Ontology Languages (COMP321) Exercise 1 - 1. Recall the syntax of the Description Logic \mathcal{EL} . Assume that A and B are concept names and r and s are role names. For each of the following expressions, state whether - it is a \mathcal{EL} concept; - a \mathcal{EL} concept definition; - a primitive \mathcal{EL} concept definition; - \mathcal{EL} concept inclusion; - none of the above. - (a) $A \sqcap B$ - (b) $(A \sqcap B) \sqcup A$ - (c) $\neg B$ - (d) $A \sqsubseteq B$ - (e) $\exists r.(A \sqcap B)$ - (f) $A \sqcap B \sqsubseteq B$ - (g) $A \equiv A \sqcap B$ - (h) ∃*A*.*B* - (i) $r \sqsubseteq s$ - (j) $A \equiv \exists s.B$ - $(k) \perp \sqsubseteq \top$ - 2. Create an \mathcal{EL} TBox \mathcal{T} that models the following facts: - (a) Mammals are animals. - (b) Cats are mammals that are carnivores. - (c) Elephants are mammals that are herbivores. - (d) Carnivores eat meat. (e) A vertebrate is any animal that has, amongst other things, a backbone. Is the following \mathcal{EL} -TBox an \mathcal{EL} -terminology? Explain your answer. Express each concept inclusion in natural language: Fish $$\sqsubseteq$$ Animal $\sqcap \exists lives_in.Water$ $\exists eat.Meat \sqsubseteq$ Carnivore Bird \equiv Vertebrate $\sqcap \exists has_part.Wing$ $\sqcap \exists has_part.Leg \sqcap \exists lays.Egg$ Reptile \sqsubseteq Vertebrate $\sqcap \exists lays.Egg$ - 3. Let $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ be an interpretation, where - $\Delta^{\mathcal{I}} = \{a, b, c, d, e, f\}$ - $\bullet \ A^{\mathcal{I}} = \{a, b\}$ - $\bullet \ B^{\mathcal{I}} = \{c, d, e, f\}$ - $r^{\mathcal{I}} = \{(a, c), (a, e), (b, f)\}$ Determine the extension $C^{\mathcal{I}}$ of the following \mathcal{EL} -concepts C under \mathcal{I} : - \bullet $A \sqcap B$ - ∃*r*.*B* - $\exists r.(A \sqcap B)$ - \bullet \top - $A \sqcap \exists r.B$ Which of the following are true? - $\mathcal{I} \models A \equiv \exists r.B$ - $\mathcal{I} \models A \sqcap B \sqsubseteq \top$ - $\mathcal{I} \models \exists r. A \sqsubseteq A \cap B$ - $\mathcal{I} \models \top \sqsubseteq B$ - $\mathcal{I} \models B \sqsubseteq \exists r.A$