
17/06/2013	

1	

Coffee Time? Programming Construct
Two: Selection

Selection Statements
•  Python, unlike some other programming

languages, only has one types of selection
statement, the “if-else” statement.

•  Although Python support variations of this
statement.

Problem Example 4:
Triangles

17/06/2013	

2	

Triangles Introduction
•  The anatomy of the Python “if-else” statement is

as follows:

if (<BOOLEAN EXPRESSION>):
 <STATEMENTS X>

if (<BOOLEAN EXPRESSION>):
 <STATEMENTS X>

else :
 <STATEMENTS Y>

if (<BOOLEAN EXPRESSION>):
 <STATEMENTS X>

elif :
 <STATEMENTS Y>

else :
 <STATEMENTS Z>

Triangles Requirements

1.  Equilateral (all
sides the same
length),

2.  Isosceles (two
sides the same
length), or

3.  Scalene (no sides
the same length).

•  Produce a Python program which, given three
sides of a triangle, determines whether the triangle
is either:

Triangles Source Code

•  Load PythonExampleProblems
\Selection\Triangles\triangles.py
into the IDLE text editor

Triangles Comments (1)
•  Lots of “if-else” statements!
•  Test part of “if-else” can be a Boolean operator

(<, >=, ==, <=, >) or a Boolean value (True,
False).

•  We can concatenate Boolean operators and values
using logical operators (and, or, not).

•  Note use of the global statement (only required
when assigning values to “global variables”).

•  Test included to ensure user has defined a
realisable triangle.

17/06/2013	

3	

Run The Triangles Source Code

Test Case Expected
result Side A Side B Side C

5 4 4 Isosceles
4 3 5 Scalene
4 5 4 Isosceles
3 4 5 Scalene
5 2 2 Error
4 4 4 Equilateral
4 4 2 Isosceles
4 2 4 Isosceles

Test Cases
Designed to

test every path
through

programme

Problem Example 5:
Calculator

Calculator Requirements
•  Develop a calculator Python program that can

resolve simple arithmetic expressions of the form:

Where <OPERAND> is an integer of some kind
and <OPERATOR> is one of the operators +, -,
* or / (integer division).

<OPERAND> <OPERATOR> <OPERAND>
	

•  Thus given the expression 63*35
the program should calculate the
value and display the result.

•  Remember to include a divide by
zero test!	

Calculator Source Code

•  Load PythonExampleProblems
\Selection\Calculator
\calculator.py into the IDLE text editor.

Calculator Comments

•  Note quit() function.

17/06/2013	

4	

Run The Calculator Source Code

Test Case Expected
result operand1 operator operand2

3 + 2 5
3 - 2 1
3 * 2 6
3 / 0 Error
3 / 2 1
3 % 4 Error

Test Cases

•  Try adding the % operator!

Data Structures

Data Structures
•  The most commonly used Python data structures

are:

•  (There are others, for example tuples)

1.  Lists
2.  Dictionaries

Problem Example 6a:
Distance Conversion

Version 1 (Lists)

17/06/2013	

5	

Distance Conversion Requirements

Design and create a piece of Python software
that, when presented with a distance given in
Metres converts it to a distance measure
comprising Yards, Feet and Inches (1 Metre
= 39.37 Inches, 12 inches = 1 foot, 3 feet = 1
yard). Output the result in whole Yards, Feet
and Inches.

Distance Conversion Source
Code Version 1

•  Load PythonExampleProblems
\ListsAndDictionaries
\DistanceConversion
\distanceConversionVer1.py into the
IDLE text editor.

Distance Conversion Comments
•  We declare an empty list using:

<LIST_NAME> = [].

•  We can add to a list using the append method:
append.<LIST_NAME>(<NEW_ITEM>).

•  We can access individual elements by “indexing”
in to the list:

<LIST_NAME[<INDEX>].

Run The Distance Conversion Source
Code Version 1

Test
Cases

Test
Case

Expected
result

0 [0,0,0]
1 [1,0,3]
4 [4,1,1]

50 [54,2,0]	
100 [109,1,0]

17/06/2013	

6	

Problem Example 6b:
Distance Conversion

Version 2 (Dictionaries)

Distance Conversion Source Code
Version 2

•  Load PythonExampleProblems/
Selection/ListsAndDictionaries/
DistanceConversion/
distanceConversionVer2.py into the
IDLE text editor.

Distance Conversion Comments
•  We declare an empty dictionary using:

<DICTIONARY_NAME> = {}

•  We can add to a list using the append method:
<DICTIONARY_NAME>[<LABEL>] =

<VALUE>

•  We can access individual elements by “indexing”
in to the list:

<DICTINARY_NAME[<LABEL>]

Run The Distance Conversion Source
Code Version 2

Test
Cases

Test
Case

Expected
result

0 [0,0,0]
1 [1,0,3]
4 [4,1,1]

50 [54,2,0]	

100 [109,1,0]

17/06/2013	

7	

Writing and Reading To
and From Files

Writing To Files
•  We “open” a file using the statement:

<NAME> = open(<FILE_NAME>,<MODE>)

Frequently used modes are ‘r’ (read only),
‘w’ (write only) and ‘a’ (append).

•  Write to an opened file as follows:
<NAME>.write(<CONTENT>)

•  And close the file at the end using:
<NAME>.close()

Writing to Files Example
•  In a terminal window change directory to the

directory PythonExampleProblems\Temp (in
your directory structure).

•  Open the python interpreter and type the following:
file = open('myfile.txt','w')
print file
file.write('I am really enjoying learning ')
file.write('about Python today\n')
file.close()

•  Now open the file you have created in a text
editor!

Reading From Files

•  As before we “open” a file using the statement:
<NAME> = open(<FILE_NAME>,<MODE>)

•  Read from an opened file as follows:
<CONTENT>=<NAME>.read()

•  And close the file at the end as before:
<NAME>.close()

17/06/2013	

8	

Writing to Files Example (1)
•  Still in your Temp directory type the following in

the Python interpreter:

file = open('myfile.txt','r')
text = file.read()
file.close()
print text
text.split()

Writing to Files Example (2)
•  You should see something like:
>>> file = open('myfile.txt','r')
>>> text = file.read()
>>> print text
I am really enjoying learning
about Python today

>>> text.split()
['I', 'am', 'really', 'enjoying',
'learning', 'about', 'Python', 'today']
>>> file.close()
>>>

•  Exit the Python interpreter

Problem Example 7:
Landscape Gardening II,

This Time With Dictionaries
and File Output!

Landscape Gardening II Introduction

•  AQA GCSE Specimen Controlled Assessment
example, Task 2:

“The Company has asked if it would be possible to

save customer quotations so that these can be
viewed at a later date. Create a section of the

program that allows quotations to be saved ...”

17/06/2013	

9	

Landscape Gardening II Source
Code

•  Load PythonExampleProblems
\FileHandling

\LandscapeGardeningII

\landsGardQuoteII.py into the IDLE text
editor.

Landscape Gardening II
Comments (1)

•  Data now stored as dictionaries.

quote = {'Lawn' : {'Length' : 0,
'Width' : 0, 'Cost' : 0.0, 'Time' :
0.0}, 'Patio' : {'Length' : 0,
'Width' : 0, 'Cost' : 0.0, 'Time' :
0.0}, 'Water Feature' : {'Quantity' :
0, 'Cost' : 0.0, 'Time' : 0.0}}

MATERIAL_COST = {'Lawn' : 15.5,
'Patio' : 20.99, 'Water Feature' :
150.0}

Landscape Gardening II
Comments (2)

•  Note use of nested dictionaries.
•  We access items in nested dictionaries as follows:

quote['Lawn']['Length']

•  Now we have ability to write a quote to file.

Run The Landscape Gardening II
Source Code

•  In your LandscapeGardeningII directory
check the file you have created!

17/06/2013	

10	

Lunch Time?

