Python CPD (1)

Frans Coenen
Department of Computer Science

UNIVERSITY OF

% LIVERPOOL

Content

Session 1, 9:30-11:00 (Background and
Sequence).

Session 2, 11:30-13:00 (Selection, Lists,
Dictionaries and File Handling).

Session 3, 13:40-15:00 (Repetition and “Putting
it all together”).

Materials at:

http://www.liv.ac.uk/computer-science/continuing-

professional-development/

Background and
Introduction

UNIVERSITY OF

LIVERPOOL

Reminder

A computer can be conceptualised as comprising
many switches that can be set to ‘0’ or ‘1°.

We arrange these “switches” into groups of eight
called Bytes.

We can perform simple operations (for example

add or subtract) on these groups using a small set
of instructions called machine code or byte code.

In the early days of computing programming was
done in byte (machine) code, however it is both
extremely time consuming and very error prone.

17/06/2013

High-Level Programming Languages

* A solution to speeding up the programming process,
and reduce the associated risk of errors, is to use a
high level programming language such a Python.

High-level languages tend to use natural language
constructs and/or automate certain aspects of
programming (such as memory management), hence
they are easier to use.

However, a program written in a high-level language
such as Python cannot be run directly. To execute a
computer program written in a high-level language it
must be either compiled or interpreted.

Compilers v. Interpreters

A compiler translates (converts) source code written in a
high level language into a machine executable form.

The advantage is that the machine executable form runs
much faster than if it were interpreted (see below).

The disadvantage is that different machines and operating
systems have different machine codes associated with
them, consequently to compile a program under (say)
windows would require a different compiler to that needed
to do the same under (say) Apple OS.

An interpreter steps through each line of the high-level
source code and “decodes”, the source is never translated
into machine code. Different interpreter are required for
different languages (and different machines). Interpretation
is much slower than compilation.

Python is typically interpreted (although compilers exist).

Logging-on and The Python
Interpreter

UNIVERSITY OF

LIVERPOOL

The Python Interpreter (1)

Logon using your password and open a “terminal
window”.

In the terminal window type: python

* Now try the following:

123+222 a=100 J="JAVA'
b=2 len(j)

100**2 a**b J[0]
b**a j[1:3]

print ("Hello")

17/06/2013

The Python Interpreter (2)

To exit the compiler type: quit ()

Thus we can use the Python interpreter in an
interactive manner as either a calculator or (say) to
test bits of code.

However, as soon as we quit the interpreter we loose
everything we have written!

We want to create our programmes so that they are
stored in a permanent manner for multiple use.

There are a number of ways we can do this, we will
be using a “text editor”.

Text Editors

%24 UNIVERSITY OF

& LIVERPOOL

Text Editors

There are many different text editors available.

Windows usually comes with a number of these.

We will be using IDLE which comes with
Python.

Programme Constructs

K&4d UNIVERSITY OF

% LIVERPOOL

17/06/2013

Programme Constructs

* Programming is founded on three basic
constructs:

1. Sequence
2. Selection
3. Repetition

Programming Construct
One: Sequence

%24 UNIVERSITY OF

& LIVERPOOL

Problem Example 1: Giant
Letters

UNIVERSITY OF

LIVERPOOL

Giant Letters Requirements

Design and implement a Python program that
writes “JAVA” vertically down the screen using
giant letters made up of strings of * characters and

blank spaces. (Do not use the "tab" character!)

* Kk k kX

*
*
*
*

* k%

*

*

*

*

*

*

*

* ok ok ok ok kK

17/06/2013

Giant Letters Source Code

* Load PythonExampleProblems
\Sequence\GiantLetters
\giantLeters.py into the IDLE text editor

Giant Letters Comments (1)

* Comments are important from a Software
Engineering perspective (readability leads to
understandability which leads to maintainability).

* Comments in Python start with a # character
(Python does not support multi-line comments).

* Again for sound software engineering reasons we
like to divide are code up into chunks.

* In Python the simplest way to do this is to define
the chunks as “functions” or “methods”.

Giant Letters Comments (2)

* Anatomy of a function:

def <FUNCTION NAME> (<ARGUMENTS IF ANY>) :
<CONTENT>

* Indenting is important (there is no end-of-
function punctuation mark).

* If necessary we can break up a line using the \
character.

In Python functions have to be defined before
they can be used.

Giant Letters Comments (3)

* Note how we output strings:

print ("<OUTPUT>")

* The “escape sequence” \n is a newline character.

* Note that the giantLetterA () function is
called twice, we do not write the function twice
(good software engineering means writing code
in an efficient manner).

17/06/2013

Run The Giant Letters Source
Code

¢ From the IDLE editor window menu select

Run - Run Module or simply select
F'5.

Problem Example 2:
Swimming Pool

UNIVERSITY OF

LIVERPOOL

Swimming Pool Introduction

* Software programmes take “input” and transform
it into “output”.

[F—

* In the case of our giant letters programme the
input was simply an instruction to run the code.

* Clearly to do anything more meaningful we need
more sophisticated input.

Swimming Pool Requirements

Develop a Python program which; given the width, length
and depth (in metres), of a swimming pool determines and
outputs: (a) the volume in litres, and (b) time in hours to fill
the swimming pool.
Assume that the rate of
flow into the pool is 2.5
litres per second. Note: 1
litre = 1000 cubic
centimetres, therefore 10

litres = 0.01 cubic metres, ‘X'J;NA

fength
(]

hence 1 cubic metre = Yolume (Litres) = L W3 Dx 1000

1000 litres, Time to fill pool {(Hours) = Yolume
Ralte (Lireslsec) x 3600

17/06/2013

Swimming Pool Source Code

* Load PythonExampleProblems
\Sequence\SwimmingPool
\swimmingPool.py into the IDLE editor

Swimming Pool Comments (1)

Note how we input values into a Python
programme:

‘<VARIABLE_NAME> = input (“<STRING>")

This allows us to input a string, if we want a
integer we need to “cast” it into this type:

<VARIABLE NAME> = int (input (“<STRING>"))

By convention constants are indicated using
capital letters for the item name.

Note how we return values from functions.
Note how we pass arguments to functions.

Swimming Pool Comments (2)

* By convention constants are indicated using
capital letters for the item name. Note how we
return values from functions.

* Note how we pass arguments to functions.
* Note the formatted output:

Swimming Pool Comments (2)

print ('<STRING> = {<FORMAT SPECIFIER}'. \
format (KVARIABLE>))

In the Python interpreter try the following:

x = 123.456789

print (x)

print('|',x,"']")

print (' [{0:.3f}|"'.format (x))
print ('[{0:10.3f}|'.format (x))
print (' [{0:710.3f}|"'.format (x))
print ('[{0:<10.3f}|"'.format (x))
print (' [{0:>10.3f}|"'.format (x))

* Exit the Python interpreter.

17/06/2013

Run The Swimming Pool Source
Code

* In the IDLE editor window select F5.

Problem Example 3:
Landscape Gardening I
(Task 1)

UNIVERSITY OF

LIVERPOOL

Landscape Gardening Introduction

* AQA GCSE Specimen Controlled Assessment
example, Task 1.

8m

5m 10m

Landscape Gard. I Requirements

* (Taken from AQA GCSE specimen). Customers provide
a landscape gardening company with a plan. Costs are as
shown in the table. There is also a labour charge of
£16.49 for every hour of work done. Create a Python
programme that: (a) allows a user to input lawn and patio
dimensions and the number of water features required (if

any); and (b) outputs the cost for each, the labour cost
and the total cost.

Work to be done Cost of materials | Time to install

Laying a lawn £15.50 per m? 20 mins per m?
Laying a concrete patio £20.99 per m? 20 mins per m?2
Installing a water feature £150.00 each 60 mins each

(e.g. a fountain)

17/06/2013

Landscape Gard. I Source Code

* Load PythonExampleProblems\Sequence
\LandsGardQuotel\landsGardQuote.py
into the IDLE editor.

Landscape Gard. I Comments

* Note how we can return multiple values from a
function. (Take care because the ordering is
important!)

* Note how functions are reused (good software
engineering practice).

Run The Landscape Gardening I
Source Code

* Note, current software only considers
lawns, patios and garden lights. Try adding
another item.

Adding More Items to The Landscape

Gardening I Source Code

* Need to add cost and time constants for new item.

* Need to include a function call (with appropriate
parameters) to required input function.

* Need to include a function call (with appropriate
parameters) to required output function.

e Need to revise totalTime and labourCost
calculations.

* Need torevise materialCost and totalCost
calculations.

17/06/2013

Coffee Time?

»

-

y/

X4 UNIVERSITY OF

& LIVERPOOL

17/06/2013

10

