First-Order Predicate Logic (2)
Predicate Logic (2)

- Understanding first-order predicate logic formulas.
- Satisfiability and undecidability of satisfiability.
- Tautology, logical consequence, and logical equivalence.
- Completeness of first-order predicate logic
- Incompleteness of arithmetic and second-order logic.
Translations into Predicate Logic

• “Every house is a physical object” is translated as

\[\forall x. (\text{house}(x) \rightarrow \text{physical_object}(x)), \]

where \text{house} and \text{physical_object} are unary predicate symbols.

• “Some physical objects are houses” is translated as

\[\exists x. (\text{physical_object}(x) \land \text{house}(x)) \]

• “Every house has an owner” or, equivalently, “every house is owned by somebody” is translated as

\[\forall x (\text{house}(x) \rightarrow \exists y. \text{owns}(y, x)), \]

here \text{owns} is a binary predicate symbol.

• “Everybody owns a house” is translated as

\[\forall x. \exists y. (\text{owns}(x, y) \land \text{house}(y)) \]
Translations into Predicate Logic

- “Sue owns a house” is translated as

\[\exists x. (\text{owns}(\text{Sue}, x) \land \text{house}(x)) \]

where \text{Sue} is an individual constant symbol.

- “Peter does not own a house” is translated as

\[\neg \exists x. (\text{owns}(\text{Peter}, x) \land \text{house}(x)) \]

- “Somebody does not own a house” is translated as

\[\exists x. \forall y. (\text{owns}(x, y) \rightarrow \neg \text{house}(y)) \]
The truth relation

Let S be the signature consisting of the unary predicates house and human, the binary predicate owns, and the individual constant Sue. Give an S-interpretation \mathcal{F} with $\mathcal{F} \models G$ for the following sentences G:

- there are houses: $\exists x. \text{house}(x)$

- there are human beings: $\exists x. \text{human}(x)$

- no house is a human being: $\forall x. (\text{house}(x) \rightarrow \neg \text{human}(x))$

- some humans own a house: $\exists x. \exists y. (\text{human}(x) \land \text{house}(y) \land \text{owns}(x, y))$

- Sue is human: $\text{human}(\text{Sue})$

- Sue does not own a house: $\neg \exists x. (\text{owns}(\text{Sue}, x) \land \text{house}(x))$

- every house has an owner: $\forall x. (\text{house}(x) \rightarrow \exists y. \text{owns}(y, x))$
We can take, for example, \mathcal{F} defined by

- $D^\mathcal{F} = \{a, b, c, d, e\}$;
- $\text{human}^\mathcal{F} = \{a, b, c\}$;
- $\text{house}^\mathcal{F} = \{d, e\}$
- $\text{owns}^\mathcal{F} = \{(b, d), (c, e)\}$
- $\text{Sue}^\mathcal{F} = a$.

Note that in this interpretation all owners are humans. We can also take $\text{human}^\mathcal{F} = \{a, b\}$ and the sentences from the previous slide are still true in \mathcal{F}. (Note that this is not the case for $\text{human}^\mathcal{F} = \{a\}$.)
Satisfiability

Definition A first-order predicate logic sentence G over S is satisfiable if there exists an S-structure \mathcal{F} such that

$$\mathcal{F} \models G$$

Examples

(a) $\exists x. (P(x) \land \neg P(x))$ is not satisfiable.

(b) $\forall x. \exists y. Q(x, y) \land \neg \forall u. \exists v. Q(v, u)$ is satisfiable. (The sentence states that the domain of Q is the whole domain of discourse and that the range of Q is not the whole domain of discourse.)

(c) $\forall x. P(x) \land \exists x. \neg P(x)$ is not satisfiable.
Proof for (b)

To show that $\forall x. \exists y. Q(x, y) \land \neg \forall u. \exists v. Q(v, u)$ is satisfiable we have to define a $\{Q\}$-structure \mathcal{F} such that

$$\mathcal{F} \models \forall x. \exists y. Q(x, y) \land \neg \forall u. \exists v. Q(v, u)$$

Let

- $D^\mathcal{F} = \{a, b\}$;
- $Q^\mathcal{F} = \{(a, b), (b, b)\}$.

We have: for all $d \in D^\mathcal{F}$ there exists $d' \in D^\mathcal{F}$ with $(d, d') \in Q^\mathcal{F}$. Thus, $\mathcal{F} \models \forall x \exists y. Q(x, y)$.

For $d = a$ there does not exist $d' \in D^\mathcal{F}$ such that $(d', d) \in Q^\mathcal{F}$. Thus, $\mathcal{F} \models \neg \forall u. \exists v. Q(v, u)$.
Proof for (c)

To prove that $\forall x. P(x) \land \exists x. \neg P(x)$ is not satisfiable, we have to show that for all $\{P\}$-structures \mathcal{F}:

$$\mathcal{F} \not\models \forall x. P(x) \land \exists x. \neg P(x)$$

For a proof by contradiction assume there exists a $\{P\}$-structure \mathcal{F} such that

$$\mathcal{F} \models \forall x. P(x) \land \exists x. \neg P(x)$$

Since $\mathcal{F} \models \exists x. \neg P(x)$, there exists $d \in D^\mathcal{F}$ such that $d \notin P^\mathcal{F}$. Take an assignment a with $a(x) = d$. Then $(\mathcal{F}, a) \not\models P(x)$. Hence $\mathcal{F} \not\models \forall x. P(x)$ and we have derived a contradiction to $\mathcal{F} \models \forall x. P(x) \land \exists x. \neg P(x)$.
Undecidability of satisfiability (very informal!)

We show that there does not exist any algorithm (no computer program) that decides whether a first-order predicate logic sentence is satisfiable; i.e., for input sentence \(G \) outputs “Yes” if \(G \) is satisfiable and “No” if \(G \) is not satisfiable.

To this end, we show that there is no computer program that decides whether a given computer program \(P \) halts for a given input number \(n \). (Called undecidability of the halting problem.)

To formulate this a bit more precisely, let \(L \) be some standard programming language. If a problem is decidable, then one can implement a program in \(L \) solving it. With every program \(P \) in \(L \) we associate a unique number \(P^\# \).
Undecidability

Now we show: there is no program in L which outputs “yes” for input (P, n) (P a program in L and n a number) if program P terminates for input n, and outputs “no” otherwise.

For a proof by contradiction, assume there exists a program in L which outputs “yes” for input (P, n) if P terminates for input n and outputs “no” otherwise.

Then there exists a program Q_{term} that outputs “yes” for input $P^\#$ if P terminates for input $P^\#$. Otherwise it outputs “no”.

Logic in Computer Science 2012
Undecidability

We can rewrite Q_{term} into a program A_{term} that terminates for input $P^\#$ if Q_{term} outputs “no” for input $P^\#$. Otherwise it does not terminate. Then

- A_{term} terminates for input $A^\#$ if, and only if (by def. of A_{term})
- Q_{term} outputs “no” for input $A^\#$ if, and only if (by def. of Q_{term})
- A_{term} does not terminate for input $A^\#$.

We have derived a contradiction.

Now, for any (P, n), (P in a standard programming language L), one can write up a first-order predicate logic sentence $F_{P,n}$ such that $F_{P,n}$ is satisfiable if, and only if, P does not terminate for input n. $F_{P,n}$ describes the computation steps of P.

Since the halting problem is undecidable, we obtain that satisfiability of first-order predicate logic sentences is undecidable.
Tautology

Definition A first-order predicate logic sentence G over S is a tautology if $\mathcal{F} \models G$ holds for every S-structure \mathcal{F}.

Examples of tautologies

(a) $\forall x. P(x) \rightarrow \exists x. P(x)$;

(b) $\forall x. P(x) \rightarrow P(c)$;

(c) $P(c) \rightarrow \exists x. P(x)$;

(d) $\forall x (P(x) \leftrightarrow \neg \neg P(x))$;

(e) $\forall x (\neg (P_1(x) \land P_2(x)) \leftrightarrow (\neg P_1(x) \lor \neg P_2(x)))$.
Proof for (a)

To show that $\forall x. P(x) \rightarrow \exists x. P(x)$ is a tautology it is sufficient to prove that for every $\{P\}$-structure \mathcal{F}: if $\mathcal{F} \models \forall x. P(x)$, then $\mathcal{F} \models \exists x. P(x)$.

Assume $\mathcal{F} \models \forall x. P(x)$. Then $P^\mathcal{F}$ coincides with the domain of discourse $D^\mathcal{F}$; i.e., $P^\mathcal{F} = D^\mathcal{F}$. Note that $D^\mathcal{F}$ is, by definition, always nonempty. Thus, there exists $d \in P^\mathcal{F}$. Define a variable assignment a by setting $a(x) = d$. Then $(\mathcal{F}, a) \models P(x)$. Hence $\mathcal{F} \models \exists x. P(x)$.
The relationship between satisfiability and tautologies

Observation

- A first-order predicate logic sentence G is a tautology if, and only if, $\neg G$ is not satisfiable.

- A first-order predicate logic sentence G is satisfiable if, and only if, $\neg G$ is not a tautology.

Consequence There is no algorithm that decides whether a first-order predicate logic sentence is a tautology.

Proof. Such an algorithm could be used to decide satisfiable of first-order predicate logic sentences. As satisfiability of first-order predicate logic sentences is undecidable, being a tautology is undecidable as well.
Semantic consequence

Definition Let X be a set of sentences over a signature S and G be a sentence over S. Then G follows from X (is a semantic consequence of X) if the following implication holds for every S-structure F:

$$\text{If } F \models E \text{ for all } E \in X, \text{ then } F \models G.$$

This is denoted by

$$X \models G$$

Observations

• For any first-order sentence G: $\emptyset \models G$ if, and only if, G is a tautology. Since ‘being a tautology’ is undecidable it follows that ‘being a logical consequence’ is undecidable: there is not algorithm that decides whether $X \models G$.

• $\{G\} \models F$ if, and only if, $G \rightarrow F$ is a tautology.
Examples

Let c be an individual constant and P, Q unary predicate symbols.

- We have:
 \[\{P(c)\} \models \exists x P(x). \]

- We have:
 \[\{P(c), \forall x (P(x) \rightarrow Q(x))\} \models \exists x Q(x). \]

- We have:
 \[\{P(c), \exists x (P(x) \land Q(x))\} \not\models Q(c). \]
Example

We can model the logical consequence “if my car is blue and all blue cars are fast, then my car is fast” as follows: take

- individual constant MyCar and
- unary predicates blue, fast, car.

Then

$$\{\text{blue}(\text{MyCar}), \text{car}(\text{MyCar}), \forall x.((\text{blue}(x) \land \text{car}(x)) \rightarrow \text{fast}(x))\} \models \text{fast}(\text{MyCar})$$
$\mathcal{F} \models G$ versus $X \models G$

- Note that $\mathcal{F} \models G$ or $\mathcal{F} \models \neg G$, for every sentence G. Thus, we have complete information about the domain of discourse. There are many examples where $X \not\models G$ and $X \not\models \neg G$. We have incomplete information.

- $\mathcal{F} \models G$ means that G is true in the structure \mathcal{F}. Checking whether this is the case for finite \mathcal{F} coincides with querying relational database instances and can be done very efficiently. It is also the underlying problem of model checking approaches to program verification: \mathcal{F} is a representation of a program and one wants to know whether a property expressed by G is true.

- $X \models G$ means that G is true in every structure in which X is true. This is a much harder problem; in fact, it is undecidable. The research area automated reasoning develops methods which work in some cases. Incomplete databases, ontologies, and theorem proving are application areas which are based on the problem of deciding $X \models G$.

Logic in Computer Science 2012

19
Logical equivalence

Definition Two first-order predicate logic sentences G_1 and G_2 over a signature S are called **logically equivalent** if they are true in the same S-structures. In other words, G_1 and G_2 are logically equivalent if the following holds for all S-structures \mathcal{F}:

$$\mathcal{F} \models G_1 \text{ if and only if } \mathcal{F} \models G_2.$$

This is denoted by

$$G_1 \equiv G_2.$$

Observations

- $G_1 \equiv G_2$ if, and only if, $\{G_1\} \models G_2$ and $\{G_2\} \models G_1$;

- $G_1 \equiv G_2$ if, and only if, $G_1 \leftrightarrow G_2$ is a tautology.
Examples

Let G and H be first-order predicate logic formulas.

- $\neg \forall x. G \equiv \exists x. \neg G$;
- $\neg \exists x. G \equiv \forall x. \neg G$;
- $\exists x. G \equiv \neg \forall x. \neg G$;
- $\forall x. G \equiv \neg \exists x. \neg G$;
- $\forall x. G \land \forall x. H \equiv \forall x. (G \land H)$;
- $\forall x. G \lor \forall x. H \not\equiv \forall x. (G \lor H)$;
- $\exists x. G \lor \exists x. H \equiv \exists x (G \lor H)$;
- $\exists x. G \land \exists x. H \not\equiv \exists x. (G \land H)$.
Completeness of First-order Predicate Logic

Theorem There exists a computer program that outputs exactly the tautologies of first-order predicate logic.

There are many distinct types of *deduction systems* that can be used to implement such a program:

- Hilbert-style systems
- Natural deduction
- Sequent calculus
- Tableaux method
- Resolution
Hilbert Style System

We assume that formulas are constructed using \land, \neg, and \forall. We regard \lor, \rightarrow, and \exists as abbreviations:

- $(G \lor D) = \neg(\neg G \land \neg D)$;
- $(G \rightarrow D) = (\neg G \lor D)$;
- $\exists x. G = \neg\forall x. \neg G$.

We set

$$(G \rightarrow D \rightarrow F) = (G \rightarrow (D \rightarrow F))$$

Intuitively, $(G \rightarrow D \rightarrow F)$ means “If G and D are true, then F is true”.

We slightly generalise the notion of a tautology: a formula G is called a tautology if, and only if, the sentence $\forall x_1 \ldots \forall x_n. G$ is a tautology, where x_1, \ldots, x_n are the free variables of G.
The Axioms (Part 1)

The following formulas are tautologies, for any first-order predicate logic formulas $D, G,$ and F:

\[(A1) \ ((G \rightarrow D \rightarrow F) \rightarrow (G \rightarrow D) \rightarrow (G \rightarrow F))\]

\[(A2) \ (G \rightarrow (D \rightarrow G \land D))\]

\[(A3) \ ((G \land D) \rightarrow G)\]

\[(A4) \ ((G \land D) \rightarrow D)\]

\[(A5) \ ((G \rightarrow \neg D) \rightarrow (D \rightarrow \neg G))\]

Note that $(A1)$-$(A5)$ “axiomatize the propositional part” of first-order predicate logic.
The Axioms (Part 2)

If \(t \) is a term, then we write \(G^t_x \) for the formula obtained from \(G \) by replacing every free occurrence of \(x \) in \(G \) by \(t \). For example

- \(P(x) \overset{c}{x} = P(c) \)
- \(\forall x. P(x) \overset{c}{x} = \forall x. P(x) \)

The following formulas are tautologies for all first-order predicate logic formulas \(G \) and \(D \):

(A6) \(\forall x. G \rightarrow G^t_x \) (\(t \) not bound in \(G \))

(A7) \(G \rightarrow \forall x. G \) (\(x \) not free in \(G \))

(A8) \((\forall x. (G \rightarrow D) \rightarrow (\forall x. G \rightarrow \forall x. D)) \)

(A9) \((\forall y. G^y_x \rightarrow \forall x. G) \) (\(y \) not in \(G \))
Two Rules

We take, in addition to the axioms (A1)-(A9), the following two rules:

(MP) \(G, G \rightarrow D / D; \)

(GE) \(G / \forall x. G. \)

The first rules is called **Modus Ponens**. The second rule is called **Generalisation**.

Note

- if \(G \) and \(G \rightarrow D \) are tautologies, then \(D \) is a tautology

- if \(G \) is a tautology, then \(\forall x. G \) is a tautology.
Completeness

We say that G is **provable from (A1)-(A9) with (MP) and (GE)** if, and only if, there is a sequence G_1, \ldots, G_n such that for all G_i one of the following conditions holds:

- G_i is of the form (A1) or (A2) or \cdots or (A9);
- there exists $j < i$ such that $G_j = F$ and $G_i = \forall x. F$ (for some F, x);
- there exist $j, k < i$ such that $G_j = F$ and $G_k = F \rightarrow G_i$ (for some F).

Theorem A formula G is a tautology if, and only if, it is provable from (A1)-(A9) with (MP) and (GE).
Recall that

\[S_{AR} = \{ \text{smaller, sum, prod, even, 0, 1, \ldots} \} \]

The standard structure for \(S_{AR} \) is given by

\[\mathcal{A} = (D^A, \text{smaller}^A, \text{sum}^A, \text{prod}^A, \text{even}^A, 0^A, 1^A, \ldots) \]

where

- \(D^A \) is the set of natural numbers 0, 1, 2\ldots;
- \(\text{smaller}^A = \{(n, m) \mid n < m\} \);
- \(\text{sum}^A = \{(n, m, k) \mid n + m = k\} \);
- \(\text{prod}^A = \{(n, m, k) \mid n \times m = k\} \);
- \(\text{even}^A = \{n \mid n \text{ is even}\} \);
- \(0^A = 0, 1^A = 1, \) and so on.
Incompleteness of Arithmetic

Theorem There does not exist an algorithm (computer program) that outputs exactly the first-order sentences G over S_{AR} such that $\mathcal{A} \models G$.

It follows, in particular, that there is no finitary calculus that captures the sentences that are true in \mathcal{A}. Undecidability of arithmetic follows from incompleteness:

Theorem There does not exist an algorithm (computer program) that decides whether for a first-order sentence G over S_{AR} it holds that $\mathcal{A} \models G$.
Second-order Logic

Second-order predicate logic is an extension of first-order predicate logic which has, for every arity $n > 0$, variables X for relations of arity n. If X is a variable of arity n and t_1, \ldots, t_n are terms, then

- $X(t_1, \ldots, t_n)$ is a second-order formula.

Then, if X is a variable and G is a second-order predicate logic formula,

- $\forall X. G$ is a formula of second-order predicate logic.

Second-order logic is much more expressive than first-order logic. For example, one can formalise induction (we use, for simplicity, $+$ instead of sum):

$$\forall X.((X(0) \land (\forall x. X(x) \rightarrow X(x + 1))) \rightarrow \forall y. X(y))$$

Theorem There does not exist an algorithm (computer program) that outputs exactly the tautologies of second-order logic.