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A B S T R A C T   

Colocalization analysis of genomic region sets has been widely adopted to unveil potential functional interactions 
between corresponding biological attributes, which often serves as the basis for further investigation. A number 
of methods have been developed for colocalization analysis of genomic elements. However, none of them 
explicitly considered the transcriptome heterogeneity and isoform ambiguity, making them less appropriate for 
analyzing transcriptome elements. Here, we developed RgnTX, an R/Bioconductor tool for the colocalization 
analysis of transcriptome elements with permutation tests. Different from existing approaches, RgnTX directly 
takes advantage of transcriptome annotation, and offers high flexibility in the null model to simulate realistic 
transcriptome-wide background, such as the complex alternative splicing patterns. Importantly, it supports the 
testing of transcriptome elements without clear isoform association, which is often the real scenario due to 
technical limitations. Proposed package offers a wide selection of pre-defined functions, easy to be utilized by 
users for visualizing permutation results, calculating shifted z-scores and conducting multiple hypothesis testing 
under Benjamini-Hochberg correction. Moreover, with synthetic and real datasets, we show that RgnTX novel 
testing modes return distinct and more significant results compared to existing genome-based methods. We 
believe RgnTX should make a useful tool to characterize the randomness of the transcriptome, and for conducting 
statistical association analysis for genomic region sets within the heterogeneous transcriptome. The package now 
has been accepted by Bioconductor and is freely available at: https://bioconductor.org/packages/RgnTX.   

1. Introduction 

One of the primary outputs of many high-throughput methods is the 
genomic regions [1,2]. Genomic regions, associated with specific bio-
logical features, such as open chromatin regions, protein binding sites, 
and microRNA target sites, are routinely produced from various bio-
technologies and analysis pipelines, e.g., the transcription factor binding 
sites identified from ChIP-seq technique with MACS software [3] and the 
RNA binding protein target sites predicted computationally [4]. Such 
genomic region sets have also been commonly used to functionally 
annotate the genome and spatially characterize relevant biological at-
tributes [5]. Integrative analyses of genomic attributes have revealed 
that such characteristics are nonrandomly distributed in the genome, 
with the assumption that corresponding enrichment might be 

biologically relevant [6,7]. 
To infer potential interactions between biological attributes, coloc-

alization analysis (also termed as ‘co-occurrence’ or ‘spatial correlation 
analysis’) of corresponding genomic region sets has been widely used. 
This analysis summarizes the pairwise relationship between region sets 
as a test statistic, which is then subjected to statistical testing to deter-
mine whether the observed result is likely to have occurred by chance 
[2,8]. Computational tools and suitable strategies to perform colocali-
zation analysis among genomic regions are needed to increase our un-
derstanding of potential functional interactions and provide hints for 
further investigation. For example, colocalization of the binding sites of 
two transcriptional factors may suggest their synergetic action [9]; the 
spatial correlation of histone modification and RNA modification un-
veiled the guiding role of H3K36me3 on m6A methylation in a 
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co-transcriptional manner [10]. To be noticed, colocalization analysis 
discussed here is different from the Genome-Wide Association Studies 
(GWAS) or expression Quantitative Trait Loci (eQTL) studies. GWAS and 
eQTL focus on studying association between single nucleotide poly-
morphisms (SNPs) with diseases, traits or gene expression changes, 
while the colocalization analysis in this research aims to explore the 
spatial association between specific genomic region sets. 

The null models for colocalization analysis can be constructed using 
either analytical tests or permutation tests (Monte Carlo simulations) 
[2]. Analytical tests make inferences about population parameters based 
on assumptions about the underlying data distribution, such as GREAT 
(binomial test) [11], LOLA (Fisher’s exact test) [12], GenomeRunner 
(chi-square test and binomial test) [13] and nearBynding (Welch’s 
t-test) [14]. On the other hand, permutation tests, i.e., methods incor-
porate Monte Carlo simulations, create a null distribution of the test 
statistic by repeatedly sampling data, such as BEDTools [15], Hyper-
Browser [16], MULTOVL [17], IntervalStats [18], GenometriCorr [19], 
GAT [20], BITS [21], ChIPseeker [22], regioneR [23], StereoGene [24], 
OLOGRAM [25] and Bedshift [26]. Compared to purely analytical 
methods, permutation tests offer greater flexibility in selecting appro-
priate test statistics and null models, but they require more computa-
tional resources. Furthermore, these methods have led to the 
development of functional annotation web servers for genomic regions, 
such as GIGGLE [27], LOLAweb [28] and Coloc-stats [8], which have 
greatly facilitated the analysis of genomic region datasets. A review 
article provides an overview of current tools for colocalization analysis 
and presents a summary of these methods in tabular form [29]. 

It is a non-trivial task to make an informed choice about the null 
models according to the distributional properties and dependence 
structure of the genomic features [2]. However, existing approaches 
have a fundamental limitation as they were primarily designed for 
genome-based analysis and do not account for the heterogeneity of the 
transcriptome (Fig. 1a), i.e., multiple independent isoform transcripts in 
formality, but with shared exons when mapped (or projected) to the 
genome. The genome colocalization methods does not consider RNA 
structures and is therefore not suitable for analyzing transcriptome re-
gions, such as 3′UTRs or RNA methylation sites. Another widely existing 
problem is the isoform ambiguity (Fig. 1b), where it is unclear which 
specific isoform transcript is associated with a transcriptome element, 
because it overlaps with multiple isoforms when mapped to the genome, 
which is often the real scenario in biological research. Although 
long-read technologies like Nanopore direct RNA sequencing enable 
isoform-specific identification of biological attributes [30], most exist-
ing technologies and databases still could not provide 
isoform-specificity. For example, the m6A RNA methylation sites re-
ported from MeRIP-seq [31] and the RNA-binding protein target sites 

collected in POSTAR3 database [32] lack information about the specific 
isoform they originate from. To date, there are no computational 
methods available to address the issue of isoform ambiguity during 
transcriptome element colocalization analysis. 

Here we developed RgnTX, an R/Bioconductor tool for the colocal-
ization analysis of transcriptome elements with permutation tests. The 
main permutation test framework is inspired by the regioneR [23]. 
Different from existing approaches, RgnTX offers high flexibility in the 
null model to simulate realistic transcriptome-wide background. It al-
lows user-decided restriction of areas at transcriptome level during the 
shuffling, which provides control over shuffling related to the type 
(pre-mRNA, mRNA, 5′UTR, CDS and 3′UTR) and the combination of any 
specific transcripts. Importantly, RgnTX is able to cope with the isoform 
ambiguity problem in colocalization analysis. Although it does not 
provide a solution for whether a genomic feature with isoform ambi-
guity is overlapped with a specific transcriptome region, it is capable of 
calculating a weighted overlapping count as metrics to measure the 
association between such features and some category of transcriptome 
regions, for example the association between m6A RNA methylations 
and stop codons, where the m6A sites derived from the RNA-seq usually 
have isoform ambiguity issue. Besides, RgnTX supports conducting 
multiple hypothesis testing with Benjamini-Hochberg correction. It re-
ports the proportion of hypothesis tests with the null hypothesis being 
rejected among all tests based on a user-specified significance threshold. 

By utilizing randomly selected data, we revealed that the null dis-
tribution of random overlaps generated by the permutation model over 
the genome and the transcriptome could be significantly different. With 
the tests on m6A data, we showed that the novel testing modes provided 
by RgnTX return distinct and more significant results than the existing 
genome-based methods. RgnTX should make a potentially powerful tool 
for characterizing the randomness of transcriptome and performing 
statistical association analysis on genomic region sets within the het-
erogeneous transcriptome. 

2. Material and methods 

2.1. Randomization strategies and null models 

RgnTX is written in R and utilizes the IRanges, GenomicRanges and 
GenomicFeatures structures [33]. The simplest randomization strategy 
supported by RgnTX is to shuffle each feature over the whole tran-
scriptome without any restrictions. To perform this randomization, users 
only need to provide the desired number of regions to be selected, along 
with the region length, and specify a UCSC txdb object (default is hg19) 
to the randomization function with a single line of code. The output of 
this process is a GRangesList object representing the randomly picked 

Fig. 1. Transcriptome heterogeneity and iso-
form ambiguity problem in colocalization 
analysis. a) Compared with the linear genome 
space, transcriptome space is heterogeneous 
due to the existence of multiple isoform tran-
scripts and the splicing junctions. b) The iso-
form specificity of transcriptome elements is 
often lost in the process of mapping due to 
technical limitations. It is unclear which spe-
cific isoform transcript is associated with a 
transcriptome element. Genome-based methods 
that shuffle features over the genome are not 
capable of analyzing genomic elements with the 
transcriptome heterogeneity and the isoform 
ambiguity problem.   
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region set, which includes information of chromosome names, start/end 
positions of each interval, strand types, and transcript IDs associated 
with each randomized region. 

Multiple randomized region sets can also be generated with just one 
line of code. 

Nevertheless, it is often overly simplistic to permutate regions over 

the whole transcriptome, as this can result in an overestimation of 
colocalization in region set association analysis. Here, RgnTX provides a 
method for performing isoform-aware permutation for transcriptome 
elements. In this method, each feature is first projected to the genome 
and then only permutated over the transcripts that overlap with it. 
Fig. S1 provides an illustration of this process. Feature 3 and 4 are only 

Fig. 2. RgnTX workflow and results. a) Randomization strategy. RgnTX supports permutation over the entire transcriptome, over the set of relative isoforms of each 
feature (isoform-aware permutation) and over any user-specified combination of transcripts (custom permutation) with freedom choice of including introns or not 
with any permutation times. b) Evaluation strategy. RgnTX provides separate evaluation strategy for features with and without the isoform ambiguity (IA) problem, 
making observed estimate and random estimates to be compared based on the same scale. c) Results obtained by RgnTX. A consistent protocol design is implemented 
to make the package easy to use. Summary statistics generated by the core permutation test function are taken as the input of the plotting functions, which generate 
two types of graphical outputs. 
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permutated within transcript Tx3, while feature 2 is permutated within 
all three transcripts. The random regions are generated from the same 
transcript (or potential transcripts) as the original RNA features, thereby 
preserving the characteristics of features and controlling potential 
confounding factors. This randomization strategy is used as the default 
null model in the colocalization analysis protocol, so as to preserve the 
local heterogeneity of each feature and retain maximal isoform 
information. 

Moreover, RgnTX allows for the randomization within specific types 
of the transcriptome background such as pre-mRNA, mRNA(exons), 
5′UTR, CDS and 3′UTR via corresponding argument in randomization 
functions. RgnTX also supports shuffling features across any combina-
tion of transcripts. To sum, it supports permutation over the entire 
transcriptome, over relative isoforms of each feature, and over any user- 
specified combination of transcripts, with the option to include or 
exclude introns. This flexibility provides the ability to simulate a real-
istic transcriptome-wide background based on the user’s requirements 
(Fig. 2a). For more detailed information about the RgnTX package, 
please refer to the package vignettes on its Bioconductor landing page. 

2.2. Evaluation strategies 

The evaluation strategy aims to define a test statistic summarizing 
the relation between two region sets. In RgnTX, the default evaluation 
strategy is counting the overlapping regions at the transcriptome level. 
Unlike traditional methods that detect overlapping based on the 
genome, in this strategy, two regions that have shared intervals on the 
genome but are located on different transcripts are considered not to 
have overlap with each other. 

Another important factor to consider is isoform ambiguity (IA). To 
date, there are no computational methods to cope with isoform ambi-
guity in transcriptome-wide colocalization analysis. To tackle this am-
biguity problem, here a novel evaluation strategy has been devised 
(Fig. 2b). A weighted overlapping count is calculated as a measure of 
colocalization between S features (with IA) and a specific category of 
transcriptome regions (without IA), what we call transcriptome regions 
of interest (ROIs): 

Cweigh :=
∑S

i=1
c(i)
/

n(i)

where each feature, denoted as the i -th feature, n(i) is the total count of 
related isoforms of the feature, while c(i) is the count that the feature is 
overlapped with corresponding transcriptome ROIs. The ratio c(i)/n(i)

associated with each feature is guaranteed to be a value between 0 and 
1. To assess whether the observed overlap is due to chance, a random 
region is generated for each feature from the corresponding permutation 
space. The overlapping count between the randomized region set 
(without IA) and the ROIs is also evaluated. Each random region con-
tributes either 0 or 1 to the null evaluation, which has the same range as 
the observed count c(i)/n(i). In this way, observed evaluation and random 
evaluation can be compared based on the same scale, and meanwhile the 
isoform information is fully utilized. 

Besides, RgnTX supports another measure of colocalization called 
coverage, which refers to the total number of overlapping nucleotides. 
The corresponding weighted measure is stated as follows: 

Wweigh :=
∑S

i=1

(
∑n(i)

j=1
w(i)

j

/

n(i)

)

where for the i -th feature, n(i) represents the count of its related iso-
forms, and w(i)

j represents the number of overlapping nucleotides be-
tween the feature and the ROIs on the j-th isoform. It calculates the sum 
of the average coverage of each feature with the ROIs as the observed 
measure. 

Fig. 2b depicts a sketch map for the evaluation strategies. The 

observed evaluation is calculated by comparing features with ROIs. A 
null evaluation is generated by comparing randomized regions of fea-
tures with the same ROIs. As permutation times increase, such null 
evaluations accumulate and form a null distribution. This distribution 
can be further analyzed to determine if the observed overlap is due to 
chance. Although the figure shows four different situations for evalua-
tion in various cases, in the real application, users only need to choose a 
core permutation test function (either with or without IA) and specify 
the comparison metrics via corresponding parameters. All these can be 
done within only a few lines of code. Additionally, it is possible to define 
custom evaluation strategies as a function and pass them into the main 
function. The custom function should accept two sets of regions in the 
GRanges format and return a numeric value. 

2.3. Summary statistics and visualization 

The colocalization analysis of transcriptome elements can be easily 
performed by the core permutation test function within only a few lines 
of code. Most of the functions in RgnTX include an ellipsis operator, 
allowing the direct passing of arguments from auxiliary functions (such 
as randomization and evaluation functions) to the core permutation test 
function, making it simple to modify. To measure the statistical signif-
icance of the association being tested, a p-value and z-score are calcu-
lated. The p-value can be calculated based on either counting the 
percent of more extreme cases in random permutations than the real 
observation (default), or based on a t-test. The p-value can be chosen to 
be calculated based on either a one-tailed test or a two-tailed test. The z- 
score represents how many standard deviations an observed value is 
away from the mean of random evaluations, which serves as a numerical 
measurement describing the strength of the association being tested. 

The core permutation testing and plotting functions are separated, 
allowing users to reproduce results by using intermediate outputs. The 
output of the core permutation testing function is summarized as an 
object, which includes randomized region sets, p-value, z-score and in-
formation about any detailed settings of the test. The plotting function 
takes this output and returns a ggplot2 object. Fig. 2c shows an example. 
A histogram depicts random evaluation results. Vertical lines in different 
colors indicate the observed evaluation (red) and the mean of random 
evaluations (green). A critical region is visualized to give an intuition of 
whether an association being tested is statistically significant or not. 
Fig. S2 provided an example of association between m7G sites and the 
5′UTR, as well as the association between m7G sites and the CDS [34]. 

2.4. Multiple tests 

RgnTX supports conducting multiple hypothesis testing with 
Benjamini-Hochberg correction. It reports the proportion of hypothesis 
tests with the null hypothesis being rejected among all tests based on a 
user-specified significance threshold. The Benjamini-Hochberg method 
is a widely used approach for multiple testing, which guarantees false 
discovery rate (FDR) is less than the significance level α for a series of m 
independent tests [35]. Although procedures based on family-wise error 
rate (FWER) control that directly control the probability of making at 
least one Type I error, such as Bonferroni and Holm-Bonferroni correc-
tion, provide a more stringent correction, they can be too strict for any 
discovery to be reported. The tests with FDR controlled, which control 
the expected proportion of false discoveries among all discoveries, have 
higher power than the tests with FWER-controlled, and are more suit-
able for this research. 

The procedure of the Benjamini-Hochberg method is as follows:  

- Sort the m p-values in increasing order.  
- Denote the rank of each p-value i: p(1) ≤ p(2) ≤ … ≤ p(i) ≤ … ≤ p(m).  
- Calculate candidate corrected p-values as: 
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p(i)
FDR = p(i)m

i    

- Starting from the (m-1)-th to the first item, apply the following 
instruction: 

p(i)
FDR = min(p(i)

FDR, p
(i+1)
FDR )

Both p-values and Benjamini-Hochberg corrected p-values will be 
reported, also with the proportion of hypothesis tests being rejected 
among all tests based on a user-specified significance threshold α ac-
cording to the following criterion:  

- Find the maximum k such that 

p(k) ≤
k
m

α    

- Reject all of H(1)
0 ,H(2)

0 ,…,H(k)
0 . 

2.5. Shifted z-scores over transcripts 

RgnTX supports the testing of z-scores with positional shifts to 
determine if an association is specifically tied to the exact position of 
regions. This involves shifting the original regions from their positions, 
reassessing the evaluation metric, and calculating new z-scores. The 
functions for calculating and plotting shifted z-scores in RgnTX follow a 
consistent protocol design. Calculating different shifted z-scores when 
the position of regions of interest is changed is supported by passing the 
output of the core permutation test function to the shiftedZScoreTx 
function. To be noticed, different from the localZScore function in 
regioneR, shiftZScoreTX in RgnTX can shift the transcriptome ROIs on 
mRNA rather than just on the genome coordinates. 

Visualizing shifted z-scores is supported by passing the output of 
shiftedZScoreTx to the plotting function plotShiftedZScoreTx. If a peak is 
observed at the original point in the plot of shifted z-scores, it indicates a 
close relationship between the association and the specific position of 
corresponding transcriptome ROIs. We can see a clear peak in the center 
of the plot in Fig. 2c, suggesting the tested association is strongly 
affected by the exact positions of regions of interest. This figure also 
shows the scenario where the regions of interest are moved within a 
smaller window. To examine how such a smaller position shift affects 
the z-scores, users can assign smaller values to the window and step 
arguments in shiftedZScoreTx. 

3. Results 

3.1. RgnTX revealed distinct null distribution on the genome and 
transcriptome 

In this section, we revealed that the null distribution of random 
overlaps on the genome and the transcriptome could be significantly 
different. We compared random overlaps from the following genome- or 
transcriptome-related backgrounds. All the backgrounds were region 
sets related to the same (randomly picked) 300 genes in hg19. We used 
the annotation database from UCSC to extract the following back-
grounds: the ’DNA’ background, which consists of the region set of the 
300 genes; the ’exonic DNA’ background, which includes a portion of 
the 300 genes that will form mature RNA; the ’pre-mRNA’ background, 
which includes all the full transcripts related to the 300 genes; and the 
’mRNA’ background, which includes all the mature RNAs related to the 
300 genes. After preparing these four backgrounds, simulated data were 
generated from each background type. In each background, 1000 pairs 
of region sets were randomly picked to compare the overlap of each pair, 
with each region set containing 500 regions of the same length. 

Although all the backgrounds were restricted to only 300 genes, the 

overlapping counts in each background were significantly different. The 
evaluation results were shown in Fig. 3. The random overlaps on the 
‘DNA’, ‘exonic DNA’ and ‘pre-mRNA’ background were counted at the 
genome level using the regioneR function numOverlaps [23]. On the 
other hand, the overlaps in ‘mRNA’ background were not only evaluated 
at the genome level (projected to the genome), but also counted at the 
transcriptome level by the RgnTX function overlapCountsTx. It is not 
surprising that only a small number of overlaps were observed on the 
transcriptome by RgnTX due to the existence of multiple isoform tran-
scripts. Interestingly, the results from the ‘exonic DNA’ and the ‘mRNA 
(projected)’ also differed, which could be attributed to the varying fre-
quencies at which exons are utilized by isoform transcripts. Addition-
ally, a two-sample t-test was conducted to evaluate the difference in the 
null distribution of random overlaps on ‘mRNA (projected)’ and over-
laps on other backgrounds (See Table S1). 

These results suggest that the permutation of heterogeneous tran-
scriptome elements is considerably more complex than that of genome- 
based elements. Therefore, the conventional genome-based methods are 
not capable of characterizing the randomness of the transcriptome and 
analyzing transcriptome elements. This highlights the need for the 
development of RgnTX, a colocalization analysis tool that can conduct 
permutation test at the transcriptome level. 

3.2. Case study: colocalization analysis of association between m6A and 
stop codons 

To demonstrate the usage of RgnTX, we conducted a study to test the 
association between m6A RNA methylation sites (with isoform ambi-
guity) from miCLIP-seq [36] and stop codon regions (without isoform 
ambiguity) derived from UCSC transcriptome annotation. 

In this case study, we compared four testing modes, which differed in 
two aspects Firstly, whether the permutation background included all 
transcripts or only the m6A-contained transcripts. Secondly, whether 
the permutation test was conducted at the genome level or at the tran-
scriptome level. These different combinations resulted in four testing 
modes. It is important to note that the modes conducted at the genome 
level ignored transcriptome heterogeneity and isoform information, 
while the other two modes at the transcriptome level preserved isoform 
information using the isoform-aware permutation strategy proposed by 
the RgnTX package. 

For each of the four testing modes, we performed multiple hypoth-
esis tests as follows. We randomly shuffled all the m6A sites and divided 
them into independent groups. Each independent group contains 100 
regions and does not contain repeated regions with each other. Next, we 
conducted permutation test for each group, where association between 
m6A sites and the stop codon regions were evaluated with 100 permu-
tation times. Each group returned a p-value calculated by counting the 
percent of extreme values in random permutations than the real obser-
vation. We visualized the p-values for multiple groups in Fig. 4. The 
transcriptome-based m6A-aligned permutation mode showed the most 
significant results, with a p-value < 0.05 in 89.01 % of groups, while the 
conventional genome-based approach involving all transcripts only re-
ported 5.49 % of significant cases. More detailed results were shown in  
Table 1. Even with different significance threshold settings, the 
transcriptome-based m6A-aligned permutation mode consistently re-
ported the largest percentage of multiple tests rejecting the null hy-
pothesis. It continued to detect the most significant signals as the sample 
size and permutation time increased to 500 for each group (see 
Table S2). 

Moreover, RgnTX provided Benjamini-Hochberg correction to adjust 
the p-values, reducing the number of false positives. Taking the same 
case shown in Table 1 as an example, after correction, the transcriptome- 
based permutation modes still reported a high percent of significant 
results (see Table 2), while interestingly, the conventional genome- 
based mode conducted on all transcripts failed to report any multiple 
tests that rejecting the null hypothesis. 
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To examine the robustness of conclusions, we compared RgnTX with 
other methods being run with its default mode [8,12,13,16,17,27]. We 
performed multiple hypothesis tests with the same m6A datasets as input 
and summarized the results in Table S3. We categorized these methods 
according to the test statistics they relied on. The results indicated 
consistency in the conclusions across different analytical models. We 
also examined influence of the chromosomal location of m6A on the 
outcomes of multiple hypothesis testing (See Fig. S3). The results of 
these tests, conducted on individual chromosomes, were found to be 
generally consistent with the overall findings obtained from analyzing 
the entire transcriptome. 

Fig. 3. Null distributions of random overlaps 
over the genome and the transcriptome are 
significantly different. In each subplot, 1000 
pairs of random region sets from the four 
different spaces were generated, with each re-
gion set containing 500 regions of the same 
length. The number of overlaps between each 
pair was counted and visualized. Only a small 
number of overlaps were observed on the 
transcriptome (the last group in each subplot), 
which are significantly fewer than the results 
from the DNA, exonic DNA and mRNA (pro-
jected to the genome) spaces, and generally 
larger than that on the pre-mRNA space. Box 
boundaries represent the 25th and 75th per-
centiles; center line represents the median. 
These results suggested that the permutation of 
heterogeneous transcriptome elements could be 
substantially more complex than genome-based 
elements.   

Fig. 4. Density plot of p-values of multiple tests assessing association between 
m6A RNA methylation sites and stop codon regions based on different permu-
tation strategies and backgrounds. Conventional genome-based permutation 
test strategies and RgnTX-provided isoform-aware permutation strategies were 
performed with the same m6A datasets derived from the miCLIP-seq technology 
and the same stop codons provided by USCS hg19. The novel isoform-aware 
strategies (Transcriptome) provided by RgnTX returned more significant sig-
nals compared to the conventional genome-based strategies (Genome). 

Table 1 
p-values of multiple tests between m6A sites and stop codons.  

p-values All 
transcripts 
(Genome) 

m6A- 
aligned 
(Genome) 

All transcripts 
(Transcriptome) 

m6A-aligned 
(Transcriptome) 

Mean 0.1767 0.1321 0.0786 0.0254 
Median 0.1683 0.0396 0.0198 0.0099 
< 0.05 

(%) 
5.494 58.24 63.73 89.01 

< 0.1 (%) 21.98 71.43 74.73 93.41 
< 0.2 (%) 70.32 80.22 89.01 98.90 

Note: Mean, median of p-values and percent of p-values less than different sig-
nificance levels. RgnTX permutation test strategies (Transcriptome) returned 
more signals compared to the conventional strategies (Genome) no matter the 
background involves all the transcripts or only the m6A-contained transcripts. 

Table 2 
Adjusted p-values of multiple tests between m6A sites and stop codons.  

p-values All 
transcripts 
(Genome) 

m6A- 
aligned 
(Genome) 

All transcripts 
(Transcriptome) 

m6A-aligned 
(Transcriptome) 

Mean 0.2965 0.1613 0.1010 0.0299 
Median 0.2761 0.0751 0.0392 0.0143 
< 0.05 

(%) 
< 1.09 43.96 50.55 87.91 

< 0.1 (%) < 1.09 62.64 65.93 92.31 
< 0.2 (%) < 1.09 78.02 82.42 98.90 

Note: Similar to Table 1, except that the p-values were adjusted by the 
Benjamini-Hochberg correction, which excluded potential false positives. After 
correction, the isoform-aware methods still reported significant signals, while 
the genome-based permutation test strategy that involved all transcripts (the 
first column) failed to report any significant results. 
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4. Discussion 

Recently, there has been significant progress in the method devel-
opment for colocalization analysis of genomic elements. This analysis is 
crucial for understanding potential functional interactions between 
corresponding biological attributes and provides hints for further 
investigation. The null hypothesis model should be selected carefully, 
since a slight deviation from the real scenario of the background may 
lead to biased results. Unfortunately, existing methods do not explicitly 
consider transcriptome heterogeneity and isoform ambiguity, making 
them less suitable for analyzing transcriptome elements. Current 
methods are usually based on the assumption that genomic features 
occur independently along the genome, and they generate a null model 
by shuffling region sets across the entire genome or chromosomes. They 
fail to model a suitable null transcriptome background or generate 
transcriptome randomized region sets. Synthetic data examples have 
shown that the null distributions of random overlaps over the genome 
and the transcriptome can be significantly different, suggesting the ne-
cessity of transcriptome-specific colocalization method. 

Motivated by these limitations, we developed RgnTX, a tool designed 
to perform colocalization analysis at the transcriptome level. Similar to 
regioneR and other permutation methods at the genome level, RgnTX 
incorporates randomization, evaluation, and z-score shifting. However, 
RgnTX differs from regioneR in several important aspects. Firstly, 
RgnTX provides randomization functions that can shuffle regions within 
a transcriptome background. It allows for the direct sampling of regions 
over mRNA space. Although regioneR provides variables for users to 
mask the regions that they do not want to work with, it cannot be 
applied to pick random regions across alternative splicing junctions, i.e., 
picking a consecutive region that spans more than one exon. 

Secondly, RgnTX supports transcript-specific permutation, whereas 
regioneR is primarily designed for permutation over chromosomes. In 
the evaluation section, RgnTX distinguishes evaluation strategies that 
count overlaps at the genome and transcriptome level. Importantly, 
RgnTX introduces an innovative isoform-aware permutation mode to 
address the isoform ambiguity problem in colocalization analysis for the 
first time. This mode counts each potential overlap on all isoforms and 
calculates an average. By doing so, RgnTX ensures that observed eval-
uation and random evaluation can be compared on the same scale, while 
fully utilizing isoform information. Thirdly, in the z-score shift section, 
RgnTX introduces the shiftZScoreTX function, which supports the shift-
ing of regions of interest on corresponding mRNA regions rather than 
solely on genome coordinates. Calculation and plotting functions related 
to shifted z-scores are separated and follow a consistent protocol design, 
allowing for more convenient analysis and interpretation. All these in-
novations make RgnTX a reliable tool for conducting colocalization 
analysis at the transcriptome level. 

5. Conclusions 

RgnTX served as a tool for the colocalization analysis of tran-
scriptome elements with isoform-aware permutation tests. Different 
from conventional genome-based approaches, RgnTX enables the shuf-
fling with user-decided restriction of areas at transcriptome level and 
offers high flexibility in the null model to simulate the realistic 
transcriptome-wide background. An important contribution here is the 
support of the testing of transcriptome elements without clear isoform 
association, which is often the real scenario due to technical limitations. 
The case study (m6A RNA methylation data and stop codons) showed 
that colocalization analysis of genomic features with isoform ambiguity 
problem could be stably addressed by our novel strategies. A consistent 
protocol design is implemented for the most of functions to make the 
package easy to use. Users are able to conduct colocalization analysis 
about tailored experiments within only a few lines of codes. To sum, 
RgnTX designs novel permutation strategies that preserve the charac-
teristics of transcriptome elements, effectively tackles the isoform 

ambiguity problem, easy to be utilized by researchers to generate any 
null models in the context of transcriptome and provides various sta-
tistical calculation and visualization functions for conducting colocali-
zation analysis. 

Code availability 

The package is freely available at: https://github.com/yue 
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