Ontology Languages (COMP321) Exercise 1

- 1. Recall the syntax of the Description Logic \mathcal{EL} . Assume that A and B are concept names and r and s are role names. For each of the following expressions, state whether
 - it is a \mathcal{EL} concept;
 - a \mathcal{EL} concept definition;
 - a primitive \mathcal{EL} concept definition;
 - \mathcal{EL} concept inclusion;
 - none of the above.
 - (a) $A \sqcap B$
 - (b) $(A \sqcap B) \sqcup A$
 - (c) $\neg B$
 - (d) $A \sqsubseteq B$
 - (e) $\exists r.(A \sqcap B)$
 - (f) $A \sqcap B \sqsubseteq B$
 - (g) $A \equiv A \sqcap B$
 - (h) ∃*A*.*B*
 - (i) $r \sqsubseteq s$
 - (j) $A \equiv \exists s.B$
 - $(k) \perp \sqsubseteq \top$
- 2. Create an \mathcal{EL} TBox \mathcal{T} that models the following facts:
 - (a) Mammals are animals.
 - (b) Cats are mammals that are carnivores.
 - (c) Elephants are mammals that are herbivores.
 - (d) Carnivores eat meat.

(e) A vertebrate is any animal that has, amongst other things, a backbone.

Is the following \mathcal{EL} -TBox an \mathcal{EL} -terminology? Explain your answer. Express each concept inclusion in natural language:

Fish
$$\sqsubseteq$$
 Animal $\sqcap \exists lives_in.Water$
 $\exists eat.Meat \sqsubseteq$ Carnivore

Bird \equiv Vertebrate $\sqcap \exists has_part.Wing$
 $\sqcap \exists has_part.Leg \sqcap \exists lays.Egg$

Reptile \sqsubseteq Vertebrate $\sqcap \exists lays.Egg$

- 3. Let $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ be an interpretation, where
 - $\Delta^{\mathcal{I}} = \{a, b, c, d, e, f\}$
 - $\bullet \ A^{\mathcal{I}} = \{a, b\}$
 - $\bullet \ B^{\mathcal{I}} = \{c, d, e, f\}$
 - $r^{\mathcal{I}} = \{(a, c), (a, e), (b, f)\}$

Determine the extension $C^{\mathcal{I}}$ of the following \mathcal{EL} -concepts C under \mathcal{I} :

- \bullet $A \sqcap B$
- ∃*r*.*B*
- $\exists r.(A \sqcap B)$
- \bullet \top
- $A \sqcap \exists r.B$

Which of the following are true?

- $\mathcal{I} \models A \equiv \exists r.B$
- $\mathcal{I} \models A \sqcap B \sqsubseteq \top$
- $\mathcal{I} \models \exists r. A \sqsubseteq A \cap B$
- $\mathcal{I} \models \top \sqsubseteq B$
- $\mathcal{I} \models B \sqsubseteq \exists r.A$