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Abstract

As a fundamental problem in algorithmic trading, portfolio optimiza-
tion aims to maximize the cumulative return by continuously investing
in various financial derivatives within a given time period. Recent years
have witnessed the transformation from traditional machine learning
trading algorithms to reinforcement learning algorithms due to their
superior nature of sequential decision making. However, the exponen-
tial growth of the imperfect and noisy financial data that is supposedly
leveraged by the deterministic strategy in reinforcement learning, makes
it increasingly challenging for one to continuously obtain a profitable
portfolio. Thus, in this work, we first reconstruct several determinis-
tic and stochastic reinforcement algorithms as benchmarks. On this
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basis, we introduce a risk-aware reward function to balance the risk
and return. Importantly, we propose a novel interpretable stochas-
tic reinforcement learning framework which tailors a stochastic policy
parameterized by Gaussian Mixtures and a distributional critic real-
ized by quantiles for the problem of portfolio optimization. In our
experiment, the proposed algorithm demonstrates its superior perfor-
mance on U.S. market stocks with a 63.1% annual rate of return while
at the same time reducing the market value max drawdown by 10%
when back-testing during the stock market crash around March 2020.

Keywords: Portfolio Management, Reinforcement Learning, Deep Learning,
Quantitative Finance

1 Introduction

With the aim of maximizing return, portfolio optimization is a decision-making
process that continuously allocates funds into various financial derivatives [1].
A key challenge for this is carefully balancing the multidimensional information
and sometimes conflicting objectives of various decision processes in a noisy
financial environment. Thus, many trading algorithms are expected to operate
on this fine granularity. Traditionally, many machine learning and deep learn-
ing methods have been used to predict future price trends and fluctuations
[2–4]. Nevertheless, one of the inherent difficulties of these price-prediction-
based algorithms is to forecast future stock behavior with a high accuracy
level. In fact, given the Efficient Market Hypothesis [5], it is nearly impossi-
ble for any trader to hypothetically outperform the market and consistently
produce risk-adjusted excess returns (alpha).

Lately, deep Reinforcement Learning (RL) has attracted much attention
due to its remarkable achievements in playing video games [6] and board games
[7]. In RL, an agent’s current behavior is closely related to its future rewards
through multiple interactions with its environment. Such behavior allows the
agent to gradually adopt an action that can maximize rewards and minimize
penalties without predicting future states. This learning process is natural
in biological life forms, and it has also been shown to be highly effective for
artificial agents [8]. As a matter of fact, incorporating deep neural networks
into the reward-penalties learning process gives the deep RL an inherent edge
in many different applications.

There have been many successful attempts to implement model-free deep
RL algorithms on algorithmic trading problems. This includes the value-based
RL and policy-based RL algorithms. By discretizing market actions, Lucarelli
and Borrotti [9] propose a value-based RL which applies recent adaptations
of Q-learning, e.g., Deep Q-Network [6], Double-DQN [10], and Dueling-DQN
[11], to portfolio selection problems. Although discretizing market action is
feasible, with the growing number of assets as the input and higher dimensional
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action as the output, it becomes increasingly difficult for the neural network
to handle.

In order to accommodate more assets, Jiang et al. [12] introduce an RL
framework based on the actor-critic Deterministic Policy Gradient Algorithm
[13, 14], a technique that is combined with value-based RL and policy-based
RL, that can continuously output actions through the policy function approx-
imated by a neural network. However, states in [12] still depend on historical
stock prices with only three features, i.e., highest, lowest, and close prices of
stocks. This is a relatively simplified assumption since the stock market oper-
ates far beyond the scope of these three features and rather independently of
past performance. Indeed, the external environment, including the global econ-
omy and companies themselves, has a significant impact on the stock market.
Moreover, the market strategy in [12] is deterministic, thus its trading agent
is highly conservative and lacks the ability to explore and gain alpha returns.

In addressing these problems, our contributions are four-fold. First, we
benchmark several classic RL algorithms, Deep Deterministic Policy Gradi-
ent (DDPG) [14], Twin-Delayed DDPG (TD3) [15], and Soft Actor-Critic
(SAC) [16, 17], in the continuous portfolio optimization action space. Second,
to imitate the uncertainty in the real financial market, we propose a novel
state-of-the-art stochastic reinforcement learning framework inspired by Soft
Actor-Critic (SAC) and Quantile-Regression DQN (QR-DQN) [18, 19], namely
Stochastic Policy with Distributional Q-Network (SPDQ) for the dynamic
management of the stock market portfolio. Importantly, we create a novel
structure containing a stochastic policy, modeled by Gaussian Mixtures, and a
distributional critic modeled by quantile numbers. Third, we enrich the state
space by adding additional qualitative financial factors. Additionally, we refor-
mulate the one-step reward by adding a risk term to the simple return. Fourth,
we provide the interpretation of the model strategy, and an ablation study for
different hyperparameters to better serve the diverse input states as well as to
assess the robustness of our proposed algorithm.

The rest of this paper is organized as follows. Section 2 provides a com-
prehensive review of previous model-free reinforcement algorithms and their
applications in portfolio optimization. Section 3 gives a mathematical defi-
nition of the portfolio management problem. Section 4 first presents a basic
preliminary of reinforcement learning and introduces the relevant methodolo-
gies, including both deterministic and stochastic algorithms to address our
problem. Section 5 details experimental procedures and results corresponding
to the proposed algorithms. In Section 6, the conclusions for this research are
given.

2 Related Works

2.1 Stated-of-the-Art RL Algorithms

Previous works have used Deep Deterministic Policy Gradient (DDPG) [14]
and Twin Delayed Deep Deterministic Policy Gradient (TD3) [15] to generate
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deterministic continuous action space. On the contrary, Soft Actor-Critic [16,
17] learns a stochastic action by maximum entropy reinforcement learning,
including a temperature hyperparameter used to control the importance of
return and entropy. Apart from stochastic action space, C51 [18] and QR-
DQN [19] learn a value distribution and highlight the ways in which the value
distribution impacts learning in the approximate setting. Given the uncertainty
of the financial market, the built-in stochastic settings in SAC [16, 17] have
an edge over the Gaussian Noise added to deterministic DDPG [14] and TD3
[15] policy when it comes to exploration. Consequently, unlike fixed rewards in
video games, estimating a value distribution of the cumulative market return,
rather than averaging its randomness, becomes increasingly important.

2.2 DRL Applications in Stock Trading

Current mainstream RL uses an accumulated discounted reward as the objec-
tive function. Among the stock trading research on this discounted reward
settings, Liang et al. [20] propose two adapted versions of policy-based RL
algorithms based on Proximal Policy Optimization (PPO) [21] and Policy Gra-
dient (PG) for portfolio management on China’s stock market. Lucarelli and
Borrotti [9] implement the Deep Q-Network, Double DQN, and Dueling DQN,
which all are value-based RL algorithms. For cryptocurrency portfolios, Jiang
et al. [12] apply Deterministic Policy Gradient (DPG), containing both policy
network and value network to solve portfolio optimization problems. Wang et
al. [22] use a hierarchy structure containing a high-level RL with an Entropy
Bonus to control the portfolio weights and a low-level RL to control selling
price and quantities within one day. Fang et al. [23] implement an Oracle by
distilling actions trained from perfect future stock information (Policy Distil-
lation) [24] to guide the agent making decisions under imperfect previous stock
information. For model-based approaches, Yu et al. [25] incorporate an Infused
Prediction Module (IPM) into the original actor-critic style DDPG algorithm
so the transition states can be predicted by IPM. All the proposed RL algo-
rithms claim to be profitable and outperform classical algorithms in terms of
the Sharpe value and geometric mean return. Importantly, the input states of
these RL algorithms are limited to the open, close, high, and low price vectors.

Risk-aware DRL in Stock Trading

Apart from considering the expected accumulated discounted reward as the
objective function, there is another research track in the Reinforcement Learn-
ing community that uses Conditional Value at Risk (CVaR/VaR) as the
objective function which emphasizes the AI safety and risk awareness. The-
oretically, Chow et al. [26] propose the CVaR MDP in which the standard
risk-neutral expectation is replaced by a risk-sensitive Conditional-Value-at-
Risk (CVaR) objective. Stanko and Macek [27] introduce CVaR Q-learning,
a sampling version of CVaR Value Iteration [26] based on the distributional
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policy improvement algorithm. In the financial market, modern portfolio the-
ory (MPT), or mean-variance analysis [28], Value-at-Risk (VaR) [29] and
Conditional-Value-at-Risk (CVaR) [30] are all widely used in risk management
models to reduce the maximum possible loss of a financial product under price
fluctuations. However, very little research connects these risk models with
reinforcement learning and successfully applies it to the financial market.

Function Approximator in Stock Trading

Other literature of stock trading focuses on designing the customized topology
of the neural network for financial features. Initially, many researchers use cus-
tomized neural networks on stock price prediction tasks. For instance, Chen
et al. [31] incorporate a graphical convolutional network based on quantita-
tive data, and Ding et al. [32] embed business events according to knowledge
graph information to predict stock prices. Later, inspired by the prediction
tasks [31, 32], AlphaStock [33] creates a Transformer-based Cross-Asset Atten-
tion Network (CAAN) that uses multiple stock features to approximate the
functions in the RL algorithms.

3 Problem Statement

In portfolio optimization, we would like to continuously allocating capitals into
a number of financial assets with the aim of maximizing the cumulative return.
For an automatic trading agent, the process of obtaining daily returns through
enhancing or reducing portfolio positions can be seen as a finite Markov Deci-
sion Process. This section provides a mathematical setting of the portfolio
optimization problem and its connection to Reinforcement Learning.

3.1 Assumptions

In this work, we only consider back-test tradings where the trading agent has
no information about the future stock market. The trading agent is assumed
to return at a timestamp in the stock market history and carries out paper
trading from then onward. To meet the requirement of back-test tradings, we
make two assumptions in our experiment:

1. Zero Slippage: The market assets are high in liquidity so that each
transaction can be completed immediately after an order is placed.

2. Zero Market Impact: The transaction made by the trading robot is
insignificant so it has no influence on the market.

In a realistic trading environment, these two assumptions are valid under the
circumstance of the high trading volume in the stock market.

3.2 Mathematical Formalism

To formulate our portfolio model, we modify the settings in Online Portfo-
lio Selection (OLPS) [34]. The portfolio consists of one cash asset and m
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stock assets. The trading time is equally divided into periods of length T and
length T equals to one day in this paper. Since it is assumed in the back-test
experiments that at the beginning period of t + 1, assets can be immediately
traded at the opening price of the period of t + 1, we are allowed to use the
closing price v of period t to complete the transaction. More specifically, for
a portfolio vector wt = [w0,t, w1,t, ..., wm,t]

T , where the first element is the
weight of the cash and the other ith element represents the proportion of
total capital invested in the ith stock at period t. We derive its price relative
vector vt = [v0,t, v1,t, ..., vm,t]

T based on the ratio of tth closing price to the
last closing price for the ith asset. Based on wt and vt, the final cumulative
wealth after n periods is pf = p0Π

n
t=1w

T
t vt where p0 is the initial investment,

w1 = [1, 0, ..., 0]T and Σm
i=0wi,t = 1. The tth-step exponential growth rate rt is

given by rt = log(wT
t vt).

Since the transaction cost is indispensable, OLPS [34] adopts the pro-
portional transaction model [35, 36], i.e., the incurred transaction cost is
proportional to the wealth transfer when reallocating wt. Specifically, it intro-
duces a transaction cost factor [36] µt, which is the ratio of total wealth after
reallocating to wealth before reallocating, and the one-step exponential growth
rate rt can be rewritten as rt = log(µtw

T
t vt), where

1−γs

1+γb
≤ µt ≤ 1, γs and

γb are the commission fees of selling and buying stocks. When γs = γb = γ,
Moody et al. [37] give an approximation to µt, i.e.,

µt = 1− γ

m∑
i=1

|w′
i,t − wi,t| (1)

where w′
i,t =

wi,t−1·vi,t
Σm

j=0wj,t−1·vj,t represents the adjusted portfolio weights due to

the change in the stock price at time t.
In our work, we adopt the exponential growth rate rt with OLPS’s trans-

action cost, and use (1) to approximate it. Importantly, to complete our final
one-step reward, we introduce an additional risk term and reformulate rt as

rt = log(µtw
T
t vt)− βVar(r) (2)

where β is a reward-risk adjust hyperparameter and Var(r) is computed
through the variance of all previous r1:t.

4 Methodology

In this section, we first give a short description of the basic concepts in
reinforcement learning, including value functions and loss functions, that are
fundamental to subsequent algorithms proposed in Section 4.1. We then detail
the novel architecture and description of the proposed reinforcement learning
algorithm in Section 4.2.
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4.1 Reinforcement Learning: A Short Description of
Main Concepts

As demonstrated in [38], reinforcement learning and control problems usually
include an agent that acts in a stochastic environment by sequentially selecting
actions over a sequence of time steps to maximize a cumulative reward. Gen-
erally, these problems can be formalized as discrete time stochastic Markov
Decision Processes where an agent interacts with its surrounding environment
in the following way: given a tuple (S,A,P,R, γ), where
• S is a (finite) set of Markov states s ∈ S.
• A is a (finite) set of actions a ∈ A.
• P is dynamics (model-free) or an explicit transition model (model-based) for
each action. For an explicit transition model satisfying the Markov property,
it can be specified as
P(st+1 = s′ | st = s, at = a).

• R is an expected reward function under policy π and defined as R(st =
s, at = a) ≜ Eπ[rt | st = s, at = a].

• γ ∈ [0, 1] is a future discount factor.

For one single episode, the agent starts in a given state s0 ∈ S. At each
time step t, it chooses an action at ∈ A based on a policy π and receives
an immediate one-step reward rt. It then keeps updating until it reaches a
terminal state. All in all, our ultimate goal is to control an optimized policy
π that can generate an optimal return at each state s. More details for the
related definitions can be found in [38].

4.2 Proposed RL Framework: From Deterministic to
Stochastic

In this section, we first construct the deterministic actor-critic settings in
Section 4.2.1. This is followed by a detailed description of how Stochastic Policy
with Distributional Q-network (SPDQ) is implemented in Section 4.2.2.

4.2.1 Deterministic Framework

Adapted from Q-learning, rather than globally maximizing Q, Silver et al. [13]
utilize Deterministic Policy Gradient (DPG) to obtain the maximum return in
a continuous action space through iteratively moving in the gradient direction
of Q. In practice, for a deterministic policy µθ, its policy parameters θk+1

are learned by gradient ascent ∇θQ
µk(s, πµθk

(s)). Similar to the actor-critic
style algorithm, the critic in the DPG algorithm is learned by minimizing the
Bellman error. Importantly, DPG [13] lays the theoretical foundation for Deep
DPG [14].

In DDPG, Lillicrap et al. [14] incorporate deep neural network function
approximators into DPG. In other words, for target value function (network)
Qw′

(s, a) and learned value function (network) Qw(s, a), DDPG introduces a
method to slowly update the target network from a parameterized network
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rather than directly copying weights w to the targets. Practically, the weights of
target network are slowly tracked by trained networks: w′ = τw+(1−τ)w′ with
τ ≪ 1. In this way, the target value functions can only update slowly, greatly
enhancing the stability of learning. Additionally, in order to consistently train
the critic without divergence, DDPG requires another target policy function
µθ′ that is also slowly updated by learned policy function µθ in the same
manner of target value functions. Another contribution of DDPG is that it
introduces a Gaussian Noise Process N added to the continuous action spaces
to encourage exploration. Generally, acting based on a deterministic policy
may not ensure adequate exploration and may result in sub-optimal solutions,
especially in a highly volatile financial environment.

4.2.2 Stochastic Framework
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Fig. 1 Proposed Stochastic RL Framework. Here, in the policy network, the coupled
states st ∈ Rl×(m+1)×(d+1) are considered as input states to be fed into a policy encoder
network (upper green block). Later, the encoded state vector is dropped into the FC lay-
ers (upper purple block) to generate means, standard deviation and mixture weights of the
output action at ∈ Rd+1. The sampled actions at are realized by performing a reparameter-
ization trick. Subsequently, the new generated action at is simultaneously fed into the critic
encoder network (lower green block) and the financial environment (left blue block), with
which it can interact, to obtain reward rt and generate a new state st+1. In the critic net-
work, the encoded layer (lower green block) input by st and at is then fed into the FC layers
(lower purple block) to generate the quantile numbers of the value distribution Qt. Finally,
after estimating Qt and Qt+1, value distribution is learned by using temporal difference.

Formally, we model the portfolio optimization problem with a trading cost
as one Markov Decision Process (S,A,R, γ) without considering the transition
probabilities. In practice, the time horizon for this MDP is set to be the total
holding time of the portfolio until the portfolio value pf reaches zero. At the
beginning time of t, the trading agent generates a new portfolio weight and
reallocates money to particular financial assets according to that weight. Here,
we define the coupled states at time t as st := {Xt,Wt} ∈ S, where Xt is the
historical stock features and Wt is the historical weights. In other words, we
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consider the previous weights of the portfolio to be also a part of state and con-
catenate them with the previous states along the dimension of feature. For the
non-cash assets, the jth feature Xt,i,j for assets i at time t are built by a look-
back time window with length l, i.e., Xt,i,j = {xt−l,i,j , xt−l+1,i,j , . . . , xt−1,i,j},
in which xt−1,i,j represents the basic information of feature j of asset i at time
of t− 1. For cash, Xt,0,j is made up of unit vectors and collectively gives the
same shape as Xt,i,j . In this setting, we have m+1 assets (counting cash) and
d+ 1 features (previous assets weights as a new feature). This gives us a cou-
pled state st ∈ Rl×(m+1)×(d+1). At the beginning holding period t, based on the
inputted st, the trading agent will generate a new continuous action defined
as at := wt ∈ A to redistribute the fund among the assets. Here wt ∈ Rm+1

and satisfies
∑

m wt = 1. For each state-action pair (st,at) at holding period
t, its reward rt ∈ R satisfies (2).

Maximum Entropy Reinforcement Learning

Instead of using the standard cumulative returns as the reinforcement learn-
ing objective, our goal is to learn a stochastic policy π(at|st) that maximizes
the new entropy objective J(θ), i.e., J(θ) = Es∽ρπθ ,a∽πθ

[r(s, a)+αH(πθ(·|s))],
where ρπθ is the marginal state distribution, H(·) represents an entropy func-
tion which is calculated asH(πθ(·|s)) = Ea∽πθ

[− log(πθ(a|s))], and α stands for
the temperature parameter that weighs the importance of the reward against
the entropy term.

To model the diverse modality of our portfolio policy under differ-
ent states, we suppose that the output of our policy network Θ(st) :=
{µθ(st), σθ(st)}, follows a Mixture Model with K multivariate gaussian com-
ponents (Ni(µi,Σi), i = 1, 2, ...,K). Based on the formulation, we sample
an action a′t ∈ A′ from this policy network by performing the reparam-
eterization trick. Thus, the probability density function of A′ is given by
pA′(a′) =

∑K
i=1 ωiNi(a

′; µi,Σi), where
∑K

i=1 ωi = 1.
Subsequently, we introduce a map f : A′ → A to map the original random

variable A′ to a simplex region that satisfies the properties in A. The function
f is written as

f(a′i, τ) =
exp(a′i/τ)∑h

j=1 exp(a
′
j/τ) + δ

, (3)

where τ ∈ (0,∞) is the temperature parameter that controls the weight dis-
tribution in different assets, and δ ≈ 10−9 is a small number to ensure that
the map f is invertible.

Consequently, the density function of A after transformation is represented
by pA(a) = pA′(a′)|det Jf (a′, τ)|−1, where Jf (·, τ) is the Jacobian of f(·, τ).
Finally, the log-likelihood of action π(at|st) (entropy term) can be expressed as
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log πθ(at|st) = log pA′(a′t)− log |det Jf (a′t, τ)|

≫ log pA′(a′t) + h log(τ)−
h∑
i

log(ait)
(4)

where ait represents the weight of the ith asset, the inequality part comes
together from the Matrix Determinant Lemma [39] and proper scaling. Thus, it
gives us a lower bound of log πθ(at|st) to simplify minimizing the log-likelihood
itself. Detailed proof of this inequality is shown in Appendix A.

Finally, the policy parameters θ can be learned by minimizing the following
equation from [17], i.e.,

Lπ(θ) = Est∽D,at∽πθ
[α log(πθ(at|st))−Qw(st, at)] (5)

whereD stands for the experience replay buffer. Importantly, in (4), we derive a
lower bound for log πθ(at|st). Thus, to avoid gradient explosion during training,
we introduce the lower bound to Eq. (5) and only minimize the lower bound of
Lπ(θ). By extending the DDPG style policy gradient [14], we can approximate
the gradient of policy network (5) with ∇θLπ(θ) = (∇at

α log(πθ(at|st)) −
∇at

Q(st, at))∇θgθ(st; ϵt), where gθ = f ◦Θ and at is evaluated at gθ(st; ϵt).

Distributional Value Function

For a policy π, instead of considering the cumulative return observed at each
time t (i.e., the sum of discounted rewards Gt observed from one trajectory
of states following the policy π) as a constant, we model it as a distribution
to reflect the uncertainty of return in the real financial markets and denote
it as Z0

t , where Z0
t =

∑T
i=0 γ

iRi and Ri represents a random variable of ith

step reward. Thus the reward distribution, together with the entropy term, is
written as Zπ

t =
∑T

i=0 γ
iRi +αH(π). Based on this, the action-value function

required in (5) is rewritten as

Qπ(s, a) = Esi∽D,ai∽π[

T∑
i=t

γi−tR(si, ai) + αH(π(·|si))].

In practice, our approximation to this value distribution aims to model the
quantile numbers of the target distribution and we call it a quantile distribu-
tion. Accordingly, the output of the critic network is a vector of length N that
represents N quantiles and its associated discrete cumulative probabilities are
qi =

i
N for i = 1, . . . , N and q0 = 0.

Formally, let w : S×A → RN be the parametric model of our critic network.
A probability quantile distribution Zw : S×A → P(R) maps each state action
pair (s, a) to a uniform probability distribution supported in {wi(s, a)}. We

write Zw(s, a) := 1
N

∑N
i=1 δ(wi(s, a)), where δ(z) represents the Dirac function

at z ∈ R.
Based on the one-step temporal difference learning, we train our critic

network using Quantile Huber Regression [19] that minimizes the distance
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Fig. 2 The Cumulative Wealth in U.S. market on the validation set for different models
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Fig. 3 The Cumulative Wealth in U.S. market on the test set for different models

between the target distribution and the learned distribution. The Quantile
Huber Regression Loss in our problem is expressed as

LZ(w) = E(st,at,rt,st+1)∽D[

N∑
i=1

|qi − δ(ui < 0)|Lk(ui)] (6)

where ui = r(st, at) + γ(w′
i(st+1, θ

′(st+1)) − α log(πθ′(θ′(st+1)|st+1))) −
wi(st, at), D is the experience replay buffer, and Lk is the huber loss.

Stochastic Policy with Distributional Q-network (SPDQ)

At each time step, for any coupled state st = {Xt,Wt} of both policy network
and critic network, where Xt ∈ Rl×(m+1)×d is the historical stock features
and Wt ∈ Rl×(m+1) is the previous assets weights, SPDQ encodes the cou-
pled state by letting the dimension of features in st be the channel dimension
and feeding st into the Conv2D layers with the same padding scheme on time
dimension and the valid padding scheme on assets dimension. Subsequently,
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SPDQ merges the 22 assets dimensions into one single dimension while main-
taining the length of time horizon simultaneously. Its outputs are followed by
an LSTM Layer acting temporally to resolve the complexity between the long-
range time horizon. To output a stochastic policy, the encoded state vector is
directly fed into the Fully Connected Layer to generate means, standard devi-
ations and mixture weights of the output action. For the critic network, the
encoded state vector is concatenated together with the predicted action from
the policy network, and fed into the FC Layers to output quantile numbers.
The overall SPDQ reinforcement learning framework is shown in Figure 1.

Practically, we initialize two neural networks for both the policy and critic
networks: θ as the learned policy network, θ′ as the target policy network, w
as the learned critic network, and w′ as the target critic network. Given an
input state st, we first use the policy network θ to generate a new portfo-
lio weight at, and use it to interact with the financial environment, obtaining
a new reward rt and a new state st+1, and forming a one-step trajectory
(st,at, rt, st+1). Subsequently, we store the trajectory in a Prioritized Experi-
ence Replay Buffer [40] and do not start training until the number of samples
in the replay buffer reaches the batch learning size. During training, for sam-
pled one step trajectory (st,at, rt, st+1), we update the policy parameters by
maximizing the entropy in (5) and update critic parameter by minimizing the
temporal difference in (6). For the temperature hyperparameter α to control
the importance of entropy term, we update it by minimizing the temperature
loss in (7). The loss of α is derived in [17], namely

L(α) = E(st,at)∽D[−α log πθ(at|st)− αH0] (7)

where H0 is the minimum value of entropy.
After updating the gradient of the learned network, the weights of the

target network are slowly adjusted by the trained networks in a similar manner
as DDPG. Importantly, to reduce per-update error caused by noisy input, we
choose to update the policy network and its target network less frequently
than the critic network. The detailed algorithm for SPDQ is summarized in
Algorithm 1.

5 Experiment

In this section, we first introduce our data processing techniques and perfor-
mance metrics. Next, we benchmark the deterministic algorithms of DDPG
[14] and TD3 [15], and the stochastic algorithms of Distributional Determin-
istic Policy Gradient (D3PG) [19], Proximal Policy Optimization (PPO) [21],
and SAC [17], in the provided U.S. stock market. Subsequently, we evaluate
the proposed stochastic algorithms with the listed baseline algorithms. Finally,
we display the interpretation of the model strategy, and investigate the impact
of different hyperparameter choices, using an ablation study.
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Algorithm 1 SPDQ for Portfolio Optimization

1: input: batch size M , iterations T , target entropy H0, discount factor γ.
2: Initialize policy network parameters θ, value network parameters w, and α.
3: Initialize target network parameters θ′ ← θ, w′ ← w
4: while not converge do
5: Observe state si and sample action a′i ∼ πθ(·|si)
6: Map a′i to simplex region ai ▷ Eq. (3)
7: Relax ai’s log-likelihood li ∝ log πθ(ai|si) ▷ Eq. (4)
8: Observe next state s′i, reward ri and done signal di
9: Store (si, ai, li, ri, s

′
i, di) in replay buffer D

10: if curr buffer size ≥M then
11: for t from 1 to T do
12: Sample M trajectories (s, a, l, r, s′, d)
13: Construct target distribution: y = r + γ(Zw′

(s, πθ′(s′))− α · l)
14: Update w, θ, α by SGD using ∆w,∆θ,∆α, where:
15: ∆w = 1

M

∑
i∇wE[|q − δ(ui < 0)|Lk(ui)], u = (Zw(s, a)− y)

16: ∆θ = 1
M

∑
i∇θπθ(si)∇a[log πθ(a|si)− E[Zw(si, a)]]|a∼πθ(si)

17: ∆α = 1
M

∑
i∇α[−α(li +H0)]

18: Update target network parameters w′ and θ′

19: w′ ← ρw′ + (1− ρ)w
20: if t mod policy update == 0 then
21: θ′ ← ρθ′ + (1− ρ)θ
22: end if
23: end for
24: end if
25: end while

5.1 Dataset setting and Preprosessing

The U.S. stock market data used in our experiments are obtained from Wind1.
The time range of the data is from January 2005 to December 2020. This long
time interval covers several well-known market events, such as the crash of
2008-2009 caused by the subprime mortgage crisis [41] and the ‘meltdown‘ in
2020 caused by COVID-19 [42], which diversifies the market states and enables
our trading agent to learn from real-world data fluctuations. Each collected
stock contains nine different features ranging from the fundamental indexes
like OPEN, CLOSE, LOW, HIGH to the technical indexes like BOLL and
MACD. Concretely, 22 stocks2 are chosen from S&P500 in the top 50 of the
index’s component with large volumes, so our trading algorithms would not
influence the market price. Detailed information related to stock names and
feature names can be found in Supplementary Table B1 and B2. In addition,
we introduce one cash asset as a risk-free option for the trading agent. More-
over, the period of stock data used in the experiments is given in Table 1.

1https://www.wind.com.cn/
2In our work, we focus on these 22 stocks for ease of explanation. This framework is also

applicable to other portfolios.
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Importantly, each feature is normalized by the first feature in the look-back
window and scaled by a positive factor c.

Table 1 Period of stock data used in the experiments.

The U.S. Market Duration (Days)

Training 2005/01/03-2017/06/29 3144
Validating 2017/06/29-2019/07/01 503
Testing 2019/07/01-2020/12/08 365
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Fig. 4 A case study of the Adobe after training 50 episodes

5.2 Performance Metrics

We use the following performance metrics to evaluate our algorithms:

• Annual Rate of Return (ARR) [43] is the annual average return rate, it is
defined as

ARR =
pf − p0

p0
× Tyear

Tall

where pf is the final portfolio value, p0 is the initial portfolio value, Tyear

represents the total number of trading days within one year, and Tall is the
total number of trading days.

• Annualized Volatility (AVOL) [43] is the annual average volatility to reflect
the average risk of a strategy in a year. It is defined as

AV OL = Var

[
pt − p0

p0

]
×
√

Tyear

Tall

where pt is the portfolio value at each step.
• Annualized Sharpe Ratio (ASR) [43] is the risk-adjusted annual return based
on APR and AVOL. It is defined as

ASR =
ARR

AV OL
.
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• Maximum DrawDown (MDD) [43] is the maximum loss from a climax to a
dip of a portfolio, before a new climax is formed. It reflects the risk of the
investment. It is defined as

MDD = maxt∈(0,T )

{
maxt′∈(0,t){pt′} − pt

maxt′∈(0,t){pt′}

}
.

• Downside Deviation Ratio (DDR) [43] is the risk-adjusted annual return
divided by the Downside Deviation which represents the potential loss that
may arise from risk as measured against a Minimum Acceptable Return
(MAR) such as bank interest. It is defined as

DDR =
ARR√

E[min{rt −MAR, 0}2]
.

5.3 Results

Experiment settings

Each algorithm, including benchmarks, is trained in our experiment by inter-
acting with an artificial financial environment for 100 episodes. Each episode
randomly chooses a 500 time steps length consecutive holding period within
the defined training period in Table 1. After training over one episode, our
algorithm is then validated on a validation set with 300 time steps to assess its
generalization ability. Our algorithm is implemented by Tensorflow on Python
and trained through two RTX 2080 Ti Graphic Cards. The results of the
stochastic algorithms are aggregated over an average of five replicates to ensure
reliability.

In all experiments, we use a replay buffer with size 5000 and only consider
behavior policies that are parameterized by Gaussian mixtures. For all the
experimented algorithms we initialize the learning rate for the actor to be
5× 10−4. For the critic, we initialize the learning rate to be 5× 10−3. We use
the exponential decay with a rate of 0.5 for both actor and critic. To optimize
α, its learning rate corresponds to 1 × 10−3 and the decay rate equals 0.9.
Furthermore, we use a batch size of 64 for all the algorithms. The remaining
hyperparameters, including look-back window size, τ , risk control factor β,
etc., are fine-tuned on the proposed validation set.

Overall performance

We compare the proposed stochastic reinforcement learning algorithm,
Stochastic Policy with Distributional Q-Network (SPDQ), with two popular
deterministic algorithms (DDPG and TD3), three classic stochastic algorithms
(SAC, D3PG, and PPO), and the standard market. In our experiments, the
market value is calculated by consistently holding a uniformly weighted port-
folio among these 22 stocks. Figures 2 and 3 give the cumulative wealth of the
portfolio versus trading days in the U.S market on the validation and test sets.
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Table 2 Performance comparison between different deterministic and stochastic DRL
algorithms in the U.S. market. The best results for each metric are highlighted in bold.

Algo. Category DRL Algorithms ARR AVOL ASR MDD % DDR

Deterministic
Market 0.091 0.071 1.28 28.2 0.872

DDPG [14] 0.287 0.112 2.56 35.7 1.806
TD3 [15] 0.083 0.030 2.72 11.5 1.747

Stochastic

PPO [21] 0.082 0.071 1.16 28.1 0.782
SAC (SP) [17] 0.072 0.070 1.03 28.3 0.689

D3PG (DQ) [19] 0.303 0.093 3.25 27.8 2.663
SPDQ 0.631 0.164 3.86 25.5 4.379

Specifically, from the plot of market value in Figure 3, we observe this tested
period is indeed the crashed period during COVID-19 [42]. It is straightfor-
ward that the deterministic algorithm DDPG experiences the most significant
decline in March, although it outperforms the market. Surprisingly, another
deterministic algorithm, TD3, has a poorer performance and falls far behind
DDPG in both validation and test sets. Notably, among the tested stochastic
algorithms, D3PG, which has a distributed critic, is superior to the market
while PPO and SAC, which have a stochastic actor, nearly share the same
cumulative wealth with the market. Importantly, it is worth pointing out that
the proposed SPDQ consistently beats the market and has the fastest recov-
ery rate after the ‘meltdown’ in March. Consequently, by comparing SPDQ
with SAC, which only uses a stochastic policy, and D3PG, which only uses
a distributional Q-function, we observe that the stochastic policy and the
distributional Q-function jointly contribute to the final performance.
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Fig. 5 Learning curves for Q-Max. Q-Max for TD3 and DDPG is calculated by maxi-
mizing Q-value in each batch. Q-max for SPDQ is calculated by maximizing the average of
all the quantiles in each batch.

Additionally, we evaluate the metrics of different algorithms in Table 2.
From the table, we can observe that SPDQ has the best record on three
risk-adjusted metrics. Specifically, SPDQ gives 63.1% ARR, up from D3PG
108% ranked in second. It also outperforms the market value in MDD by 10%
(25.5% versus 28.2%). Interestingly, TD3 has the lowest AVOL and MDD.
However, it comes at the expense of gaining cumulative returns. Specifically, it
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underperforms while competing with the market in ARR (8.3% versus 9.1%).
Consequently, we conclude that the proposed stochastic framework attempts to
maximize the cumulative returns at the cost of slightly increasing the volatility.
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Fig. 6 Reward learning curves on validation sets for different parameters

Learning analysis

The learning curves on training and validation sets are given in Figure 5. Intu-
itively, we observe that SPDQ has a better convergence property for the Q-Max
that approximates the cumulative return on both training and validation sets.
It also has a good generalization ability on the validation set. Moreover, SPDQ
begins to level off after about 80 thousand training steps. On the contrary,
the deterministic algorithms DDPG and TD3 fluctuate a lot during training,
although the overall trend is increasing. Importantly, there is a gap between
TD3’s training and validation curves, indicating that it may suffer from poor
performance regarding unseen data. In summary, SPDQ evidently outperforms
TD3 and DDPG on both the training and validation sets, which is consistent
with the performance results on the test set.

Trading Strategy Interpretation

Here, we attempt to investigate the action patterns for different strategies, i.e.,
how the distribution of each asset changes over time. We discover that for the
tested deterministic algorithms, especially DDPG, the weights directly con-
verge to several assets within ten episodes, after which no further big changes
were observed. In other words, the weights of each asset will fluctuate above
or below a fixed mean that is invariant to time. The proposed stochastic
algorithm, however, behaves more diversely than the deterministic ones. We
observe the change of the trading strategy of the proposed SPDQ contains
mainly three steps. It first uniformly distributes weights into 22 assets, then
focuses on the several assets by putting more weights on them. Finally, after
training for extended episodes, it converges to the assets that are assigned more
weights to previously. Notably, the critical reason for the proposed stochas-
tic algorithm to perform better is that our trading agent excels at selecting
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profitable long-term assets portfolio, and it chooses to consistently hold them
instead of selling and buying shares frequently at every time step.

In addition, we create attribution maps of the input financial features and
interpret the long/short actions by using the gradient-based methods in Inte-
grated Gradient (IG) [44] and Alphastock [33], which help us quantify and
visualize the critical features valued the most by our trained model. Specif-
ically, we aggregate the values derived from the Integrated Gradients of the
inputted states st during all of the test time, and visualize them using a
heatmap. Concretely, we pick ADBE.O, which shares the highest weights after
training over 50 episodes, as a case study in Figure 4(a). Among the inputted
nine features, MACD has the highest score (positive gradients) during the last
15 to 10 days. Since the objective function of the policy is to the value function,
positive gradients of MACD indicate that if a stock’s MACD keeps increasing
in the last 15 to 10 days, the value function will also increase the next day. Con-
sequently, our model considers MACD as a signal of future growth of the stock
price and thus puts more weights on this asset. Figure 4(b) details how the pro-
posed model executes orders. The selling or buying point is highlighted if the
turnover rate is larger than one percent. We observe that its weights fluctuate
around 0.074 which is nearly two times bigger than the average weights 0.043.
This finding suggests that our proposed algorithm will attach more weights to
those profitable assets instead of investing in all the assets averagely.

5.4 Ablation Study

Table 3 Ablation on the effect of Gaussian Mixtures in the U.S. market. The best results
for each metric are highlighted in bold.

ARR AVOL ASR MDD % DDR

k = 1 0.181 0.071 2.530 11.93 1.735
k = 2 0.004 0.077 0.049 28.69 0.037
k = 3 0.631 0.164 3.86 25.46 4.379
k = 4 0.422 0.121 3.483 12.28 3.715
Market 0.083 0.154 1.170 28.17 0.093

In our ablation study, we study the impact of changing the mixture numbers
on the model’s final performance. As Table 3 demonstrates, when the policy
is parameterized by a unimodal Gaussian (k = 1), SPDQ slightly outperforms
the market on ASR and has the most stable return since it reaches the lowest
AVOL among the other three options. When we start to increase its modality
(k > 1), we find it may not lead to better performance and even gives worse
results when k equals four. Interestingly, a bimodal Gaussian parameterization
leads to a deficit portfolio and the greatest drawdown. However, a trimodal
Gaussian parameterization produces a strategy that smoothly balances the
return and risk.
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Furthermore, Figure 6 provides a comprehensive ablation study of the
impact of the mixture numbers, reward-risk adjust factor β, temperature fac-
tor τ in (3), and Length of look-back window on the validation reward average
and standard deviation. According to Figure 6(a), we verify that the trimodal
Gaussian parameterization (green curve) has relatively higher average rewards
on the validation set while at the same time possessing a lower rewards stan-
dard deviation. Additionally, in Figure 6(b), when the reward-risk adjust factor
β equals 0.5, the rewards standard deviation is lower than that of adding no
risk control until the training episodes are over 60. Nevertheless, the standard
deviation becomes even higher if β keeps increasing to 1. Moreover, the origi-
nal Softmax activation function with temperature τ = 1 has a smooth growing
start of the average rewards in Figure 6(c). However, it falls dramatically after
training over 60 episodes. On the contrary, τ = 0.1 generates a more stable
training process. Figure 6(d) demonstrates that a longer length of look-back
window will not necessarily lead to better performance on the validation set.
Instead, without compromising and taking too much risk, L = 20 gives the
highest average rewards.

6 Conclusions

In this paper, we research on the continuous portfolio optimization with
trading costs via deep reinforcement learning. We benchmark several classic
deterministic and stochastic reinforcement learning algorithms on our artifi-
cial financial environment. Next, we propose a novel interpretable stochastic
reinforcement learning framework for the portfolio optimization problem. Con-
cretely, we build a stochastic policy parameterized by Gaussian Mixtures and
a distributional critic realized by quantile numbers to interact with the noisy
financial market. Finally, the extensive experiments demonstrate that our pro-
posed stochastic algorithm outperforms its deterministic counterparts in terms
of controlling risk and gaining profit in the U.S. stock market.

In the future, this research can be extended to the following aspects.
First, incorporating Conditional-Value-at-Risk (CVaR) to the existing rein-
forcement learning framework and applying it to the actual financial market is
a promising research direction since CVaR has a superior ability over the mean-
variance settings to safeguard a decision-maker from risky movements. Second,
investigating the customized exploration functions for the trading agents in
reinforcement learning is very important and has the potential to outperform
the strategy of exploring blindly based on the Gaussian distributions.
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Appendix A Mathematical Details

A.1 Computing the determinant of the Jacobin Matrix

For f : Rh → Rh from the main manuscript (3), where h is the dimension of
actions, we let a = f(x), and the Jacobin of this function is:

Jf (x, τ) =
1

τ


a1 − a21 −a1a2 · · · −a1ah
−a2a1 a2 − a22 · · · −a2ah

...
...

. . .
...

−aha1 −ahz2 · · · ah − a2h

 ,

if we define v = (a1, a2, · · · , ah)T and D = diag(a), then we have:

det(Jf (x, τ)) = det(
1

τ
(D − vvT ))

= (
1

τ
)h · (1− vTD−1v) · detD by the Matrix Determinant Lemma

= (
1

τ
)h · (1−

h∑
i=1

ai) ·
h∏

i=1

ai by the property of matrix D

= (
1

τ
)h · δ ·

h∏
i=1

ai by

h∑
i=1

ai ≈ 1

A.2 Computing the lower bound of the log probability

According to the formula of the transformation of random variables, we have
pA(a) = pA′(a′)|det Jf (a′, τ)|−1, if we let pA(a) := πθ(at|st), then its log-
likelihood can be written as:

log πθ(at|st) = log pA′(a′t)− log |det Jf (a′t, τ)|

= log pA′(a′t) + h log(τ)− log(1−
h∑
i

ait)−
h∑
i

log(ait)

= log pA′(a′t) + h log(τ)− log(δ)−
h∑
i

log(ait)

≫ log pA′(a′t) + h log(τ)−
h∑
i

log(ait)

Therefore, the lower bound of the transformed log likelihood on a simplex
region is log pA′(a′t) + h log(τ)−

∑h
i log(a

i
t).

Appendix B Supplementary Tables
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Supplementary Table B1 Abbreviations and Full names of the used 22 stocks in the
U.S. market

Abbreviation Full Name
CMCSA.O COMCAST CORP.
ADBE.O ADOBE INC.
GOOGL.O ALPHABET INC.
AAPL.O APPLE INC.
BRK B.N BERKSHIRE HATHAWAY INC.

T.N AT&T INC.
PG.N PROCTER & GAMBLE CO

XOM.N EXXON MOBIL CORP.
DIS.N WALT DISNEY CO
UNH.N UNITEDHEALTH GROUP INC.
JPM.N JPMORGAN CHASE & CO
CSCO.O CISCO SYSTEMS, INC.
HD.N HOME DEPOT INC.

AMZN.O AMAZON COM INC.
CRM.N SALESFORCE.COM, INC.
JNJ.N JOHNSON & JOHNSON
KO.N COCA COLA CO

NFLX.O NETFLIX INC.
VZ.N VERIZON COMMUNICATIONS INC.

MSFT.O MICROSOFT CORP.
BAC.N BANK OF AMERICA CORP.
ABT.N ABBOTT LABOTORIES
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