
Java CPD (I)

Frans Coenen

Department of Computer Science

Content

• Session 1, 12:45-14:30 (First Java

Programme, Inheritance, Arithmetic)

• Session 2, 14:45-16:45 (Input and

Programme Constructs)

• Materials at:

http://www.liv.ac.uk/computer-science/continuing-

professional-development/

http://www.liv.ac.uk/computer-science/continuing-professional-development/
http://www.liv.ac.uk/computer-science/continuing-professional-development/
http://www.liv.ac.uk/computer-science/continuing-professional-development/
http://www.liv.ac.uk/computer-science/continuing-professional-development/
http://www.liv.ac.uk/computer-science/continuing-professional-development/
http://www.liv.ac.uk/computer-science/continuing-professional-development/
http://www.liv.ac.uk/computer-science/continuing-professional-development/
http://www.liv.ac.uk/computer-science/continuing-professional-development/
http://www.liv.ac.uk/computer-science/continuing-professional-development/

Logging On and Materials

• Log on using your password.

• All materials are in the directory called
H:\JavaCPD.

• This presentation is in
H:\JavaCPD\Presentation (suggest you

open it in a window on your computer).

• You will also find all the example problems (plus

some additional problems) in
H:\JavaCPD\JavaExampleProblems.

Background and

Introduction

High-Level Programming Languages

• In the early days of computing programming was
done in byte (machine) code, however this is both
extremely time consuming and error prone.

• A solution to speeding up the programming process,
and reduce the associated risk of errors, is to use a
high level programming language such a Java.

• High-level languages tend to use natural language
constructs and/or automate certain aspects of
programming (such as memory management), hence
easier to use.

• However, a program written in a high-level language
cannot be run directly, it must be either compiled or
interpreted.

Compilers v. Interpreters
• A compiler translates (converts) source code written in a

high level language into a machine executable form.

• The advantage is that the executable form runs much faster
than if it were interpreted.

• The disadvantage is that different machines and operating
systems have different machine codes associated with
them, consequently to compile a program under (say)
windows would require a different compiler to that needed
to do the same under (say) Apple OS.

• An interpreter steps through each line of the high-level
source code and “decodes” it, the source is never translated
into machine code. Different interpreters are required for
different languages (and different machines). Interpretation
is much slower than compilation.

• Java combines the two!

The Java Virtual Machine
• Java “compiles” java source code into Java Byte

Code.

• The Java Byte Code is then “interpreted” using a
Java Virtual machine.

• The operation of the Java Virtual Machine, with
respect to Java Byte Code, is independent of the
machine it is located on.

• This means the Java Virtual Machined can be
incorporated into www browsers which can then run
specially constructed Java applications (Apps).

• This www capability is one of the strengths of Java.

Object Orientation

• Object orientation is about a number of things:

1. A way of thinking about computer solutions to

problems using the concept of “objects”.

2. The efficient generation of software solutions to

problems by allowing the definitions of objects to be

reused with respect to many applications.

3. The effective writing of code by bundling elements

of a solution into objects (“information hiding”).

• Java is an object oriented language and we will

be using it in this way.

Creating Java Programmes

Creating Java Programmes

• Java Integrated Development Environments
(IDEs) exist, such as NetBeans.

• We will simply be making use a of text editor.

• Windows comes with a number of these. We will
be using NotePad++.

• Note:

1. Java source code file names (by convention)
start with an upper case letter.

2. Java source code file names always take the
postfix .java.

Running Java Programmes

Running Java Programmes

• We will be running Java from a terminal window.

• To run a java programme we (from a terminal

window) need to:

–Compile it into Java Byte Code using the Java
compiler (javac), and then,

– Interpret it (java) by invoking the Java

Virtual Machine (JVM).

Defining a Java Class

Defining a Java Class

• The objects we typically wish to use when
programming in Java are defined using what is
known as a class.

• A class has members,

• Class members can be fields or methods.

• Once we have our class definition we can use it
to create objects, we say that an object is an
instance of a class.

• We create an instance of a class using a special
method called a constructor.

Anatomy of a Java Class

• The class

name must

always be the

same as the

file name

(without the
.java

postfix).

Class <CLASS_NAME> {

 // Fields

 // Constructors

 // Methods

 }

Problem Example 1: Giant

Letters

Giant Letters Requirements

Design and implement a Java program that writes

“JAVA” vertically down the screen using giant

letters made up of strings of * characters and blank

spaces. (Do not use the "tab" character!)

 *

 *

 *

* *

 *

 * *

 * *

 * *

* *

* *

 * *

 * *

 * *

 * *

 *

Compiling The Giant Letters

Source Code
• Go to H:\JavaCPD\JavaExampleProblems

\Sequence\GiantLeters\GiantLetters and

Compile the two source files. Using:

• Or:

• In your GiantLetters directory you will now find the

relevant .class files.

(Make sure you are in the right directory!)

javac GiantJava.java

javac GiantJavaApp.java

javac *.java

Running The Giant Letters

Application

• In the same terminal window type:

java GiantJavaApp

Giant Java Source Code

• Open the GiantJava.java source file (not

the .class file) in a text editor editor such as

notepad++.

Giant Java Comments (1)

• Comments are important from a Software
Engineering perspective (readability leads to
understandability which leads to maintainability).

• In Java single line comments are indicated using a
//, multi line comments using a /* … */ or a
/** … */.

• Note that the class has:

– No fields.

– A default constructor (which in this case we do not have
to specifically specify).

– Three methods: giantLetterA(),
giantLetterJ(), giantLetterV().

Giant java Comments (2)

• Anatomy of a Java method:

• In the case of our GiantJava source code:

– The return type for each method is void (return
nothing).

– The argument list for each method has been omitted
(there are no arguments).

<Modifiers> <ReturnType> <Name>

 (<ArgumentList) {

<Statements>

}

Giant Java Comments (3)

• Modifiers can be:

– public visible from outside of the class.

– private visible only from within the class.

– protected visible from within the class and by sub

classes of the current class (more on this later).

• In our case all the methods are all public (can be

called from anywhere).

Giant Letters Application

• Having created the source code for our
GiantJava class we also need an application

class that allows us to use it (we need to be able

to create an instance of this class).

• An application class has a special method in it
called main from where the JVM starts

“interpreting”.

 public static void main(String[] args) {
 <Statements>

 }

Giant Letters Application

• A closer look at the main method:

– It is public (can be called from anywhere)

– It is static (to use the method we do not need to create

an instance of the class in which it is defined).

– It returns no value (it has nowhere to return it to).

– It has an argument (we will simply have to accept that

this is what is required).

public static void main(String[] args) {

 <Statements>

 }

Giant Java Application Comments (1)

• We create an instance of the class GiantJava as

follows:

• A default constructor is one that has no

arguments and is created automatically if we do

not specify our own constructor.

GiantJava newGJ = new GiantJava();

Giant Java Application Comments (2)

• We call methods in the GiantJava class by

linking them to an instance of the class:

newGJ.giantLetterJ();

Editing The Giant Letters

Application

• Try editing the GiantJavaApp.java

application class source (you will have to

recompile).

• In the main method try reordering the method

calls.

• In the main method try creating a second instance
of the class GiantJava.

Problem Example 2:

Landscape Gardening

Quote Item

Landscape Gardening Quote Item

Requirements*
Customers provide a landscape gardening company with a

plan detailing lawns, concrete patios and water features.

Unit material costs and installation times are as shown in

the table. Create a Java class that can be used to store unit

material costs and installation times.

Work to be done
Unit cost of
materials

Unit time to
install

Laying a lawn £15.50 per m2 20 mins per m2

Laying a concrete patio £20.99 per m2 20 mins per m2

Installing a water feature
(e.g. a fountain)

£150.00 each
60 mins each

* (Taken form AQA HCSE Specimen Controlled Assessment v1.0)

Compiling The Landscape

Gardening Quote Item Application

• Go to the directory H:\JavaCPD\

JavaExampleProblems\Sequence

\QuoteItem and compile the source files

there:

• Run the code by typing:

javac *.java

Java QuoteItemApp

Quote Item Source Code

• Load H:\JavaCPD

\JavaExampleProblems\Sequence

\QuoteItem\QuoteItem.java into

the NotePad++ editor.

Quote Item Comments (1)

• The QuoteItem class has three fields: (i)
itemName (ii) unitMaterialCost, and (iii)

unitInstallationTime.

• The first is of type String, the other two are of

type double (another popular Java type is the

type int).

Quote Item Comments (2)

• There is one constructor.

• Recall that constructors are special methods that

are used to create instances of classes.

• Constructors have the same name as their class

and are of necessity public.

• They do not have a return type.

• The QuoteItem constructor has three

arguments which are assigned to the three fields.

Quote Item Comments (3)

• The + operator in the toString method is a

concatenation operator.

• Note that String, because it is written with a

uppercase letter, is class.

• Because the string class is used very frequently

Java provides lots of “short cuts” to facilitate its

usage (for example we did not have to use a

constructor).

Quote Item Application Source

Code (Ver. 1)

• Load QuoteItemApp.java into your text

editor.

• Note:

1. The main method.

2. The way that we create an instance of the
QuoteItem class using the constructor.

3. The System.out.println output method.

Quote Item Application Comments

• System.out.println(newQI) outputs its

content to the screen. In this case its content is an
object, newQI, hence the associated toString

method (another special method) is called.

• System is a “built-in” class that comes with

Java which contains an instance out which in

turn is use to call the println method.

• There is also a print method (no new line at

the end of the output).

Editing The Quote Item

Application (1)

• Try changing the values in the application

class, recompiling and running again.

Example:

QuoteItem newQI =

 new QuoteItem(”patio",10.0,5.0);

Editing The Quote Item

Application (2)

• Try creating two QuoteItem objects. For

Example:

QuoteItem newQI_1 =

 new QuoteItem(”decking",10.0,5.0);

QuoteItem newQI_2 =

 new QuoteItem(”pond",10.0,5.0);

System.out.println(newQI_1);

System.out.println(newQI_2);

Java Inheritance

Java Class Hierarchies and

Inheritance

• Java class hierarchies are a mechanism whereby

“child” classes can inherit from “parent” classes.

• It allows for code reuse by child classes and the

extension of parent classes.

• A child class can have only one parent class, but a

parent can have many child classes.

• We indicate that a class is a child of another class

using the keyword extends.

Problem Example 3:

Landscape Gardening

Quote With Inheritance 1

Landscape Gardening Quote With

Inheritance 1 Requirements*

Customers who engage our landscape gardening

company can specify two types of landscape gardening

item: (i) Type 1, items specified by length and width

(lawns and patios) and (ii) Type 2, items specified by

quantity (water features). Both have unit material costs

and installation times associated with them. Create a

Java class hierarchy that can be used to store details

concerning Type 1 and Type 2 landscape gardening

items.

* (Taken form AQA HCSE Specimen Controlled Assessment v1.0)

Landscape Gardening Class

Hierarchy (Ver. 1)

QuoteItem

itemName
unitMaterialCost
unitInstallationTime

QuoteItem
toString

QuoeItemType1

length
width
area

QuoteItemType1
toString

QuoeItemType2

quantity

QuoteItemType1
toString

Compiling The Quote Item

Application

• Go to the directory H:\JavaCPD

\JavaExampleProblems\Inheritance

\LandscapeGardQuoteInheritance1

and compile the four source files in a terminal

window type:

• In a terminal window type:

javac *.java

java QuoteItemApp

Quote Item Source Code (Ver. 2)

• Load the QuoteItem.java source file into the

text editor.

• Note:

1. That the fields that we want the child classes to
inherit now have the modifier protected (if

we had kept the private modifier the child

classes would not be able to “see” them).

2. Otherwise the class is identical

Quote Item Type 1 and Type2

Source Code
• Load QuoteItemType1.java and
QuoteItemType2.java into the text editor.

• Note:

1. We indicate that the class QuoteItemType1
is a child of the class QuoteItem:

2. The method super() calls the parent
constructor.

public class QuoteItemType1 extends QuoteItem

Quote Application Source

Code (Ver. 2)
• Load QuoteItemApp.java into the text

editor.

• Note:

1. We can still create instances of the class
QuoteItem in the same way as before, but in
this example we create instances of the classes
QuoteItemType1 and QuoteItemType2
(using the appropriate constructors).

Editing The Quote Item

Application Source Code

• Try adding another instance of the class

QuoteItemType1 the specifies a patio

measuring 3x4 with unit cost of £20.99

and unit installation time of 20.0 minutes

per m2.

Java Arithmetic

Simple Arithmetic in java

• Java features all the usual arithmetic functions.

• Care must be taken with respect to “mixed mode”

arithmetic.

• For example integer division means that 5/2=2!

Problem Example 4:

Landscape Gardening

Quote With Inheritance 2

Landscape Gardening Quote With

Inheritance 2 Requirements*

Our landscape gardening company, when generating

quotes for customers, needs to determine the total

material cost and installation time for each item.

Create a collection of Java classes that will calculate

individual total material costs and installation times per

item given a specific quote.

* (Taken form AQA HCSE Specimen Controlled Assessment v1.0)

Landscape Gardening Class

Hierarchy (Ver. 2)

QuoteItem

itemName
unitMaterialCost
unitInstallationTime

totalMaterialCost
totalInstallationTime

QuoteItem
toString

QuoeItemType1

length
width
area

QuoteItemType1
calculateCosts
toString

QuoeItemType2

quantity

QuoteItemType1
calculateCosts
toString

Compiling The Quote Item

Application

• Go to the directory H:\JavaCPD

\JavaEaxampleProblems\Inheritance

\LandscapeGardQuoteInheritance2 and

compile the source files in the usual manner:

• Run the code by typing:

javac *.java

java QuoteItemApp

Quote Item Source Code (Ver. 3)

• Load QuoteItem.java into the text editor.

• Note:

1. We have added two more fields

totalMaterialCost and

totalInstallationTime (both are protected

fields, so can be inherited).

Quote Item Type 1 and 2 Source

Code (Vers. 2)
• Load QuoteItemType1.java and
QuoteItemType1.java into the text editor.

• Note:

1. We have added a private method (can only be
called from inside the class) to calculate the
totals (called from the constructor).

2. We have also revised the toString method
and included calls to the twoDecPlaces
method in a Utility static class.

Quote Application Source

Code (Ver. 3)

• Load QuoteItemApp.java into the text

editor.

• Note that the application class is entirely

unchanged.

Editing the Quote Item

Application Source Code

• Again try adding another instance of the
class QuoteItemType1 that specifies a
patio measuring 3x4 with unit cost of
£20.99 and unit installation time of 20.0
minutes per m2.

• Remember to include an additional output
statement.

Tea

Time?

