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Abstract This paper firstly presents a taxonomy for mage representation in the con-
text of image mining. The main premise being that the actual mining algorithms that
may be used are well understood, it is the preprocessing of the image data that re-
mains a challenge. The requirement for the output from this preprocessing is some
image representation that us both sufficiently expressive while at the same time
being compatible with the mining process to be applied. Three categories of rep-
resentation are considered: (i) statistics-based, (ii) tree-based and (iii) point series
based. The second contribution of this paper is an analysis of the proposed represen-
tations categories with respect to a novel image mining application, the collection of
individual household census data from satellite imagery, more specifically Google
earth satellite imagery. The representations are considered both in terms of generat-
ing census prediction models and in terms of applying such models for larger scale
census prediction.

1 Introduction

Image mining is an important element of the canon of data mining. Decision mak-
ing is routinely supported by visual information and visualisations of data. At the
same time our ability to collect visual information (image data) is increasing rapidly,
partly because of technological advancements and partly (and associated with the
first) the increasingly reduced cost of collecting such data. For example the collec-
tion of retina images are now routine for anyone visiting an optician, whilst the cost
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of Magnetic Resonance Imaging (MRI) scans has reduced considerably. The com-
puting power available to process images is also rapidly increasing. Consequently
the demand for utilising image data for the purpose of extracting information (im-
age mining) is increasing. It should also be noted here that the images we wish to
process, although typically 2D in nature, can also be in a 3D format; our ability to
collect 3D (volumetric) data has also been advancing such that 3D data is now also
readily available.

The challenge of image mining is not so much the algorithms used to extract
knowledge from image data, these tend to be well understood, but the end to end
process from the initial image representation to the final knowledge interpretation.
Although our ability to process large quantities of data is increasing, typically we
are still not able to represent image data in its entirety (pixel by pixel), nor in most
cases would this be useful; although the use of techniques such as the Convolutional
Neural Networks (CNNs) [23] is a significant step in this direction. The manner in
which we represent the image data we wish to mine is of great significance (the
“rubbish in rubbish out” aphorism is applicable here). This paper seeks firstly to
provide an overview of image representation for image mining by considering an
“image representation for image mining” taxonomy. Secondly this paper seeks to
present this taxonomy in the context of a particular application domain, the mining
of satellite imagery to collect census data.

Broadly, image representation for image mining can be viewed according to
whether we wish to consider an entire image or simply one or more elements within
an image. The later requires the representation process to be preceeded by a seg-
mentation process so as to isolate the elements of interest (segmentation is outside
the scope of this paper). In both cases similar techniques can be used for repre-
sentation purposes, the distinction is the amount of storage that might be required.
The most common representation used for data mining in all its forms is the feature
vector representation where we conceptualise the domain of interest in terms of an
n dimensional feature space where each dimension is an attribute contained in the
domain of interest. Using the feature space concept each example (record or image)
is defined in terms of a feature vector V = {v1,v2, ...,vn} where each element vi re-
lates to an attribute value in dimension i. Thus, using the feature vector mechanism,
prior to the application of any mining activity, it is necessary to first preprocess the
data so that a collection of feature vectors, Φ = {v1,V2, ...,Vm}, can be generated.
The image mining domain is no exception, the challenge is identifying the image
features to be included in the feature space. In this context three categories of repre-
sentation are considered in this paper: (i) statistical, (ii) graph based and (iii) point
series. A second challenge is that frequently the number of dimensions is large (the
“curse of dimensionality” aphorism is also applicable here). Many of these dimen-
sions (features) are likely to redundant or not useful. To reduce the set of dimensions
a feature selection process is typically adopted. Although not a central theme of this
paper a number of feature selection methods (χ2, Gain ratio and Information gain)
were considered respect to the population estimation application domain.

There are a great variety of data mining techniques applicable to image data and
data in general [12]. So as to limit the scope of the work presented in this paper the
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focus is on prediction (classification) using supervised learning. A process whereby
prelabelled training data is required from which a predictor can be “learnt”. Thus the
desired feature vectors used for training purposes need to include a class attribute
value c drawn from a set of such values C. Thus in this case the feature vectors are
of the form {v1,v2, ...,vn,ci} where ci ∈C. To obtain some degree of confidence in a
generated predictor a further prelabelled test set is required to which the prediction
model can be applied and the generated predictions (classes) compared to the known
predictions. Once we are satisfied with the operation of our predictor it can go into
usage and be used to label previously unseen data.

To illustrate the ideas concerning image representation presented in this paper a
census collection application domain is considered. A census is a mechanism for
acquiring and collecting information about a population; a mechanism widely used
with respect to a variety of national, and local, government management and plan-
ning activities. The most important element of a census is population count. How-
ever, census collection, and the associated post processing, is expensive. The UK
Office for National Statistics (UKONS) reported that the UK 2011 census cost some
£480 million [33]. The US 2010 census was reported to have cost $13 billion [30].
The cost of census collection is also increasing, according to the Australian Bureau
of Statistics the Australian 2006 census cost around AUD 300 million, whilst the
2011 census cost around AUD 440 million [35]. The cost with respect to rural areas
is typically greater than that of urban areas because the communication and trans-
port infrastructure in rural areas tends to be less well developed. There is also often
a lack of good will on behalf of a population to participate in census collection,
even if they are legally obliged to do so, because people are often suspicious of the
motivation behind censuses.

A potential solution is the usage of technology, namely the internet. However,
this requires a literate population and access to the necessary infrastructure. In many
parts of the world people remain unconnected to the internet. It is also interesting to
note that in the context of the UK 2011 census it was found that a frequently cited
reason for households not to have internet access was because of a life style deci-
sion not to do so [29]. The solution advocated in this paper is to create a prelabelled
training set of household images, extracted from Google Earth, with known family
sizes and use this data to build a household size prediction model that can then be
used for large scale census collection exercises. Of course it is acknowledged that
this approach will not work well in cities where it will be difficult to distinguish
buildings in terms of number of inhabitants, however, it was anticipated that the ap-
proach would work well in rural areas; areas where census data collection tends to
be more of a challenge. In the context of this census collection application domain,
and with reference to the proposed image representation for image mining taxon-
omy, the challenge is how best to represent the satellite household image data. A
number of different representations (using the proposed taxonomy) are considered
in this paper, evaluated and utilised with respect to a large-scale study featuring a
rural area of Ethiopia.

The rest of this paper is structured as follows. In Section 2 a review is presented,
founded on work presented in [7], regarding existing work on automating the census
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collection process using satellite image data. The proposed image representation for
image mining taxonomy is then presented in Section 3. The proposed solution to
the automated extraction of census data from satellite imagery, using the proposed
taxonomy presented in the previous section, is then presented in 4. Three different
catagories of representation are considered and evaluated as presented in Section 5.
The main findings are presented in the concluding section, Section 6.

2 Previous Work

In this section some discussion concerning previous work on population estimation
is presented; the application domain focus for the discussion on image representa-
tion for data mining presented later in this paper. Population estimation has been a
subject of researched amongst the Geographic Information Systems (GIS) and re-
mote sensing communities for some time. From the literature we can broadly divide
this research activity into two categories: (i) area interpolation and (ii) statistical
modelling [42]. The work presented in this paper subscribes to the second. Using
area interpolation the idea is to use existing census information concerning some
geographic area and extrapolate this to obtain a population estimation for a wider or
alternative geographic area [24]. Statistical modelling in turn is concerned with the
relationship between population size or density and data obtained from GIS and/or
satellite imagery.

Existing work on statistical modelling for the purpose of population estimation
can be further categorised according to the nature of the data on which the pop-
ulation estimation generation is based, namely: (i) light intensity, (ii) land usage,
(iii) dwelling unit count, (iv) image pixel characteristics and (v) physical or socio-
economic characteristics. The central idea on which the first is based is that there
is a functional relationship between population size and the amount of night time
light emanating from an area. Examples can be found in [3, 6, 28, 36, 39], where the
relationship between population density and light frequency were used to convert
light frequency into a population density estimation. In [36] the reported evaluation
was directed at Japan and China, whereas in [6] and [28] it was directed at China
only; in [3] the evaluation was directed at a population estimation of the Brazilian
Amazon, whilst in [39] the study was directed at the USA.

Work within the second sub-category is directed at the correlation between popu-
lation density and different types of land usage. The idea is to determine population
density according to land usage with respect to a set of one or more sample areas
and apply this knowledge to additional areas (as in the case of area interpolation).
Land usage categories are typically identified from satellite image data. In [22] it is
suggested that population densities for different types of land usage can be deter-
mined from sample surveys or census statistics. Four different types of land usage
were extracted from four different cities in California, USA, and population den-
sities computed. In [27], six types of land usage were identified in the context of
Landsat TM satellite images centred on Atlanta, USA. A regression model was then
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applied to produce population densities for Atlanta. A common way of distinguish-
ing land usage types is by using some form of texture analysis. There are a variety
pf texture analysis techniques that can be adopted, but one involves the usage of Lo-
cal Binary Patterns (LBPs) [25, 34], a techniques utilised with respect to the work
presented in this paper (see Section 4).

The third sub-category of approach to population size estimation using statisti-
cal modelling is to estimate the total dwelling unit count in a defined region and
multiply this by an average number of people expected to live in a dwelling unit.
There are various ways of obtaining an estimate of the dwelling unit count, but
one suggested approach is to estimate this by analysing remote sensing images; a
idea also promoted in this paper. In the past, when there was no effective ways of
automatically identifying residential buildings within remote sensing imagery, the
dwelling units were manually identified from aerial photographs (a laborious and
time consuming process). With the advancement of technology and the availability
of satellite imagery more advanced feature extraction techniques have been devel-
oped for this purpose [13]. In [4] a dwelling unit count based approach is presented
using IKONOS satellite images of the Al Shaabia district in Khartoum, Sudan. The
dwelling unit count approach has some similarity with respect to the work repre-
sented in this paper.

In the fourth sub-category, the relationship between image pixel characteristics
and population densities is used for the purpose of population estimation. The image
pixel characteristics in question can be represented using a variety of mechanisms,
but common examples include mechanisms based on the spectral reflectance values
of image pixels and mechanisms based on image texture analysis. Examples of using
pixel characteristics for population estimation are presented in [18] and [24]. In [18]
a system was presented whereby texture analysis was applied to Google Earth satel-
lite images, using block sizes of 64×64 and 32×32 pixels, to estimate population
densities with respect to cities in Pakistan. In [24] a variety of features were used,
including: spectra signatures, principle components, vegetation indices, fraction im-
ages, texture and temperature. These features were extracted from Landsat ETM+
satellite images and used to measure population density in the city of Indianapolis,
Indiana, USA.

The final category of population estimation is founded on the usage of various
kinds of physical and socioeconomic information which is then interpolated to give
population estimations. For example, information about demography, topography
and transportation networks have all been used to estimate population size. In [26] a
mechanism was presented for estimating population size by determining the corre-
lation between the population in urban areas and the distance to the nearest Central
Business Distract (CBD), distance to major roads, slope and the age of the commu-
nity.

What all the above approaches to population estimation modelling have in com-
mon is that they are focussed on regions or areas rather than specific households
as in the case of the work presented in this paper. As far as the authors are aware
the fundamental approach of estimating populations sizes at the household level, as
presented in this paper, is entirely unique.
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Fig. 1 Taxonomy for Image Representation for Image Mining.

3 The Image Representation Taxonomy

The proposed image representation for image mining taxonomy is presented in Fig-
ure 1. From the figure, at a high level and as noted in the introduction to this paper,
the image representations can be categorised according to whether we are interested
in entire images or some region (object) within an image set. We use the terms
global and local to differentiate between the two. An example where we might wish
to consider entire images, as shown in the figure, is in the case of retina image anal-
ysis where we typically wish to classify images according to whether they feature
some eye condition or not. The most common eye conditions that are considered
in this respect are Age-related Macular Degeneration [2, 15, 45, ?] and Diabetic
Retinopathy [1, 37]. Frequently quoted examples where we might wish to consider
objects within images are with respect to MRI brain scan data; in 2D the mid-sagital
slice is often used. For example in [9] the object of interest was the corpus callo-
sum, the part of the brain that connects the left and right hand sides of the brain,
which was analysed in the context of the presence of epilepsy (or not). In [41] the
ventricles are considered but in terms of 3D image analysis.

In Figure 1 a distinction is made between non-contiguous region/object appli-
cations (such as the census collection based on individual household sizes domain
considered later in this paper) and contiguous region/object applications where we
have multiple neighbouring regions/objects. In the figure the latter is illustrated with
a sheet metal forming 3D image application taken from [21] (see also [11]) where a
pre-specified shape is “pressed” out using a sheet metal forming machine. However,
the process introduces distortions (referred to as springback). The idea presented
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in [21] was that if these distortions can be predicted they can be compensated for.
Sub-shapes in the manufactured shape were thus isolated and considered to be ob-
jects in a 3D image mining exercise. The feature vectors in this case comprised a
shape description, not unlike the shape descriptions used in [41] to represent ventri-
cles extracted from MRI scans, and a numeric distortion class label. Where we have
multiple disconnected objects in an image these can be processed in the same way
as if there were only one object.

Regardless of whether the nature of images are considered globally or locally
they can be represented either in terms of a set statistics extracted from the image
(object) or in terms of some graph/tree representation. In the case of single objects
we can also consider the boundary of the object which can then be represented as a
point series or curve. Statistical techniques are the simplest approach to image rep-
resentation for image mining. The most obvious statistics that may be used are the
first order statistical functions such as the mean, variance and standard deviation of
the intensity or RGB or grayscale colour values. For example in [44] (see also [43])
eleven different first order statistical features were extracted from a breast biopsy
image set in order to predict the presence of breast cancer (or otherwise). In the case
of objects we can use morphometrics of various kinds describing the size and/or
shape of an object (size can be expressed simply in terms of a pixel count). Such
simple statistics often do not work well because they are not expressive enough;
however they provide for a good bench mark representation and are considered later
in this paper as a means of representing households. A more sophisticated category
of statistic involves the usage of second order statistical functions applied to an inter-
mediate representation, examples include: (i) co-occurrence matrices, (ii) gradient
analysis, (iii) Hough transforms and (iv) Local Binary Patterns (LBPs). This last is
used later in this paper and thus is considered in further detail later in this section.
Another example where the LBP concept has been used as an image representation
for image mining can be found in [8] where X-ray images of knee joints are encap-
sulated using LBPs for the purpose of predicting the existence of osteoarthritis (or
otherwise).

A LBP is a texture representation method which is statistical in nature [25, 34].
Using the LBP approach a binary number is produced for each pixel, by thresholding
its value with its neighbouring pixels. Thus, with reference to Figure 3 the grayscale
value for the centre pixel pc is compared with that of the eight neighbours and a
value of 1 recorded if the value for pi is lower than that for pc, and a value of 0
otherwise. In this manner we get eight binary values making up an eight bit number.
There are 256 different options, thus we can generate a 256 dimensional feature
space with each dimension having values of between 0 and the maximum number
pixels that can exist in any one image in the image set. The example in Figure 3
considers eight neighbouring pixels at a radius of one, thus 8× 1 LBPs. There are
other possibilities, for example 8×2 or 16×2.

A alternative popular method for representing images is to apply some form of
hierarchical decomposition to the image (with respect to both the global and local
situations) and to store the result in a quad-tree (for 2D image data) or oct-tree (for
3D image data). Hierarchical decomposition has a well established track record in
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Fig. 2 Ilustration of the LBP Concept.

d =

{
1, if pi ≤ pc

0, otherwise

the context of image analysis [31, 38, 40, ?]. An example decomposition is given in
Figure 3, based on [10], where the Corpus Callosum featured in a 2D MRI brain scan
image has been segmented and decomposed (down to a maximum decomposition
level of 3) and rendered as a quad tree. Once we have a collection of tree repre-
sented images/objects we can apply a subgraph mining technique (a good review
of such techniques is given in [19]) to the tree set and extract frequently occurring
sub-trees where frequent is defined in terms of some frequency count threshold σ .
A popular frequent subgraph mining algorithm used for this purpose is the gSpan
algorithm [17] adapted for the purpose of frequent sub-tree mining rather than fre-
quent sub-graph mining. The set of extracted frequent subgraphs can then be viewed
as features in a n-dimensional binary-valued feature space where n is the number of
sub graphs and each dimension has two values: present and not present. Issues with
hierarchical decomposition include: (i) the boundary problem where regions appear
in different branches of the tree and (ii) when to stop the decomposition (using ei-
ther a critical function to measure homogeneity or a pre-specified maximum level
of decomposition).

Although quad trees are the most commonly encounter tree-based formalism
other types of tree (and graph) format can be adopted. In Figure 4 (taken from [14])
an alternative decomposition is shown with respect to a retina image. In this case
the decomposition alternates between “angular” and “circular” division. Angular
division involves partitioning using a minor arc to divide a region into two, whilst
circular decomposition involves dividing a region into two using a radius emanating
from the centre of the image. At the top level the image is divided into four quad-
rants; at subsequent levels the decomposition is conducted in a binary manner as
indicated by the example tree shown on the right of the image.

Another popular mechanism for representing images is as a point series (or
curve). Although not indicated in Figure 1 this can also be applied globally. The
simplest form of point series is a histogram, which can be directly translated into a
feature vector representation. For example histograms of intensity values, orienta-
tion gradients or LBPs. Alternatively, given an object of interest contained within an
image, we can represent the boundary in terms of a point series using, for example,
the concept of chain coding. Given a collection of labelled point series, representing
a set of images or objects within an image set, a new image/object can be classi-
fied directly using (say) the well-established KNN algorithm (k = 1 is often used).
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Fig. 3 Hierarchical decomposition, an example using MRI brain scan data.

Fig. 4 Circular whole image decomposition with respect to a retina image (max level of decom-
position = 4) and Associated tree structure [14].

When using algorithms such as KNN we need an appropriate similarity measure;
Euclidean distance is frequently used as a comparison measure but requires the
point series to be of the same length. Alternatively, we can look to work on time
series analysis [20], for example the use of Dynamic Time Warping (DTW) which
produces a warping path distance defining the difference between two point series
[5, 32]. DTW has the added advantage that the point series to be compared do not
have to be of the same length. The later was used in [9] to define shapes in 2D MRI
brain scan data and in [41] to define 3D MRI brain scan shapes.
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Fig. 5 Google Earth image featuring a village in the Horro district of Ethiopia [7].

4 Census Prediction Model Generation

In this section we return to the census collection estimation application domain. Re-
call that the idea is to build a household size predictor using prelabelled household
images extracted from Google Earth and then to use this predictor to produce pop-
ulation estimations of large areas. Recall also that to act as a focus for this work a
rural area of Ethiopia was selected. More specifically the district of Horro located
300 km to the northwest of Addis Ababa. An example Google earth image from this
area is presented in Figure 5. Inspection of the image indicates a large number of
households.

To collect the required training data an “on the ground” team visited sample
households at two sites, Site A and Site B, within the district and collected family
size information together with the latitude and longitude of each household so that
the associated Google satellite images could be retrieved. At the time the data was
collected Google Earth did not readily facilitate the automated extraction of satel-
lite imagery, so instead the Google Static Map Service was used. This featured an
API that allowed users to download satellite images (one image at a time) specified
according to various parameter settings: (i) latitude and longitude of the centre of
the area of interest. (ii) image size (in pixels) and (iii) zoom Level (level of detail).
An image size of 1280×1280 pixels and a zoom level of 18 was used. Each house-
hold was surrounded with a 256× 256 pixel bounding box defined so as to cover
the largest anticipated household (by superimposing a box we do not have issues
with irregular shaped household plots). In this manner data for 120 households was
obtained, 70 households for Site A and 50 for Site B. The distinction between the
two sites was that for Site A the available Google Earth images were obtained in
the “wet season” and so were mostly green, while those obtained for Site B were
obtained during the dry season so were mostly brown. Some statistics concerning
this training data are given in Table 1 and Figure 6. Note from the table that the
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population sizes have been grouped according to three class labels: (i) Small, (ii)
Medium and (iii) Large. The reason for this was for prediction purposes categorical
classification systems as well as regression models (which produced a real value)
were considered; as described in further detail later in this section.

Family Min. Max. Ave. Mode Site Site
Small 2 5 4.04 5 38 19
Medium 6 8 7.00 6 32 21
Large 9 12 9.80 9 10 10
All 2 12 6.31 6 70 50

Table 1 Statistics for training data (Sites A and
B).

Fig. 6 Histogram for training data household
population sizes (Sites A and B) [7].

Given this training data the next stage was to represent the households using an
appropriate mechanism compatible with prediction model generation. To this end
each of the three categories of representation identified in the taxonomy presented in
Section 3 was used and a comparison conducted. Details concerning each individual
representation are given in Sub-sectons 4.1, 4.2 and 4.3 below; and the conducted
comparative evaluation reported on in Sub-section 4.4.

4.1 Satistics Based Image Representation

For the statistics based representation LBPs were used, generated as described in
Section 3. LBPs with eight neighbours and a radius of one were used (8×1 LBPs).
Experiments were conducted (not reported here) using other LBP configurations
but no advantage was found. An example of the process of converting a Google
household image to an LBP image is given in Figure 7. The left hand image shows
the raw Google image, the middle image the associated grayscale image to which the
LBP mechanism was applied and the right hand image the resulting LBP rendition
of the original Google image.

Once counts for each of the 256 possible LBPs had been obtained a 256 element
feature vector could be generated, one for each household image. Feature selection
was then applied so as to reduce the overall number of dimensions and retain di-
mensions which were good discriminators of household size. A subset of the LBPs
was thus retained. A number of feature selection methods were considered but χ2

feature selection, with k = 40 (where k is the number of dimensions to be retained),
was found to produce the best result. Consideration was also given to augmenting
the LBP representation with additional statistics (such as contrast, correlation, en-
ergy, homogeneity) but this was also found to have little effect.
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Fig. 7 Process of converting a Google household image to an LBP image [7].

4.2 Tree Based Image Representation

The tree-based image representation generation process is illustrated in Figure 8
(see also Figure 3) where we start with a colour Google image (not shown), convert
this to a grayscale household image and the apply the decomposition. In this man-
ner a quadtree was generated representing each household in the training data. The
nodes were labelled with a greyscale encoding generated using a mean intensity of
the greyscale colours in each region; for this purpose eight labels were derived, each
describing a range of 32 consecutive intensity values. Frequent Sub-graph Mining
(FSM) was then applied to the tree collection as discussed in Section 3. A variation
of gSpan was used, but other FSM algorithms would be equally applicable. A σ

value of 10 was used for the FSM; in other words for a sub-graph to be considered
frequent it had to appear in 10% of the tree represented images in the training set.
Note that low σ values are better (nothing will be missed), however many more
Frequent Sub-Graphs (FSGs) will be identified than when a higher σ value is used.
A feature selection strategy was thus adopted so as to reduce the number of dimen-
sions in a manner whereby only highly discriminative features were retained. In this
case gain ratio feature selection, with k = 55, was found to produce the best re-
sult. Each record was then presented in a feature vector format ready for prediction
model generation.

4.3 Point Series Based Image Representation

For the point series based household mage representation seven different colour his-
tograms were generate: three describing the three channels in the RGB image colour
formalisation, three describing the three channels in the HSV image formalisation,
and one using the greyscale formalisation. For each histogram 32 bins were used,
thus feature vectors measuring 7×32 = 224 elements were generated. The authors
again experimented with including statistical measures, but it was again found that
this made no difference (and in some cases proved to be decremental). Feature se-
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Fig. 8 Hierarchical decomposition process for an example Google household image [7].

lection was also applied to reduced the size of the feature space. As before a number
feature selection strategies were considered (χ2, Gain ratio and Information gain).
Gain ration Feature Selection with k = 25 was found to give the best results.

4.4 Household Image Representation Evaluation

This sub-section presents a comparison of the above suggested image representa-
tion techniques, one for each representation category included in the proposed im-
age representation for image mining taxonomy. The comparison was conducted by
generating and testing predictors using each representation. For this purpose two
different categories of prediction model were considered: (i) classification models
and (ii) regression models; the distinction being that the first is used to predict a
class label while the second is used to predict a real value.

In the classification case three different classes were considered (as given in Table
1) and six classifier generation models: (i) the Bayesian Network (BN) model, (ii)
the Neural Network (NN) model, (iii) Logistic Regression (LR), (iv) Sequential
Minimal Optimisation (SMO), (v) Averaged One Dependence Estimation (AODE)
and (vi) the well known C4.5 decision tree generation algorithm (C4.5). These were
coupled with χ2 and Gain ratio feature selection (with different values of k). The
metrics used for the evaluation were: (i) Accuracy (AC), (ii) Area Under receiver
operating Characteristic (AUC), (iii) the F-measure (FM), (iv) Sensitivity (SN) and
(v) Specificity (SP). The best results, generated using Ten Cross Validation (TCV),
are given in Table 2 (derived from work included in [7]), with the very best results
highlighted in bold font. For the statistics-based household image representation
χ2 feature selection with k = 40 was used. For the tree-based image representation
σ = 10 was used for FSG mining and gain ration feature selection with k = 55.
For the point series representation gain ration feature selection was also used but
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Classification Site A Site B
Model Generator AC AUC FM SN SP AC AUC FM SN SP
Stats. based (LR) 0.771 0.859 0.778 0.771 0.885 0.680 0.756 0.679 0.680 0.803
Stats. based (NN) 0.771 0.881 0.759 0.771 0.852 0.720 0.824 0.718 0.720 0.825
Tree Based (AODE) 0.629 0.815 0.627 0.629 0.753 0.800 0.863 0.785 0.800 0.871
Tree based (BN) 0.600 0.808 0.596 0.600 0.734 0.800 0.879 0.792 0.800 0.876
Tree based (NN) 0.686 0.819 0.685 0.686 0.782 0.620 0.789 0.628 0.620 0.829
Tree based (SMO) 0.729 0.791 0.727 0.729 0.818 0.620 0.733 0.610 0.620 0.781
Point based (BN) 0.700 0.807 0.687 0.700 0.782 0.700 0.798 0.692 0.700 0.829
Point Series (C4.5) 0.671 0.724 0.668 0.671 0.760 0.500 0.598 0.499 0.500 0.718
Point based (LR) 0.657 0.822 0.662 0.657 0.806 0.640 0.821 0.633 0.640 0.798

Table 2 Household Image Representation Evaluation using classification models and TCV.

with k = 25. From the table it is interesting to note that the “best” representation
depends on whether we have wet (green) season or dry (brown) season image data.
For the wet season the statistics based representation, using LBPs and coupled with
either LR or NN, provided best results; while for the dry season the tree based
representation (coupled with BN) provided the best results.

In the context of the linear regression models a number of models were con-
sidered: (i) Linear regression (Linear Reg.), (ii) Least Median Squared regression
(LMedS), (iii) Isotonic Regression (IsoReg) and (iv) Support Vector Machine re-
gression (SVMreg). Each was considered in isolation and when coupled with dif-
ferent feature selection strategies. Each was applied in the context of the satellite
household image training data expressed using the different representations dis-
cussed above. The metrics used for comparison purposes in this case were: Cor-
relation Coefficient (Coef), Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE). Note that metrics used for evaluating classification models, where
we wish to predict a categorical class, tend to be different to those that are typi-
cally used for evaluating regression models where we are predicting a real value.
Best results, again generated using TCV, are presented in Table 3 (also derived from
work included in [7]), with the very best results again highlighted in bold font. In
this case the LBP statics-based image representation outperformed the other rep-
resentations hence only results using the LBP representation are shown. The table
also gives results with and without the application of a feature selection strategy. A
number of such strategies were considered, but Correlation-based Feature Selection
(CFS) was fund to produce the best results. From the table it can be seen that the
best performing regression model was SVM regression.

5 Large Scale Study

Once a prediction model has been generated and tested so that an appropriate degree
of confidence can be attached to the model it can be placed into service. This section
considers firstly how the models, generated as described in the previous section, can
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Regression Site A Site B
Method Coef MAE RMSE Coef MAE RMSE
LinearReg -0.080 2.167 2.570 0.274 1.981 2.407
LMedS -0.288 3.262 3.894 0.215 1.952 2.353
IsoReg -0.309 2.382 2.841 0.156 1.940 2.295
SVMreg -0.279 3.367 3.970 0.308 1.778 2.056
LinearReg+CFS 0.084 2.145 2.550 0.400 1.727 2.093
LMedS+CFS 0.252 1.988 2.373 0.428 1.687 2.038
IsoReg+CFS -0.202 2.287 2.706 0.109 1.912 2.282
SVMreg+CFS 0.307 1.957 2.330 0.587 0.143 1.802

Table 3 Household Image Representation Evaluation using regression models and TCV.

be applied in the context of regional census collection. The section firstly presents
the process whereby such a census might be conducted and secondly considers the
effectiveness of the result by considering a particular benchmark region. The test
area chosen for this purpose was an entire village and its surrounding lands within
the Horro district. The reasons why this area was chosen was because this area was
similar to the areas from which the prediction model training data was obtained
and because the population size of this village was known; in 2011 the village was
reported to comprise 459 households and a population of 3,223 (thus ground truth
data was available).

The rest of this section is organised as follows. Sub-section 5.1 describes the
satellite data collection process using the Google Static Map Service API. Once the
satellite image data has been collected the images need to be segmented to identify
“household images”; the mechanism whereby this was conducted is presented in
Sub-section 5.2. To ensure no data was missed an overlap was used when collecting
the satellite image data, thus it was possible that specific households would appear
in more than one image. It was thus necessary to first remove such duplicates before
any further processing could be conducted. The duplicate household detection and
pruning process is considered in Sub-section 5.3. Once the household images had
been identified they could be represented using one of the image representations
considered above, to which any of the prediction models also considered above
could be applied. To evaluate the process the best performing prediction models (see
Sub-section 4.4) were applied to the data. The results are presented and discussed
in Sub-section 5.4.

5.1 Satellite Image Data Collection

In total 600 Satellite images, covering the area of interest were collected using the
Google Static Map Service API. An image size of 1280× 1280 pixels and a zoom
level of 18 was used; because these were the parameters used for the training set
collection. Using the Google Static Map Service API images are downloaded in an
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Fig. 9 Fragment of collected satellite image patchwork [7].

iterative manner image by image. A 320 pixel overlap was used, designed so that ev-
ery household will appear in its entirety in at least one collected satellite image. For
this to operate correctly it was necessary to: (i) convert the top-left corner latitude
and longitude of the current image into x and y pixel values, (ii) add the required
offset to obtain the top-left x and y coordinates of the next image in the sequence,
(iii) convert these new x and y coordinates back to a latitude and longitude and (iv)
repeat; a time-consuming process. Note that Cartesian coordinates are planer values
while latitude and longitude are geoidal values, thus conversion was also not straight
forward; note that the Google Static Map Service uses the EGM96 spheroid (Earth
Gravitational Model 1996). It took 356 seconds to collect the 600 required satellite
images. Together these images formed a “patchwork” covering the area of interest.
A fragment of this patchwork is shown in Figure 9.

5.2 Image Segmentation

The downloaded satellite images could contain zero, one or more households. It
was thus necessary to segment the images so as to identify households. As noted
previously, the typical household comprised at least one building with a tin roof that
was readily discernable (see Figure 5). Visual inspection of a sample of the images
indicated that this was true in all the cases sampled. This feature could therefore be
usefully employed to identify households in the collected satellite image data. Note
that with respect to the training data (Section 4) segmentation was not required
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Channel Min Max
Hue 0.35 0.65
Saturation 0.05 0.15
Value 0.80 1.00

Table 4 Adopted HSV threshold values for household image segmentation.

Fig. 10 Illustration of The Satellite Image Segmentation Process [7].

because we knew where the households were because their latitude and longitude
had been collected as part of the knowledge acquisition process.

The segmentation was conducted using a number of image masks. Experiments
were conducted using a variety masking techniques (a significant challenge was the
illumination of roads and water ways). The most appropriate mechanism was found
to be when the HSV representation was used together with a set minimum and
maximum thresholds. Given an image represented using one of the HSV channels,
pixels with values below and above the threshold were set to black and the remaining
pixels within the threshold range to white. Thus three masks were produced: (i) hue,
(ii) saturation and (iii) value. By combining these masks pixels set to white in all
three masks were identified as households. Extensive experimentation (not reported
here) was conducted to determine the most appropriate threshold values, the selected
values are given in Table 4. The entire segmentation process is illustrated in Figure
10 where we have an originnl image featuring four households, the image translated
into the HSV colour space, three masks (hue, saturation and value) and the final
result.
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On completion of the segmentation process each household was represented as a
“blob” of white pixels. The centroid of each blob was considered to be its location,
described in terms of latitude and longitude coordinates, and this location was iden-
tified in the original image. Each location in the original image was then surrounded
by a w×w bounding box (w = 256 was used as this was the same value used for
the prediction model training as described in Section 4). In this manner a collection
of household images was obtained. Note that the minimum bounding boxes will be
smaller and/or non-symmetrical near the edges of each image.

5.3 Duplicate Detection and Pruning

Using the above process 526 household images were identified. However, this in-
cluded duplicate households; households that appear in more than one image. In-
spection of the Figure 9 indicates a number of duplicate households, some appear-
ing in two images and in some cases in four images. Such duplicate households had
thus to be pruned before any further processing could be conducted. The duplicate
detection and pruning process was as follows. The identified households were listed
in order of latitude. This list was then processed and households with the same lat-
itude and longitude label (within a level of tolerance) identified. If two households
with the same centroid latitude and longitude both comprised 256×256 pixel boxes
the later was pruned. If the boxes were unequal in size the household featuring the
smaller sized box was pruned.

Using the above process a total of 526 households were detected including du-
plicates. Duplicate detection identified 100 duplicate households, thus 426 out of a
known number of 459 households were identified. Suggested reasons for the dis-
crepancy were as follows. There was a two year time difference between the ground
truth survey and the satellite images; a period during which some households may
have fallen into disuse (manual inspection of a proportion of the collected satellite
images indicated that some buildings did indeed appear to be roofless, thus support-
ing this conjecture). Inspect of the satellite imagery indicated that a small number
of buildings were very poorly defined and in some cases had not been segmented
correctly. It was also possible that the duplicate household detection mechanism had
detected some duplicates that were in fact not duplicates (although no evidence for
this was found). The overall run time to segment and process the collected satel-
lite image data was 1,370 seconds (22.8 minutes), about 2.28 seconds per satellite
image and 2.6 seconds per household.

5.4 Population Estimation Results and Evaluation

Once an appropriate set of household satellite images had been generated previ-
ously derived classification and/or regression models (of the form described in the
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Representation Prediction Feature Population Accuracy Total Run
Model Selec. Strat. Estimation (%) Time (Mins.)

Statistics-based Neural Network classifier χ2

(LBPs) generated using Site A 2,545 78.96 29.49
wet season data

Graph-based Bayesian Network classifier Gain Ratio
(σ = 10) generated using Site B (k = 55) 2,495 77.41 35.42

dry season data
Statistics-based SVM Linear regression CFS
(LBPs) generated using Site A 2,548 79.06 29.48

wet season data
Statistics-based SVM Linear regression CFS
(LBPs) generated using Site B 2,760 85.63 29.48

dry season data

Table 5 Population Estimation Results.

Family size Average Predicted num. Estimated
household households population size

size (a) (b) (a×b)
Small 4.04 156 630
Medium 7.00 261 1827
Large 9.80 9 88

Total 426 2545

Table 6 Estimation of population size with respect to the Neural Network classification model
generated using the Site A data set.

previous section) could be applied and an overall population estimation extracted
from the image data. In the case of classification models a class label was produced
for each household, to turn this into a population estimation each class needed to
be translated into a number of persons and then summed to give a total number of
persons. In the case of the classification models described in Section 4 the average
number of persons associated with each class was used. In the case of the regression
models a population size was derived directly.

The obtained results using the best performing classifiers/predictors identified
in Sub-section 4.4 (see also [7]) are presented in Table 5 (best results highlighted
in bold font): (i) Neural Network classifier generated using statistics-based (LBP)
Site A wet season data , (ii) Bayesian Network classifier generated using Graph-
based Site B dry season data, (iii) SVM Linear regression generated using statistics-
based (LBP) Site A wet season data and (iv) SVM Linear regression generated using
statistics-based (LBP) Site B dry season data. The calculation of the individual pop-
ulation sizes using Neural Network and Bayesian Network classification is given in
Tables 6 and 7 respectively (derived from [7]). The best performing approach used a
statistics-based representation coupled with a SVM Linear Regression model. This
produced a population estimation of 2,760 compared to a “ground truth” of 3,223;
thus an accuracy of 86%.



20 Frans Coenen and Kwankamon Dittakan

Family size Average Predicted num. Estimated
household households population size

size (a) (b) (a×b)
Small 4.04 226 7913
Medium 7.00 135 945
Large 9.80 65 637

Total 426 2495

Table 7 Estimation of population size with respect to the Bayesian Network classification model
generated using of the Site B data set.

An accuracy of 86% might be argued to be unsatisfactory, however, we can point
to a number of reasons for the difference between the predicted and “ground truth”
population sizes. Firstly the data from which the classification (regression) models
were generated might not reflect the data to which they were applied as closely as
was anticipated. Measures for determining the similarity between satellite image
data sets are a subject for future work. Secondly, as already noted, there was a two
year time lag between the date of the census collection (2011) and the date of the
satellite image acquisition (2013). Manual inspection of a number of images showed
signs of derelict (abandoned) households. It may thus be the case that between 2011
and 2013 depopulation had taken place and that the produced population estimates
were in fact a better reflection of population size than initially thought. There have
been recent reports concerning the depopulation of rural Ethiopia [16]. Thirdly, and
again as already noted previously, census collection is often viewed with suspicion.
Local authorities may suspect that it is to be used for the levying of a local tax and
thus there may be an incentive to under report population size. Alternatively it may
be suspected that the census is to be used for allocating development funds in which
case there may be an incentive to over report.

6 Conclusions

In this paper we have presented a taxonomy for image representation for image
mining together with an illustration of the practical application of the taxonomy in
the context of an automated census data collection application. The main premise is
that although the data mining algorithms that we might wish to apply to image data
are well understood the end to end Knowledge Discovery in Data (KDD) process is
less well established. The main challenge is how to represent image data in such a
way that the salient features are maintained while at the same time ensuring com-
patibility with the data mining algorithms to be applied. The proposed taxonomy,
at a high level, differentiates between global representations and local representa-
tions; the first being directed at applications where we wish to consider image data
in its entirety and the second where we wish to consider one or more objects within
individual images. A distinction was also made between objects that are connected
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(contiguous) and not connected. In the taxonomy, again at a high level and regard-
less of whether we are considering images in their entirety or at a local level, we
can identified three categories of representation: (i) statistical, (ii) tree (or graph)
-based and (iii) point series based. The particular nature of the individual represen-
tations that can be included in the categories depends on whether we are working at
a global or local level. At the local level we can, for example, consider the nature of
the boundary of the objects of interest which would not be applicable at the global
level.

The taxonomy was applied to a census estimation application domain so as to
illustrate the usage of the ideas presented by the taxonomy with respect to a novel
application domain. The motivation for the application was the resource required
to collect census data. The idea was to build predictors to predict individual house-
hold sizes from satellite images of households. It was noted that although the idea
would not work well in urban areas it would work well in rural areas where the cost
of census collection is the greatest. Three exemplar representations were consid-
ered, one from each category: (i) a quadtree representation from which frequently
occurring sub-trees were extracted and used to generate feature vectors (one per
household), (ii) a statistics-based representation founded on the use of LBPs and
(iii) a point series representation founded on the use of collections of histograms.
Training and test data was obtained from two sites (Site A and Site B) in a rural
area of Ethiopia featuring households with a known location and “family size”. The
known locations were used to obtained Google Satellite images of the individual
households. The distinction between the two sites was that for Site A the satel-
lite imagery was obtained during the wet (green) season whilst that for Site B was
obtained in the dry (brown) season. The collated individual household images were
then represented, using the three selected exemplar representations, to produce three
versions of the data. This data was then used to train predictors. Two categories of
predictor model were considered. Classification models where a “family size” class
label was predicted (“small”. “medium” or “large”), and regression models where
an actual household size was produced. A range of classification and regression
models were considered coupled with different feature selection mechanisms. Of
these two classification models and two regression models were found to give the
best performance when evaluated using the training/test data and TCV, as follows:

1. Statistics-based using LBPs, Neural Network classification (generated using Site
A data) and χ2 feature selection.

2. Tree-based using Bayesian Network classifier generated (generated using Site B
data) and Gain Ratio feature selection.

3. Statistics-based using LBPs, SVM Linear regression (generated using Site A
data) and CFS feature selection.

4. Statistics-based using LBPs, SVM Linear regression (generated using Site B
data) and CFS feature selection.

The prediction models were then applied to a wider area (but in the same rural re-
gion of Ethiopia), an entire village, where the number of households and population
size was known. The best performing approach was found to be the LBP Statistics-
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based representation coupled with a SVM Linear regression model (generated using
the Site B data) and CFS feature selection. An accuracy of 85.63% was recorded.
Although (at face value) the population estimation produced was not as accurate as
the ground truth census data (this was to be expected), the proposed method offered
significant cost and time savings. A number of reasons as to why the prediction was
not identical to the “ground truth” value can be identified:

1. The training data from which the prediction models were generated might not re-
flect the data to which they were applied as closely as was anticipated. Measures
for determining the similarity between satellite image data sets are a subject for
future work

2. There was a two year time lag between the date of the census collection (2011)
and the date the satellite images were acquired (September 2013). Manual in-
spection of a number of images indicated signs of derelict (abandoned) house-
holds. It was thus conjectured that it might be the case that between 2011 and
2013 depopulation had occurred and that the produced population estimate was
in fact a better reflection of population size than initially thought.

3. Census collection is often viewed with suspicion therefore there may have been
incentives to over or under report and therefore the “ground truth” value night
not have been entirely accurate (it should not be regarded as a “gold standard”).

Whatever the case the results indicated that by using the proposed framework effec-
tive population estimates can be obtained, in rural areas, at a very low cost (almost
zero).

With respect to image mining in general it can be observed that decisions are
regularly made with the support of imagery of some sort (Satellite Image, MRI,
OCT, and so on). It can also be observed that our ability to collect imagery of all
kinds (both 2D and 3D) has enhanced rapidly over the last decade (we can do it
cheaper and faster); we have seen a rapid growth in the global image sensor market.
There is substantial benefit to be gained from applying image mining to this image
date although it is essential that appropriate image representation is used. There is
also a lot of scope for alternative representations, especially fuzzy and deep learning
approaches and lots of scope for further application. A further issue to be addressed
is explanation mechanisms to give reasons as to why particular predictions and/or
classifications were arrived at with respect to previously unseen images; this is of
particular relevance with respect to medical imaging applications.
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