2

ALC (syntax)

• Language for ALC concepts (classes)

– concept names A0, A1, ...

– role names r0, r1, ...

– the concept > (often called “thing”)

– the concept ⊥ (stands for the empty class)

– the concept constructor u (often called intersection, conjunction, or
simply “and”).

– the concept constructor ∃ (often called existential restriction).

– the concept constructor ∀ (often called value restriction).

– the concept constructor t (often called union, disjunction, or simply
“or”).

– the concept constructor ¬ (often called complement or negation).

Ontology Languages 3

ALC

ALC concepts are defined inductively as follows:

• All concept names, > and ⊥ are ALC concepts;

• if C is a ALC concept, then ¬C is a ALC concept;

• if C and D are ALC concepts and r is a role names, then

(C uD), (C tD), ∃r.C, ∀r.C

are ALC concepts.

A ALC concept-inclusion is of the form

C v D,

where C,D are ALC concepts.

Ontology Languages 4

Examples of ALC concepts

• Person u ∀hasChild.Male (everybody whose children are all male);

• Person u ∀hasChild.Male u ∃hasChild.> (everybody who has a child and
whose children are all male).

• Living being u ¬Human being (all living beings that are not human beings);

• Student u ¬∃interested in.Mathematics (all students not interested in math-
ematics);

• Student u ∀drinks.tea (all students who only drink tea).

• ∃hasChild.Male t ∀hasChild.⊥ (everybody who has a son or no child).

Ontology Languages 5

Description logics: ALC (semantics)

Interpretations are defined as before:

• Recall that an interpretation is a structure I = (∆I, ·I) in which

– ∆I is the domain (a non-empty set)

– ·I is an interpretation function that maps:

∗ every concept name A to a subseteq AI of ∆I (AI ⊆ ∆I)

∗ every role name r to a binary relation rI over ∆I (rI ⊆ ∆I ×∆I)

• interpretation of complex concepts in I:
(C, D are concepts and r a role name)

– (>)I = ∆I and (⊥)I = ∅
– (¬C)I = ∆I \ CI

– (C uD)I = CI ∩DI and (C tD)I = CI ∪DI

– (∀r.C)I = {x ∈ ∆I | for all y ∈ ∆I with (x, y) ∈ rI we have y ∈ CI}
– (∃r.C)I = {x ∈ ∆I | exists y ∈ ∆I such that (x, y) ∈ rI and y ∈ CI}

Ontology Languages 6

Example

Let I = (∆I, ·I) be defined by setting

• ∆I = {a, b, c, d};

• AI = {b, d}, BI = {c};

• rI = {(a, b), (a, c)}, sI = {(a, b), (a, d)}.

Then

• (∀r.A)I = {b, c, d}, (∀s.A)I = {a, b, c, d};

• (∃r.A u ∀r.A)I = ∅, (∃s.A u ∀s.A)I = {a};

• (∃r.B u ∃r.A)I = {a}, (∃r.(A uB))I = ∅;

• (∀r.¬A)I = {b, c, d}, (∀s.¬A)I = {b, c, d}.

Ontology Languages 7

Examples of equivalent concepts (classes)

For all interpretations I and all concepts C,D and roles r the following holds:

• (¬¬C)I = CI ;

• (∀r.C)I = (¬∃r.¬C)I ;

• (¬(C uD))I = (¬C t ¬D)I ;

• (¬(C tD))I = (¬C u ¬D)I ;

• (¬∃r.C)I = (∀r.¬C)I ;

• (¬∀r.C)I = (∃r.¬C)I ;

• (C u ¬C)I = ⊥I = ∅;

• (C t ¬C)I = >I = ∆I .

Ontology Languages 8

Concept inclusions and TBoxes

• A ALC-concept inclusion is an expression

C v D,

where C and D are ALC-concepts.

• AALC-TBox is a finite set T ofALC-concept inclusions. ALC-terminologies
and acyclic terminologies are defined following the definition for EL.

Ontology Languages 9

Semantics: exactly the same as for EL

Let I be an interpretation, C v D a ALC concept inclusion, and T a ALC-
TBox.

• Now set I |= C v D if, and only if, CI ⊆ DI . In words:

– I satisfies C v D or

– C v D is true in I or

– I is a model of C v D.

• We set I |= T if, and only if, I |= E v F for all E v F in T . In words:

– I satisfies T or

– I is a model of T .

Ontology Languages 10

Example

Let T = {A v ∃r.B}. Then
T 6|= A v ∀r.B.

To see this, construct an interpretation I such that

• I |= T ;

• I 6|= A v ∀r.B.

Let I be defined by

• ∆I = {a, b, c};

• AI = {a};

• rI = {(a, b), (a, c)};

• BI = {b}.

Then AI = {a} ⊆ {a} = (∃r.B)I and so I |= T . But AI 6⊆ {b, c} = (∀r.B)I

and so I 6|= A v ∀r.B.
Ontology Languages 11

Example

Let T = {A v ∀r.B}. Then
T 6|= A v ∃r.B.

To see this, construct an interpretation I such that

• I |= T ;

• I 6|= A v ∃r.B.

Let I be defined by

• ∆I = {a};

• AI = {a};

• rI = ∅;

• BI = ∅.

Then AI = {a} ⊆ {a} = (∀r.B)I and so I |= T . But AI 6⊆ ∅ = (∃r.B)I and so
I 6|= A v ∃r.B.
Ontology Languages 12

Domain and Range Restrictions in ALC

Recall that
∃r.> v C

states that the domain of r is contained in C. This inclusion is in ALC.

Recall that, on the other hand,

∃r−.> v C

states that the range of r is contained in C. This inclusion is not inALC. We can
express such a range restriction in ALC, however, as

> v ∀r.C

Ontology Languages 13

Modelling in ALC: Disjoint Classes

In EL we cannot represent that two (or more) classes are disjoint (have no
common elements). In ALC we can state this in many different ways.

‘Vegetable, Meat, Seafood, and Cheese are mutually disjoint’ can be repre-
sented by the inclusions

Vegetable uMeat v ⊥, Vegetable u Seafood v ⊥, Vegetable u Cheese v ⊥,

Meat u Seafood v ⊥, Meat u Cheese v ⊥, Seafood u Cheese v ⊥,

Equivalently, we could write Vegetable v ¬Meat, etc.

Note, however, that

Vegetable uMeat u Seafood u Cheese v ⊥

is a weaker assertion stating that nothing is Vegetable, Meat, Seafood, and
Cheese at the same time. So there could still be something that is Meat and
Cheese.

Ontology Languages 14

Modelling in ALC: typical mistake for ∀

Assume we state that the domain of hasTopping is pizza (only pizza’s have a
topping):

∃hasTopping.> v Pizza

and we add that ice cream cones have a topping that is ice cream:

IceCreamCone v ∃hasTopping.IceCream

then, if we assume that ice cream cones and pizzas are disjoint

Pizza u IceCreamCone v ⊥,

we obtain that the class IceCreamCone is empty!

Ontology Languages 15

Reasoning for ALC (without TBox)

We first consider reasoning without TBoxes:

• Subsumption. We say that a concept inclusion C v D follows from the
empty TBox (or that C is subsumed by D) if, and only if, for all interpretations
I we have that CI ⊆ DI . In this case, we often write ∅ |= C v D.

• Concept satisfiability. A concept C is satisfiable if, and only if, there exists
an interpretation I such that CI 6= ∅.

We have: ∅ |= C v D if, and only if, C u ¬D is not satisfiable. Thus, in ALC,
subsumption is reducible to concept satisfiability.

We give an algorithm deciding whether a ALC-concept C is satisfiable.

Remark This problem is not tractable. Its complexity is between NP-complete
and ExpTime-complete (precisely: PSpace-complete). The algorithm we present
requires exponential time.

Ontology Languages 16

Satisfiability of Concepts: example 1

Q: Is (∀hasChild.Male) u (∃hasChild.¬Male) satisfiable?

Let us try to construct an interpretation satisfying this concept

(1) x : (∀hasChild.Male) u (∃hasChild.¬Male)

(2) from (1) x : ∀hasChild.Male

(3) from (1) x : ∃hasChild.¬Male

(4) from (3) (x, y) : hasChild and y : ¬Male, for fresh y

(5) from (2) & (4) y : Male

(6) from (4) & (5) contradiction: y : Male and y : ¬Male

A: the concept is not satisfiable!

Ontology Languages 17

Satisfiability of Concepts: example 2

Q: Is (∀hasChild.Male) u (∃hasChild.Male) satisfiable?

Let us try to construct a interpretation satisfying this concept

(1) x : (∀hasChild.Male) u (∃hasChild.Male)

(2) from (1) x : ∀hasChild.Male

(3) from (1) x : ∃hasChild.Male

(4) from (3) (x, y) : hasChild and y : Male, for fresh y

A: the concept is satisfiable and a satisfying model I = (∆I, ·I) is

∆I = {x, y}, MaleI = {y}, hasChildI = {(x, y)}

Then x ∈
(
(∀hasChild.Male) u (∃hasChild.Male)

)I
Ontology Languages 18

Satisfiability of Concepts: example 3

Q: Is ∀r.(¬C tD) u ∃r.(C uD) satisfiable?

(1) x : ∀r.(¬C tD) u ∃r.(C uD)

(2) from (1) x : ∀r.(¬C tD)

(3) from (1) x : ∃r.(C uD)

(4) from (3) (x, y) : r and y : C uD, for fresh y

(5) from (4) y : C

(6) from (4) y : D

(7) from (2) y : ¬C tD

Two ways of continue (branching!):

(8.1) from (7) y : ¬C
(8.2) from (7) y : D

A: (8.1) is a contradiction, while (8.2) is not and yields a satisfying model

Ontology Languages 19

Tableau Methods

How can we prove satisfiability of a concept?

Achieved by applying tableau methods
(set of completion rules operating on constraint systems or tableaux)

Proof procedure:

• transform a given concept into Negation Normal Form (NNF)
(all occurrences of negations are in front of concept names)

• apply completion rules in arbitrary order as long as possible.

• the concept is satisfiable if, and only if, a clash-free tableau can be derived
to which no completion rule is applicable.

Ontology Languages 20

Negation Normal Form (NNF)

A concept is in Negation Normal Form (NNF)
if all occurrences of negations in it are in front of concept names

Every ALC-concept can be transformed into an equivalent one in NNF
using the following rules:

¬> ≡ ⊥
¬⊥ ≡ >
¬¬C ≡ C

¬(C uD) ≡ ¬C t ¬D (De Morgan’s law)

¬(C tD) ≡ ¬C u ¬D (De Morgan’s law)

¬∀r.C ≡ ∃r.¬C
¬∃r.C ≡ ∀r.¬C

Ontology Languages 21

Negation Normal Form: example

Transform the concept

¬∃r.(A u ¬B) t ¬∀r.(¬A t ¬B)

to an equivalent concept in negation normal form.

¬∃r.(A u ¬B) t ¬∀r.(¬A t ¬B) ≡ (use ¬∃r.D ≡ ∀r.¬D)

∀r. ¬(A u ¬B) t ¬∀r.(¬A t ¬B) ≡ (use ¬(A uD) ≡ ¬A t ¬D)

∀r.(¬A t ¬¬B) t ¬∀r.(¬A t ¬B) ≡ (use ¬¬B ≡ B)

∀r.(¬A tB) t ¬∀r.(¬A t ¬B) ≡ (use ¬∀r.D ≡ ∃r.¬D)

∀r.(¬A tB) t ∃r. ¬(¬A t ¬B) ≡ (use ¬(C tD) ≡ ¬C u ¬D)

∀r.(¬A tB) t ∃r.(¬¬A u ¬¬B) ≡ (use ¬¬C ≡ C)

∀r.(¬A tB) t ∃r.(A uB)

Ontology Languages 22

Tableau Calculus for ALC concept satisfiability

Constraint: expression of the form x : C or (x, y) : r,
where C is a concept in NNF and r a role name

Constraint system: a finite non-empty set S of constraints

Completion rules: S → S′, where S′ is a constraint system containing S

Clash: S contains clash if

{ x : A, x : ¬A } ⊆ S, for some x and concept name A

Aim: starting from S0 = {x : C} apply completion rules to construct a clash-
free system Sn to which no completion rule is applicable

• If this is possible, then we can extract a model satisfying C

• Otherwise, C is not satisfiable.

Ontology Languages 23

Completion Rules for ALC concept satisfiability (1)

S →u S ∪ { x : C, x : D }
if (a) x : C uD is in S

(b) x : C and x : D are not both in S

S →t S ∪ { x : E }
if (a) x : C tD is in S

(b) neither x : C nor x : D is in S

(c) E = C or E = D (branching!)

NB: Non-deterministically add any of the disjuncts to the constraint system

NB: Clashes eliminate branches in the OR tree

Ontology Languages 24

Completion Rules for ALC concept satisfiability (2)

S →∀ S ∪ { y : C }
if (a) x : ∀r.C is in S

(b) (x, y) : r is in S

(c) y : C is not in S

NB: Only applicable if role successors can be found

S →∃ S ∪ { (x, y) : r, y : C }
if (a) x : ∃r.C is in S

(b) y is a fresh individual
(c) there is no z such that

both (x, z) : r and z : C are in S

NB: The only rule that creates new individuals in a constraint system

Ontology Languages 25

Tableau Example 1

We check whether (A u ¬A) tB is satisfiable.

It is in NNF, so we can directly apply the tableau algorithm to

S0 = {x : (A u ¬A) tB}

The only rule applicable is→t. We have two possibilities.

Firstly we can try
S1 = S0 ∪ {x : A u ¬A}.

Then we can apply→u and obtain

S2 = S1 ∪ {x : A, x : ¬A}

We have obtained a clash, thus this choice was unsuccessful.

Secondly, we can try
S∗1 = S0 ∪ {x : B}.

No rule is applicable to S∗1 and it does not contain a clash. Thus, (Au¬A)tB

is satisfiable.
Ontology Languages 26

A model I satisfying it is given by

∆I = {x}, BI = {x}, AI = ∅.

Ontology Languages 27

Tableau Example 2

We check whether C = A u ∃r.∃s.B u ∀r.¬B is satisfiable.

It is in NNF, so we can directly apply the tableau algorithm to

S0 = {x : A u ∃r.∃s.B u ∀r.¬B}

An application of→u gives

S1 = S0 ∪ {x : A, x : ∃r.∃s.B u ∀r.¬B}

An application of→u gives

S2 = S1 ∪ {x : ∃r.∃s.B, x : ∀r.¬B}

An application of→∃ gives

S3 = S2 ∪ {(x, y) : r, y : ∃s.B}

Ontology Languages 28

An application of→∃ gives

S4 = S3 ∪ {(y, z) : s, z : B}

Ontology Languages 29

Tableau Example 2

Recall that
S4 = S3 ∪ {(y, z) : s, z : B}

An application of→∀ gives

S5 = S4 ∪ {y : ¬B}

No rule is applicable to S5 and S5 contains no clash. Thus, the concept C is
satisfiable.

A model I of C is given by

∆I = {x, y, z}, AI = {x}, BI = {z}, rI = {(x, y)}, sI = {(y, z)}

Ontology Languages 30

Tableau Example 3

We check whether C = ∃r.A u ∃r.¬A is satisfiable.

C is in NNF, so we can directly apply the tableau algorithm to

S0 = {x : ∃r.A u ∃r.¬A}

An application of→u gives

S1 = S0 ∪ {x : ∃r.A, x : ∃r.¬A}

An application of→∃ gives

S2 = S1 ∪ {(x, y) : r, y : A}

Ontology Languages 31

Tableau Example 3

Recall that
S2 = S1 ∪ {(x, y) : r, y : A}

Another application of→∃ gives

S3 = S2 ∪ {(x, z) : r, z : ¬A}

No rule is applicable to S3 and S3 contains no clash. Thus, C is satisfiable.

A model I of C is given by

∆I = {x, y, z}, AI = {y}, rI = {(x, y), (x, z)}

Ontology Languages 32

Analysing the Tableau Calculus

To show that the tableau does what it is supposed to do one has to show

• Soundness: If the concept is satisfiable, then there is a branch without
clash such that no rule is applicable;

• Termination: The tableau terminates after finitely many steps for any input
concept in NNF;

• Completeness: If there is a branch without clash such that no rule is appli-
cable, then the concept is satisfiable.

Ontology Languages 33

Tableau Calculus: Soundness

• Suppose that a constraint system S is satisfiable and

S →u S′, S →∀ S′ or S →∃ S′.
Then S′ is also satisfiable.

• If

S →t S′ and S →t S′′

then one of S′ and S′′ is satisfiable (or perhaps both).

Thus, having started with a satisfiable constraint system
we cannot derive clashes in all branches

Ontology Languages 34

Tableau Calculus: Termination

For every constraint system S0,
there is no infinite sequence of the form

S0, S1, S2, . . .

such that Si+1 is obtained form Si

by an application of one of the completion rules

Proof: All rules but →∀ are never applied twice to the same constraint

→∀ is never applied to an individual x more times than
the number of direct successors of x (i.e., y such that (x, y) : r),

which is bounded by the length of the concept

Each rule application to a constraint y : C

adds constraints z : D such that D is a subconcept of C

Ontology Languages 35

Tableau Calculus: Completeness

If starting from S0 = {x : C} and applying the completion
rules we construct a clash-free constraint system Sn to which
no rule is applicable then C is satisfiable

Sn determines an interpretation I = (∆I, ·I):

• ∆I contains all individuals in Sn

• for x ∈ ∆I and a concept name A,
x ∈ AI iff x : A is in Sn

• for x, y ∈ ∆I and a role name r,
(x, y) ∈ rI iff (x, y) : r is in Sn

It is easy to check that C is satisfied in I, i.e., CI 6= ∅

Ontology Languages 36

Reasoning Services for ALC (with TBox)

• Subsumption w.r.t. TBoxes. We say that a concept inclusion C v D follows
from a TBox T if, and only if, every interpretation I that is a model of T is a
model of C v D. In this case, we often write T |= C v D.

• Concept satisfiability w.r.t. TBoxes. A concept C is satisfiable w.r.t. a TBox T

if, and only if, there exists an interpretation I that is a model of T such that
CI 6= ∅.

• TBox satisfiability. A TBox T is satisfiable if, and only if, there exists a model
of T .

We have the following reductions to concept satisfiability w.r.t. TBoxes:

• T |= C v D if, and only if, C u ¬D is not satisfiable w.r.t. T .

• T is satisfiable if, and only if, A is satisfiable w.r.t. T (A a fresh concept
name).

Thus, it is sufficient to design an algorithm checking concept satisfiability w.r.t. TBoxes.
Ontology Languages 37

Discussion

The concept satisfiability problem w.r.t. ALC-TBoxes is ExpTime-complete. Thus,
it is not tractable:

• There is no guarantee that existing implementations (or future implemen-
tations) of algorithms for this problem will terminate in a reasonable amount
of time for every ALC-TBox.

• Nevertheless, there are a number of systems (FACT, PELLET, RACER) which
work for most currently existing TBoxes.

Ontology Languages 38

Reasoning with TBoxes

Given a TBox T and a concept C,
how to determine whether T ∪ { x : C } has a model

(concept satisfiability w.r.t. a TBox)

Note that, for any interpretation I and any two concepts C and D,

I |= C v D iff I |= > v ¬C tD

So, C v D is equivalent to > v ¬C tD.

The initial constraint system S0 for T ∪ { x : C } is defined by

S0 = { x : C } ∪ {> v ¬C tD | C v D ∈ T }

So, now we have three different types of constraints:

y : D (x, y) : r > v D

Ontology Languages 39

Reasoning with TBoxes (cont.)

S →U S ∪ { x : D }
if (a) > v D is in S

(b) x occurs in S

(c) x : D is not in S

The tableau algorithm based on rules
→u, →t, →∀, →∃ and →U

does not terminate:
in general, even if T ∪ { x : C } has model,

the algorithm can produce an infinite model for it
(although finite models exist)

see the next slide for an example. . .

Ontology Languages 40

Reasoning with TBoxes: example

S0 = { x0 : >, > v ∃r.A }

S0 →U S1 = S0 ∪ { x0 : ∃r.A }

S1 →∃ S2 = S1 ∪ { (x0, x1) : r, x1 : A }

S2 →U S3 = S2 ∪ { x1 : ∃r.A }

S3 →∃ S4 = S3 ∪ { (x1, x2) : r, x2 : A }

S4 →U S5 = S4 ∪ { x2 : ∃r.A }

... ...

This gives an infinite model which can easily be reconstructed into a finite one

Rule →∃ can be modified in such a way that
the resulting algorithm always terminates

(using so-called blocking technique)

Ontology Languages 41

