
17/06/2013	

1	

Python CPD (1)

Frans Coenen
Department of Computer Science

Content
•  Session 1, 9:30-11:00 (Background and

Sequence).
•  Session 2, 11:30-13:00 (Selection, Lists,

Dictionaries and File Handling).
•  Session 3, 13:40-15:00 (Repetition and “Putting

it all together”).
•  Materials at:
http://www.liv.ac.uk/computer-science/continuing-

professional-development/

Background and
Introduction

Reminder
•  A computer can be conceptualised as comprising

many switches that can be set to ‘0’ or ‘1’.
•  We arrange these “switches” into groups of eight

called Bytes.
•  We can perform simple operations (for example

add or subtract) on these groups using a small set
of instructions called machine code or byte code.

•  In the early days of computing programming was
done in byte (machine) code, however it is both
extremely time consuming and very error prone.

17/06/2013	

2	

High-Level Programming Languages
•  A solution to speeding up the programming process,

and reduce the associated risk of errors, is to use a
high level programming language such a Python.

•  High-level languages tend to use natural language
constructs and/or automate certain aspects of
programming (such as memory management), hence
they are easier to use.

•  However, a program written in a high-level language
such as Python cannot be run directly. To execute a
computer program written in a high-level language it
must be either compiled or interpreted.

Compilers v. Interpreters
•  A compiler translates (converts) source code written in a

high level language into a machine executable form.
•  The advantage is that the machine executable form runs

much faster than if it were interpreted (see below).
•  The disadvantage is that different machines and operating

systems have different machine codes associated with
them, consequently to compile a program under (say)
windows would require a different compiler to that needed
to do the same under (say) Apple OS.

•  An interpreter steps through each line of the high-level
source code and “decodes”, the source is never translated
into machine code. Different interpreter are required for
different languages (and different machines). Interpretation
is much slower than compilation.

•  Python is typically interpreted (although compilers exist).

Logging-on and The Python
Interpreter

The Python Interpreter (1)
•  Logon using your password and open a “terminal

window”.
•  In the terminal window type: python
•  Now try the following:

123+222

100**2

print("Hello")

a=100
b=2
a**b
b**a

J='JAVA'
len(j)
j[0]
j[1:3]

17/06/2013	

3	

The Python Interpreter (2)
•  To exit the compiler type: quit()
•  Thus we can use the Python interpreter in an

interactive manner as either a calculator or (say) to
test bits of code.

•  However, as soon as we quit the interpreter we loose
everything we have written!

•  We want to create our programmes so that they are
stored in a permanent manner for multiple use.

•  There are a number of ways we can do this, we will
be using a “text editor”.

Text Editors

Text Editors

•  There are many different text editors available.

•  Windows usually comes with a number of these.

•  We will be using IDLE which comes with
Python.

Programme Constructs

17/06/2013	

4	

Programme Constructs
•  Programming is founded on three basic

constructs:
1.  Sequence
2.  Selection
3.  Repetition

Programming Construct
One: Sequence

Problem Example 1: Giant
Letters

Giant Letters Requirements
Design and implement a Python program that
writes “JAVA” vertically down the screen using
giant letters made up of strings of * characters and
blank spaces. (Do not use the "tab" character!)

 *
 *
 *
* *

 *
 * *
 * *
 * *

* *

* *
 * *
 * *
 * *
 * *
 *

17/06/2013	

5	

Giant Letters Source Code

•  Load PythonExampleProblems
\Sequence\GiantLetters
\giantLeters.py into the IDLE text editor

Giant Letters Comments (1)
•  Comments are important from a Software

Engineering perspective (readability leads to
understandability which leads to maintainability).

•  Comments in Python start with a # character
(Python does not support multi-line comments).

•  Again for sound software engineering reasons we
like to divide are code up into chunks.

•  In Python the simplest way to do this is to define
the chunks as “functions” or “methods”.

Giant Letters Comments (2)
•  Anatomy of a function:

•  Indenting is important (there is no end-of-
function punctuation mark).

•  If necessary we can break up a line using the \
character.

•  In Python functions have to be defined before
they can be used.

def <FUNCTION_NAME> (<ARGUMENTS_IF_ANY>) :
 <CONTENT>

Giant Letters Comments (3)
•  Note how we output strings:

•  The “escape sequence” \n is a newline character.
•  Note that the giantLetterA() function is

called twice, we do not write the function twice
(good software engineering means writing code
in an efficient manner).

print("<OUTPUT>")
	

17/06/2013	

6	

Run The Giant Letters Source
Code

•  From the IDLE editor window menu select
Run – Run Module or simply select
F5.

Problem Example 2:
Swimming Pool

Swimming Pool Introduction
•  Software programmes take “input” and transform

it into “output”.

•  In the case of our giant letters programme the
input was simply an instruction to run the code.

•  Clearly to do anything more meaningful we need
more sophisticated input.

Output	
 Input	
 Output	
 Transforma8on	

Swimming Pool Requirements
Develop a Python program which; given the width, length
and depth (in metres), of a swimming pool determines and
outputs: (a) the volume in litres, and (b) time in hours to fill
the swimming pool.
Assume that the rate of
flow into the pool is 2.5
litres per second. Note: 1
litre = 1000 cubic
centimetres, therefore 10
litres = 0.01 cubic metres,
hence 1 cubic metre =
1000 litres.
	

17/06/2013	

7	

Swimming Pool Source Code

•  Load PythonExampleProblems
\Sequence\SwimmingPool
\swimmingPool.py into the IDLE editor

Swimming Pool Comments (1)
•  Note how we input values into a Python

programme:

•  This allows us to input a string, if we want a
integer we need to “cast” it into this type:

•  By convention constants are indicated using
capital letters for the item name.

•  Note how we return values from functions.
•  Note how we pass arguments to functions.

<VARIABLE_NAME> = input(“<STRING>”)

<VARIABLE_NAME> = int(input(“<STRING>”))

Swimming Pool Comments (2)
•  By convention constants are indicated using

capital letters for the item name. Note how we
return values from functions.

•  Note how we pass arguments to functions.
•  Note the formatted output:

print('<STRING> = {<FORMAT_SPECIFIER}'. \

format(<VARIABLE>))

Swimming Pool Comments (2)
•  In the Python interpreter try the following:

x = 123.456789
print(x)
print('|',x,'|’)
print('|{0:.3f}|'.format(x))
print('|{0:10.3f}|'.format(x))
print('|{0:^10.3f}|'.format(x))
print('|{0:<10.3f}|'.format(x))
print('|{0:>10.3f}|'.format(x))

•  Exit the Python interpreter.

17/06/2013	

8	

Run The Swimming Pool Source
Code

•  In the IDLE editor window select F5. Problem Example 3:
Landscape Gardening I

(Task 1)

Landscape Gardening Introduction

•  AQA GCSE Specimen Controlled Assessment
example, Task 1.

 Pond	

Water	

Feature	

Lawn	

Wooden	

Decking	

8m	

4m	

2m	

5m	
 10m	

Landscape Gard. I Requirements
•  (Taken from AQA GCSE specimen). Customers provide

a landscape gardening company with a plan. Costs are as
shown in the table. There is also a labour charge of
£16.49 for every hour of work done. Create a Python
programme that: (a) allows a user to input lawn and patio
dimensions and the number of water features required (if
any); and (b) outputs the cost for each, the labour cost
and the total cost.

Work	
 to	
 be	
 done	
 Cost	
 of	
 materials	
 Time	
 to	
 install	

Laying	
 a	
 lawn	
 £15.50	
 per	
 m2	
 20	
 mins	
 per	
 m2	

Laying	
 a	
 concrete	
 pa8o	
 £20.99	
 per	
 m2	
 20	
 mins	
 per	
 m2	

Installing	
 a	
 water	
 feature	

(e.g.	
 a	
 fountain)	
 £150.00	
 each	
 60	
 mins	
 each	

	

17/06/2013	

9	

Landscape Gard. I Source Code

•  Load PythonExampleProblems\Sequence
\LandsGardQuote1\landsGardQuote.py
into the IDLE editor.

Landscape Gard. I Comments
•  Note how we can return multiple values from a

function. (Take care because the ordering is
important!)

•  Note how functions are reused (good software
engineering practice).

Run The Landscape Gardening I
Source Code

•  Note, current software only considers
lawns, patios and garden lights. Try adding
another item.

Adding More Items to The Landscape
Gardening I Source Code

•  Need to add cost and time constants for new item.
•  Need to include a function call (with appropriate

parameters) to required input function.
•  Need to include a function call (with appropriate

parameters) to required output function.
•  Need to revise totalTime and labourCost

calculations.
•  Need to revise materialCost and totalCost

calculations.

17/06/2013	

10	

Coffee Time?

