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Abstract16

The accuracy of Deep Learning (DL) algorithms can be improved by com-

bining several deep learners into an ensemble. This avoids the continuous

endeavor required to adjust the architecture of individual networks or the

nature of the propagation. This study investigates prediction improve-

ments possible using Deep Ensemble Learning (DEL) to determine four

distinct multiscale basis functions in the mixed Generalized Multiscale

Finite Element Method (GMsFEM), involving the permeability field as the

only input. 376,250 samples were initially generated, filtered down to

367,811 after data pre-processing. A standard Convolutional Neural Net-

work (CNN) named SkiplessCNN and three skip connection-based CNNs

named FirstSkipCNN, MidSkipCNN, and DualSkipCNN were developed

for the base learners. For each basis function, these four CNNs were

combined into an ensemble model using linear regression and ridge re-

gression, separately, as part of the stacking technique. A comparison of
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the coe�cient of determination (R2) and Mean Squared Error (MSE) con-

firms the e↵ectiveness of all three skip connections in enhancing the per-

formance of the standard CNN, with DualSkip being the most e↵ective

among them. Additionally, as evaluated on the testing subset, the com-

binedmodels meaningfully outperform the individual models for all basis

functions. The case that applies linear regression delivers R2 ranging from

0.8456 to 0.9191 and MSE ranging from 0.0092 to 0.0369. The ridge re-

gression case achieves marginally better predictions with R2 ranging from

0.8539 to 0.922, and MSE ranging from 0.009 to 0.0349 because its solu-

tion involves more evenly distributed weights.
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1. Introduction21

The wide range of Machine Learning (ML) algorithms available all22

have to contend with reducible and irreducible errors. The latter is typi-23

cally a consequence of noise within the datasets being evaluated and can-24

not be addressed by the ML models themselves. On the other hand, bias25

and variance combine to generate reducible errors, which can be e↵ec-26

tively reduced by the algorithmic actions of the ML. Bias errors are a con-27

sequence of the di↵erences between predicted and actual dependent vari-28
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able values generated with a training subset of samples. Variance errors29

result from small fluctuations in the training subsets actual values. Math-30

ematically, we may assume that there is an input vector X (here the perme-31

ability field) that influences an output vector Y (here the basis function).32

The function f (X) denotes the correct relationship between the input and33

output, but it is accompanied by some noise that can be represented by �✏234

that constitutes the irreducible error:35

Y = f (X) +�✏2 (1)

ML models strive to determine the best function f̂ (X) that can predict36

the true underlying function f (X) as precisely as possible. Given the Total37

Error (TE) as TE = E[(Y� f̂ (X))2]:38

TE = [Ef̂ (X)� f (X)]2 +E[f̂ (X)�Ef̂ (X)]2 +�✏2 (2)

TE = bias2 + variance + irreducible error (3)

Simpler models tend to generate high bias accompanied by low vari-39

ance. On the other hand, more elaborate models tend to generate lower40

bias accompanied by higher variance. Linear regression, for example,41

has a high bias since it tends to oversimplify and, therefore, cannot accu-42

rately capture the relationship between input variables and output data.43

In contrast, artificial neural networks involving multiple hidden layers44
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and many nodes tend to generate substantial variance, because they tend45

to overfit training datasets, making it di�cult for the trained models to46

be generalized and accurately predict unseen data. High bias is typically47

a consequence of models underfitting a dataset, whereas high variance is48

typically a consequence of models overfitting a dataset. As a modeling49

strategy, it makes sense, therefore, to attempt to trade o↵ bias and vari-50

ance errors to assist the trained models in being applied in a more gener-51

alized way, thereby more accurately predicting data not seen during the52

training/validation process.53

Ensemble learning, where by a number of base learners are combined54

into an “ensemble” to produce a single model whose predictive or clas-55

sification accuracy is better than that of the individual component base56

learners, is a well-established technology (Wang et al., 2011, 2014; Nguyen57

and Logofătu, 2018; Kanda et al., 2020; Verma and Chandra, 2023; Sahin58

and Demir, 2023). The majority of published research directed towards59

ensemble learning has been founded on traditional ML techniques; for60

example Random Forests (Ho, 1998). Such established mechanisms repre-61

sent Shallow Ensemble Learning (SEL). The alternative is Deep Ensemble62

Learning (DEL), which combines a number of deep learners into an en-63

semble. Although Deep Learning (DL) algorithms tend to generate fewer64

prediction errors than ML methods when applied to many datasets, there65

is scope to further improve their accuracy. Combining several deep learn-66

ers into an ensemble is one way to potentially achieve this. Moreover, in67
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a set of deep models, the di↵erent strengths of each DL model may com-68

plement one another, and weaknesses cancel each other out. Unlike SEL,69

DEL has received little attention to date. Rather, attempts to improve DL70

accuracy have been focused on optimizing the various control-parameter71

values used by deep learners, for example by adjusting the architecture of72

a DL network or the nature of the propagation applied. This study chal-73

lenges this view by investigating the performance of DEL. It is not possi-74

ble to use common ML techniques such as Fully Connected (FC) models75

for the problem investigated in this paper, which is mapping an input of76

100 ⇥ 9 to an output of 900 ⇥ 1. This is mainly because the input is a77

2D tensor. Among DL techniques, recurrent neural networks are usually78

applied to video, sound, or text data. On the other hand, Convolutional79

Neural Networks (CNNs) are specifically designed for problems with 2D80

arrays. Therefore, base learners are selected from complex CNN models81

with di↵erent variants. These base learners are then combined using two82

regression models (linear regression and ridge regression), separately.83

A key motivation for this study is to develop DEL models to assist in84

the prediction of fluid-flow characteristics in subsurface reservoirs. This85

is of interest to provide more detailed insights to the flow of fluids into86

producing wells penetrating oil and gas reservoirs, the seepage of fluids87

through soil, and land subsidence as a consequence of groundwater and88

oil and gas extraction. With respect to oil and gas reservoirs, the main89

goal is to predict the performance of reservoirs at any future point in time90
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and to optimize petroleum fluid recovery under di↵erent operating condi-91

tions. Fluid flow in petroleum reservoirs is typically modelled using a set92

of non-linear Partial Di↵erential Equations (PDEs). In general, these equa-93

tions can be solved analytically (exact solutions) or numerically (approx-94

imate solutions). However, for reservoir simulation models comprised of95

many thousands of grid cells the datasets generated to do this involve hun-96

dreds of thousands of data points leading to long and tedious calculations.97

Moreover, the datasets involved are typically too large for ML models to98

handle. This study provides an innovative solution by developing e�cient99

and reliable DEL models to assist with a specific time-consuming aspect100

of fluid-flow simulation.101

The developed DEL models are applied to a large dataset associated102

with subsurface fluid flow modeling. This dataset can be modeled in dif-103

ferent ways but a mixed Generalized Multiscale Finite Element Method104

(GMsFEM) is used to generate multiscale data formats. 376,250 samples105

(data records) were generated with a 2D permeability field (in a Cartesian106

coordinate system) representing the input variable and the multiscale ba-107

sis functions as the output. Traditionally, a substantial number of PDEs108

need to be solved to produce these functions, but this involves consid-109

erable time and computational e↵ort. Deep ensemble learning made up110

of several deep base models o↵ers an innovative and more e↵ective alter-111

native to PDE solvers, specifically with respect to determining accurate112

reservoir pressure distributions to improve estimates of resource recovery113
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factors from oil/gas reservoirs.114

Following on from this introduction, Section 2 considers ensemblemod-115

eling along with published research relevant to it. A review of the mixed116

GMsFEM is given in Section 3. The characteristics of stacking CNN en-117

semble models are presented in Section 4. Prediction error evaluation of118

applications of the developed DEL models to the subsurface fluid flow119

dataset, in terms of the coe�cient of determination (R2) andMean Squared120

Error (MSE), is presented in Section 5. Section 6 discusses the implications121

of the results generated leading to the conclusions drawn (Section 7).122

2. Ensemble Modeling with Its Related Research123

Ensemble systems can be categorised according to themethod bywhich124

the ensemble learning is achieved:125

1. Boosting: Boosting (Schapire, 1990; Kumari and Toshniwal, 2021) is126

a sequential method. The di↵erent base learners are dependent on127

each other. The aim is to fit models in steps such that model training128

at each step is influenced by the models constructed in the previous129

steps. Each step is focused on examples in the dataset that have been130

poorly predicted by the previous steps.131

2. Bagging: Bagging (standing for bootstrap aggregating) (Breiman,132

1996a; Tüysüzoğlu and Birant, 2020) is a parallel approach to en-133

semble learningwheremultiplemodels are generated using the same134

ML algorithm but with di↵erent portions of the training data, which135
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are then merged to produce a single more robust model than the in-136

dividual base models. Multiple training subsets (bootstrap samples)137

are randomly selected from the initial training dataset with replace-138

ment (a single row of the initial data might be chosen zero, one, two,139

or even more times). Each model is developed from one subset, re-140

sulting in an ensemble of several models. The final prediction is141

obtained by averaging (or simply ranking) all the predictions of the142

di↵erent learners.143

3. Stacking: Unlike boosting and bagging, stacking (Breiman, 1996b;144

Yin et al., 2021) uses base learners generated by di↵erent machine145

learners. The voting ensemble represents a simple stacking method146

in which a statistical mechanism is used to combine di↵erent types of147

ML models, such as decision trees and support vector machines. No148

matter how well the individual ML models perform on the training149

dataset, they all contribute equally to the merged model. One can150

consider the simple average of the predictions from the underlying151

MLmodels. However, using a weighted average ensemble makes the152

results more sensitive to the prediction errors generated by each con-153

tributing ML model. A further improvement can be made through154

stacked generalization, which applies a ML model to learn how to155

best combine the predictions derived from the base learners. It does156

this by first developing base models using the training dataset in-157

puts. It then feeds the underlying ML models into a meta-learner,158
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which attempts to make a new model using the predictions of the159

weak learners based on new data.160

Ensemble techniques are now widely applied in various engineering161

and geoscience disciplines. For example, three models of Bayesian, func-162

tional, and meta-ensemble were applied to Land Subsidence Susceptibil-163

ity (LSS) mapping (Oh et al., 2019). The models split the dataset 50:50164

between training and testing subsets with errors measured in relation to165

operating-characteristic curve. The ensemble including the logit boost166

model delivered the most accurate (91.44%) LSS maps.167

Slope stability predictions were generated using a hybrid stacking en-168

semble method (Kardani et al., 2021). An artificial bee colony optimizer169

was applied to identify the optimal combination of base classifiers (ensem-170

ble level 0). These were then used to develop an e↵ective meta-classifier171

(ensemble level 1), considering eleven separate tuned ML models. Fi-172

nite element analysis was employed to create a synthetic database (150173

records) for training the models. The trained models were then applied174

to predict 107 naturally occurring slope cases to test model performances.175

The hybrid-stacking ensemble model generated less errors than each ML176

model used in isolation.177

Ensemble random forest, ensemble Gradient Boosted Regression Tree178

(GBRT) and multiLayer perceptron neural network were applied to model179

the spatial extent of landslides in Norway (Liu et al., 2021). Eleven landslide-180

influencing factors were considered related to geomorphologic, geologic,181
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geo-environmental, and anthropogenic e↵ects. 3,399 positive landslide182

records and 6,798 non-landslide were considered. Seventy percent of the183

data records in each of these two categories were selected for training the184

models. The remaining thirty percent of the data records were used to185

test the trained models. Slope angle was confirmed by the models to be186

the most important influencing factor. The ensemble GBRTmodel outper-187

formed the other ensemble models, achieving a 95% probability of detect-188

ing landslides in that region.189

Support vector machine, multilayer perceptron, random forest, Adap-190

tive Boosting (AdaBoost), and extreme gradient boosting were used to de-191

velop synthetic geochemical logs for pre-salt reservoirs in Brazil (de Oliveira192

and de Carvalho Carneiro, 2021). Seven petrophysical logs: natural gamma-193

ray, gamma-ray spectroscopy, density, photoelectric factor, neutron poros-194

ity, nuclear magnetic resonance, and sonic formed the input variables.195

The chemical element concentrations for Al, Ca, Fe, Mg, Na, Si, S, and196

Ti were the prediction objectives. In addition to showing the best results,197

AdaBoost was found to be the most practical tree-ensemble algorithm to198

apply as it involved simpler pre-processing and control variable optimiza-199

tion.200

3. Application Focus201

The objective of the ensemble models developed is to predict subsur-202

face fluid flow characteristics. This is of interest to both engineers and sci-203
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entists with respect to, for example, the flow of fluids into producing wells204

penetrating oil and gas reservoirs, the seepage of wastewater through soil,205

and land subsidence as a consequence of groundwater and oil and gas ex-206

traction. With respect to oil and gas reservoirs, the main goal is to predict207

the performance of reservoirs at any future point in time and to optimize208

the petroleum fluid recovery under di↵erent operating conditions. Fluid209

flow in petroleum reservoirs is typically modelled using a set of non-linear210

PDEs. In general, these equations can be solved analytically (exact solu-211

tions) or numerically (approximate solutions).212

A mixed GMsFEM method, as a numerical method has recently been213

proposed to solve Darcy’s flow conditions (linear pressure gradient versus214

velocity) considering single-phase fluids in a porous medium character-215

ized by heterogeneties in two dimensions (i.e., matrix composition and216

fracture distribution) (Chen et al., 2020). The model approximates reser-217

voir pressure in multiscale space. It does so by applying several multiscale218

basis functions to a single coarse grid of the reservoir volume. The fluid219

velocity is directly estimated across a fine grid space.220

The fluid flow conditions are defined as:

k�1u +rp = 0 in ⌦ (4)

r.u = f in ⌦ (5)
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Heterogeneous boundary conditions are included:

u.n = g on @⌦ (6)

in which k is permeability, u is the Darcy velocity, p is the pressure, f is221

the source term, g is the normal to the Darcy velocity prevailing at the222

reservoir boundary, ⌦ is the computational domain and n is the outward223

unit norm vector on the boundary.224

To illustrate the general solution framework of the mixed GMsFEM, ⌧H

is considered a confirming partition of⌦ into finite elements with a coarse

block size H , and ⌧h is the fine grid partition with mesh size h. Assuming

V =H(div,⌦) and W = L2(⌦), the mixed finite element spaces become:

Vh =
n
vh 2 V : vh (t) = (btx1 + at,dtx2 + ct) , at, bt, ct, dt 2 R, t 2 ⌧h

o

Wh =
n
wh 2W : wh is a constant on each element in ⌧h

o

n
 j

o
represents a set of multiscale base functions related to the coarse ele-

ment. The multiscale space relating to pressure (p) can then be expressed

as the linear extent of the local basis functions. This relationship is ex-

pressed as:

WH = � { i} in ⌧H

In that form, the mixed GMsFEM is configured to find (uH,pH ) 2 (Vh,WH )
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constrained by:

Z
k�1uH.vH �

Z
div (vH )pH = 0 8 vH 2 V 0

h (7)

Z
div(uH )wH =

Z
f wH 8 wH 2 WH (8)

in which uH.n = gH on @⌦ is relating to the coarse edges at the boundaries,225

whereas gH is the average of function g at those coarse edges.226

It is necessary to establish a multiscale space, WH , to approximate p.

This is achieved by solving local cell conditions for each coarse grid ele-

ment by applying Dirichlet’s boundary conditions. If Ti 2 ⌧H represents

the coarse grid elements relating to ⌦, the purpose is to find (u(i)
j ,p(i)j ) 2

(Vh, Wh)|Ti by solving the following problem on Ti :

k�1u(i)
j +rp(i)j = 0 in Ti (9)

div(u(i)
j ) = 0 in Ti (10)

where (Vh, Wh)|Ti is the restriction of (Vh, Wh) on Ti .227

The coarse grid boundary element represents the junction of fine grid

edges, i.e., @Ti =
SJi

j=1 ej in which Ji is the total number of fine grid edges

at boundary Ti . �(i)j represents a piecewise constant related to @Ti and

the fine grid and = 1 for ej and = 0 for the remaining fine grid edges.
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Therefore, the boundary condition on the boundary of Ti is taken as the

Dirichlet boundary condition:

p(i)j = �(i)j on @Ti (11)

By combining the local problem solutions a snapshot of spatial conditions

is derived. Assuming  i,snap
j B p(i)j defines the snapshot fields, then the

snapshot space can be expressed:

Wsnap = span
⇢
 i,snap

j : 1  j  J i , 1  i  Nt

�
(12)

In the case of using the single-index notation:

Wsnap = span
n
 snap

i : 1  i  Msnap

o
(13)

where Msnap =
PNt

i=1 Ji represents the total number of snapshot fields.228

The snapshot space can then be further reduced by solving local grid

problems. The local problem solutions are referred to as the o✏ine space.

The snapshot space corresponding to Ti becomes:

W (i)
snap = span

⇢
 i,snap

j : 1  j  J i
�

In a local grid problem, the real number � � 0 and the function p 2W (i)
snap
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need to be derived

ai (p,w) = si (p,w) 8w 2W (i)
snap (14)

For each Ti :

ai (p,w) =
X

e

k [p] [w] and si (p,w) =
Z

kpw in Ti (15)

in which [p] and [w] are the jump of functions p and w, respectively. Also,229

e represents the fine edge interior of Ti .230

The eigenvalues of Equation 14 are arranged in increasing order:

�(i)1 < �(i)2 < · · · < �(i)Ji (16)

where �(i)k denotes the kth eigenvalue for Ti . The corresponding eigenvec-

tors are Z (i)
k = (Z (i)

kj )
Ji

j=1
with Z (i)

kj being the jth component of the vector Z (i)
k .

Initial li eigenfunctions are selected to represent the o✏ine space. O✏ine

basis functions are then defined as:

 i,of f
k =

JiX

j=1

Z (i)
kj 

i,snap
j k = 1, 2, . . . , li .

Then, global o✏ine space becomes:

Wof f = span
⇢
 i,of f

k : 1  k  li , 1  i  Nt

�
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Applying single-index notation, the global o✏ine space can be defined as:

Wof f = span
⇢
 of f

k : 1  k  Mof f

�

where Mof f =
PNt

i=1 li is the total number of o✏ine basis functions.231

Each  of f
k can be expressed by a vector  of f

k which contains coe�-

cients from of f
k relating to the fine grid basis functions. Thus:

Rof f =

 
of f
1 , . . . , 

of f
Mof f

�

The o✏ine space is mapped using these functions to the fine grid space.

The mixed GMsFEM system (Equations 7 and 8) is expressed in matrix

terms as:

Mf ineUH +BT
f ineRof f PH = 0 (17)

RT
of f Bf ineUH = RT

of f FH (18)

Mf ine constitutes a symmetric, positive definite, and sparse matrix. UH232

and PH are the unknown fluid velocity and pressure vectors that describe233

grid spaces Vh and WH , respectively. Execution of the mixed GMsFEM234

therefore requires two fine grid matrices to be constructed (Mf ine, Bf ine)235

accompanied by one o✏ine matrix (Rof f ).236

Fluid velocity can be solved directly from the fine grid matrix combi-

nation. Considering k as a diagonal tensor,Mf ine is readily estimated with
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the diagonal matrix [Mf ine, applying the trapezoidal quadrature rule. The

convergence rate of that easier-to-execute system is essentially the same

as that using the unmodified matrix. Mf ine can therefore be replaced by

that diagonal matrix [Mf ine without compromising prediction accuracy. As

[Mf ine is easier to invert, the system described by Equations 17 and 18 is

solved as follows:

�RT
of f Bf ine [Mf ine

�1
BT
f ineRof f

P
H
= RT

of f FH

Taking this approach, an original mixed formulation is expressed approx-237

imately by a positive-definite, sparse linear system. In that linear system,238

fewer pressure unknowns are involved for each coarse-grid element.239

Generally, the number of PDEs requiring solutions to enablemultiscale240

basis functions to be derived is dependent on the number of local cell and241

local eigenvalue problems involved. The local cell problem relating to242

the coarse grid relates to the original system definition but excludes the243

source function in Equation 5. A boundary condition (delta) relates to the244

coarse grid boundary; delta=1 for fine grid edges and delta=0 for coarse245

grid edges. Local cell problems are therefore determined by the fine grid246

edges impacting the coarse grid boundary. In the model configured for247

this study, the number of fine grid edges/coarse grid boundary is 12.248

In this study, the Karhunen-Loeve expansion was used to parameterize249

the heterogeneous permeability field. This Gaussian random field genera-250
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tion method decomposes a random process into the eigenvalue and eigen-251

function of its covariance kernel. The fine grid system adopted involves a252

uniform 30⇥30 mesh. On the other hand, a sparser, uniform 10⇥10 mesh253

was applied to represent the coarse grid network (Figure 1). This configu-254

ration consists of 1300 separate PDEs, made up of 1200 PDEs addressing255

the local cell problems (100 coarse grid mesh units by 12 fine grid edges)256

plus 100 local eigenvalue problems (one per each 100 coarse grid mesh257

units). The input to this model is comprised of a randomly-generated per-258

meability field. For each permeability field, there are five basis functions,259

(numbered Basis 1 to 5). Basis 1 is a piecewise constant, with binary val-260

ues of �1 and +1. Basis 1 is defined as part of the finite element method,261

it therefore requires no training for DL modeling. On the other hand, Ba-262

sis 2 to 5 take values distributed across the range (�1, +1), and therefore263

require training for DL modeling.264

4. Stacking CNN Ensemble Model265

A schematic of the proposed stacking CNN ensemble model is given266

in Figure 2. The data generation and pre-processing steps involved are267

described in Sub-section 4.1. The mechanism adopted for training the268

base learners is outlined in Sub-section 4.2. The procedure for combining269

the DL model results is presented in Sub-section 4.3.270
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Figure 1: Schematic description of the permeability field of a simulated fractured porous
reservoir formation. Matrix permeability is assumed to be 4 milliDarcies (mD). Fracture
permeability is assumed to be 2000mD. Fine grid squares represent the formationmatrix
(blue) in some cases and fractures (yellow) in other cases (selected randomly). The red
lines define the coarse grid. Each coarse grid square contains of nine fine grid squares.
There are fifteen fractures assigned to this porous medium.

4.1. Data preparation and pre-processing271

The ranges of permeability values applied to the formationmatrix were272

1, 2, 3, 4, and 5 mD, and to the fractures were 500, 750, 1000, 1250, 1500,273

1750, and 2000 mD. The number of fractures per 10⇥ 10 coarse grid was274

varied between 1 and 25. This ranges meant that 875 cases (5 matrix per-275

meabilities by 7 fracture permeabilities by 25 di↵erent fracture densities)276

in total required evaluation by the DL model. The format defined for the277

permeability field was as a vector (900 ⇥ 1), subsequently adjusted to be278
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Figure 2: The workflow diagram of the stacking CNN ensemble model. Four base learn-
ers of SkiplessCNN, FirstSkipCNN, MidSkipCNN, and DualSkipCNN are developed us-
ing training/validation subsets. After being trained, they are used to make predictions
on the validation data (PSkiplessCNN, PFirstSkipCNN, PMidSkipCNN, and PDualSkipCNN). Then,
two meta models are separately developed using linear regression and ridge regression.
Once the meta models are trained, they can be used to make predictions on the testing
data (28,879 samples).

expressed as a 2D tensor (100 ⇥ 9), in which, coarse grid units=100 and279

each coarse grid contains 9 fine grids. Each row in the array therefore rep-280

resents a coarse grid. Such a configuration enables the use of 2D CNN281

kernels. However, it was necessary to maintain the five basis functions as282

900 ⇥ 1 vectors, so that they could be evaluated in the FC layers forming283

the final section of the CNN network.284

Each of the 875 cases was evaluated 350 times as part of model train-285
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ing. Additionally, 40 validation runs, and 40 independent testing runs286

were executed for each case. Matlab code was used to run the mixed GMs-287

FEM models. These models generated 376,250 data records one for each288

10⇥10 coarse grid configuration. 306,250 records were used for DLmodel289

training, 35,000 records for DL model validation, and 35,000 for indepen-290

dently testing the trained and validated models. The random generation291

of each permeability field (10⇥10 coarse grid) involves the possibility that292

some duplicate fields could be generated. Consequently, the generated293

dataset was filtered to remove any duplicate data records. This is neces-294

sary to remove the risk of introducing bias towards specificmodel configu-295

rations in the DL analysis. This data filtering step removed 1739 duplicate296

training data records , 579 duplicate validation data records, and 6121297

duplicate testing data records were excluded. This pre-processing step re-298

duced the training subset to 304,511 data records, the validation subset299

to 34,421 data records, and the independent testing subset to 28,879 data300

records.301

4.2. Training the base learners302

The CNN algorithm has, over recent years, become one of the most303

trusted DL models with respect to many application domains (Rao et al.,304

2017; Chen and He, 2018; Pratt et al., 2019; Hakim et al., 2022). The CNN305

was originally designed to solve problems with 2D arrays, particularly306

images, although it can also be applied to 1D arrays. It progressively and307
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flexibly learns feature relationships, spatially in 2D models, by applying308

an optimizer of choice to various types of network layers. The primary309

CNN layer types are (i) convolutional, (ii) pooling, and (iii) FC, usually310

configured in that sequence. In mathematical sciences, convolution is a311

specialized linear operation on two functions that gives a third modified312

function. In the context of CNN, the fundamental idea is to consider an313

input (an array of numbers) as the first function and a convolutional filter314

(kernel) as the second. A kernel is a relatively small array of randomly315

generated numbers. The kernel moves over the whole input. The dot316

product of the kernel and input is calculated at each sub-region (with the317

same size as the kernel) of the input, obtaining an output value in the318

corresponding location of the convolved input. This process produces a319

feature map and is performed using di↵erent kernels. The outputs of the320

convolution process are passed through an activation (transfer) function.321

Such functions typically transform a linear operation into a nonlinear sys-322

tem (Yamashita et al., 2018; Elgendy, 2020).323

The key di↵erence between a parameter and a hyperparameter is that324

a model’s parameters are automatically updated during the training pro-325

cess, whereas hyperparameters are set manually before the model begins326

training, for example, the size and number of kernels. Including more327

convolutional layers in a CNNmodel increases the number of parameters.328

The more parameters there are in a model, the more computationally ex-329

pensive the learning process is. This is where a subsampling operation can330
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be useful. In DL, pooling layers use statistical functions (maximum and331

average pooling) to decrease the number of trainable parameters. This can332

decrease the computational complexity of mathematical operations and333

sometimes improve the robustness of feature maps. Pooling layers come334

after convolutional layers (Yamashita et al., 2018; Elgendy, 2020).335

When the output of the network is in the format of a vector, feature336

maps in the final convolutional or pooling layer are first flattened to a one-337

dimensional array, and then connected to FC layers. In FC layers (dense338

layers), each neuron of a layer is connected to whole neurons in the previ-339

ous layer and the next layer. It is common to put a dropout layer after each340

FC layer (except the output layer) at the end of a CNN model. Dropout341

omits a percentage of neurons in the previous FC layer. This percentage,342

as a hyperparameter, is defined when constructing a network. During the343

training process, some neurons may dominate, producing errors. Dropout344

balances a network, checking that all neurons work equally to minimize345

the cost function as much as possible (Yamashita et al., 2018; Elgendy,346

2020).347

To develop the base learner for this study, the 304,511 training data348

records, together with the 34,421 validation data records were employed.349

Distinct CNN model configurations, involving various combinations of350

convolutional, pooling, FC, Batch Normalization (BN), regularization, and351

dropout filtering were tested separately for each basis function requiring352

training (Basis 2 to 5). A similar optimal CNN configuration for each of353
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those four basis functions (Figure 3: identified as SkiplessCNN) was ob-354

tained. That initial CNN architecture consists of five convolutional layers,355

two FC layers but does not include any pooling layers. Convolutional lay-356

ers 1 to 5 (CONV1 to CONV5) consist of 5, 10, 15, 20, and 25 kernels,357

respectively. To determine the size of a convolution output for an input358

with the size of Ih(height)⇥Iw(width) and a kernel with the size of Kh⇥Kw,359

we can use Equation 19 if the padding is set to ‘valid’:360

Output height =Oh = (Ih �Kh)/Sh +1

Output width =Ow = (Iw �Kw)/Sw +1
(19)

where Sh and Sw are the vertical and horizontal strides. When padding is361

set to ‘same’, the size does not change. The kernel size for all convolutional362

layers is 3 ⇥ 3, and Sh = Sw = 1. The padding was set to ‘valid’ only for363

CONV5. This means there was no padding for the first four convolutional364

layers. Therefore, CONV1, CONV2, CONV3, CONV4, and CONV5 have365

the size of 98⇥ 7, 96⇥ 5, 94⇥ 3, 92⇥ 1, 92⇥ 1, respectively.366

Each convolutional layer is followed by a single BN layer of the same367

dimensions. Typically, neural networkmodels convergemore quickly when368

the input to each layer is normalized; hence the value of adding the BN lay-369

ers. Each FC layer contains 2000 neurons. For a given neuron or kernel,370

the inputs are multiplied by weights and the resulting products summed371

together. A bias term is then applied to that sum. Such rigid computations372

mean that only linear transformations are performed on the layer inputs373
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using the weights and biases to generate the layer outputs. Although this374

operation makes the neural network simpler, it is less powerful and un-375

able to learn complex patterns in a dataset. This is where the activation376

function is beneficial. Mathematically, this can be represented as shown377

in Equation 20 where wi represents the weight value, zi is the input value,378

b is the bias, f refers to the activation function applied, and y is the de-379

pendent variable prediction output. The developed models in this study380

used the ‘Rectified Linear Unit (ReLU)’ activation function for the convo-381

lutional layers, ‘sigmoid’ activation function for the FC layers, and ‘linear’382

activation function for the output.383

y = f (
nX

i=1

(wizi) + b) (20)

In order to better understand the standard architecture (i.e., Skipless-384

CNN) developed in this study, it is compared to structurally similar CNN385

architectures AlexNet (Krizhevsky et al., 2017) and VGGNet, also known386

as VGG16 (Simonyan and Zisserman, 2014). AlexNet has five convolu-387

tional layers, three of which are followed by maximum pooling layers to388

decrease the computational cost. The number of kernels in each con-389

volutional layer is 96, 256, 384, 384, and 256. There are two FC lay-390

ers of 4096 neurons and a 1000-neuron output layer at the end of the391

network. VGGNet contains thirteen convolutional layers, five maximum392

pooling layers, two FC layers of 4096 neurons, and an output layer with393
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1000 neurons. The number of kernels used in the convolutional sections394

is 64, 128, 256, and 512. Similar to common CNN architectures, going395

deeper through the structure of developed models, the number of feature396

maps increases and their size decreases. However, the number of feature397

maps (equals the filters number) defined in this research is significantly398

less than that of common CNN models. In DL, pooling layers are primar-399

ily used to decrease the number of trainable parameters, mostly when the400

input shape is high, e.g., in AlexNet whose input shape is 224⇥224. How-401

ever, the input dimension in this research is 100 ⇥ 9. This is why there402

is no pooling layer in our developed models. BN, similar to AlexNet, has403

helped to prevent over-fitting. As with AlexNet and VGGNet, the num-404

ber of neurons (units) remained constant in FC layers, but no drop out405

layer was used in the proposed structure because it had a negative e↵ect406

on the performance. The base structure of this work is for a regression-407

type problem, while AlexNet and VGGNet were essentially designed for a408

classification intent. Therefore, a linear activation function is used in our409

model for the output layer, but a softmax in AlexNet and VGGNet.410

The CNN training process seeks to find optimum values for weights411

and biases applied to kernels (convolutional layers) and neurons (FC lay-412

ers). Such values generate the lowest collective errors for all data records413

evaluated between actual and predicted dependent variable values. The414

back-propagation algorithms are commonly applied to train many types415

of neural network. They calculate the gradient of the loss function (cost416
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function) using the values assigned to the weights and biases. The loss417

function is a measure of how well an algorithm models a training dataset418

by evaluating the similarity between real and predicted outputs.419

The di↵erent optimizers available all strive to achieve a minimum loss420

or cost value. Multi-layer perceptron neural networks focus on the feed-421

forward sequence through its layered structure on to which weights and422

biases are initialized. However, in training the backward pathway is used423

to modify the layer weights and biases in each iteration. In that way back424

propagation acts to improve a model’s performance.425

The CNNmodels in this study were constructed using Keras with Ten-426

sorFlow as a backend on Python. The models were compiled using ‘MSE’427

as the loss (objective) function. The learning rate is a key DL hyper-428

parameter. It states how quickly a model learns in each epoch that pa-429

rameters are updated. When it is too small, the training process takes a430

long time. If too large, it results in sub-optimal CNN learning, locking431

into sets of weights and biases too quickly, which can lead to a less stable432

training process that tends to converge prematurely. Hence, setting the433

right value of the learning rate is crucial. Adaptive methods such as Adam434

can be used to automatically resolve this issue. Adam applies distinctive435

learning rates to each scalar variable. It progressively adapts those rates436

throughout the training iterations, with those adaptions being influenced437

by partial-derivative trends of rates applied to each variable in previous438

model iterations. Adam is gradient based in its calculations and bene-439

27



fits from a combination of its AdaGrad component to cope with sparse440

gradients and an RMSProp function in its application. It is suitable for441

DL applications to large datasets with many data records and/or multiple442

variables. The Adam learning rate can adjust at a finer scale as the opti-443

mum values are approached, although in some cases such fine tuning can444

result in overfitting. AMSGrad extends the performance of the Adam op-445

timizer by converging in a more e↵ective and smoother manner, avoiding446

step changes. By storing the highest values of second- momentum vectors447

generated in all previous model iterations, AMSGrad is able to normal-448

ize the moving average gradient in each iteration. To benefit from these449

advantages, the AMSGrad with the default values i.e., the initial global450

learning rate = 0.001, beta1 = 0.9, beta2 = 0.999, and epsilon = 1e � 7 has451

been applied to the CNNmodels developed for this study. In addition, the452

models were trained with a batch size of 32 samples over 100 epochs.453

In feed-forward neural networks with multiple layers, such as most DL454

models, back propagation works from the latter layers back through mul-455

tiple layers to reach the initial layers. This extended sequence can result456

in the gradient being reduced rapidly, in very few model iterations, to a457

value close to zero. This generally unfavorable premature convergence is458

referred to the “vanishing gradient phenomenon”. It is ine↵ective because459

it prematurely halts the training process before the early layers of the net-460

work have fully explored potentially more favorable values. A beneficial461

strategy that acts to reduce the risk of premature convergence is to involve462
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“skip” connections between certain network layers, acting as short circuits463

for the back-propagation sequence (He et al., 2016). The introduction of464

skip connections enables the gradient to be directly back propagated to465

earlier layers of a CNN. Skip connections (shortcuts) are involved in three466

of the base learners used in this study (Figure 3). How and where in the467

CNN structure the shortcuts are located di↵ers from scheme to scheme:468

1. FirstSkip: a single skip connection from the first convolutional layer469

to the last one.470

2. MidSkip: a single skip connection from the middle convolutional471

layer to the last layer.472

3. DualSkip: two skip connections from themiddle convolutional layer473

to the last and the second-to-last layers.474

FirstSkip adds a single shortcut from the output of the first convo-475

lution layer to the last convolutional block. The input and output of this476

part have the same dimension of 98⇥7 because an identity type of shortcut477

is used. MidSkip is designed to discover how much a shortcut from the478

middle layer to the final layer can improve the performance of a model.479

Here, the input and output of this section with the shortcut have a dimen-480

sion of 94⇥ 3. DualSkip was developed mainly to gain knowledge of the481

e↵ect of involving the raw input features along withMidSkip. In all three482

cases, the main path and the shortcut meet each other before applying483

the activation function. For all three architectures, the FC layers remain484

unchanged.485
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Adding the skip connections increases the complexity of the base struc-486

ture, in terms of the number of parameters. There are asmany as 10,414,170487

trainable and 150 non-trainable parameters for the base structure, with-488

out skip connections. By adding FirstSkip, the number of trainable and489

non-trainable parameters increases to 12,670,510 and decreases to 110,490

respectively. For MidSkip, there are 14,272,340 trainable and 130 non-491

trainable parameters. For DualSkip, the number of trainable and non-492

trainable parameters changes to 14,270,975 and 120, respectively.493

4.3. Combination of the base learner outputs494

A new training dataset for the meta learner was established by pro-495

viding all data records from the validation subsets to each of the four496

sub-models and collecting the predictions they generated i.e., PSkiplessCNN,497

PFirstSkipCNN, PMidSkipCNN, and PDualSkipCNN. These resulted in four (refer-498

ring to the number of base learners) arrays with the shape [34421,900],499

the first element referring to the number of validation data and the second500

to the output (basis function). Thus, a 3D array was developed with the501

shape [34421,4,900], which was transformed into a [34421,3600] shaped502

array. This flattened input data, along with their output was used to train503

a meta learner.504

As mentioned earlier, there are 875 cases that each need to be pro-505

cessed through the sequence of training, validation, and testing. Given506

that the input/output dimensions are so large, it did not make sense to ap-507
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ply boosting to focus on samples in the dataset that have been predicted508

incorrectly by the previous models in the sequence. Bagging is usually509

applied to relatively small datasets. Additionally, conducting bootstrap510

sampling incorporating all 875 cases was not feasible for addressing this511

large dataset. Therefore, stacking was selected to establish the ensemble512

model. A stacked generalization method was chosen, mainly because it is513

more flexible mathematically than voting or weighted average methods.514

To be more specific, the four base learners were combined into an ensem-515

ble model using linear and ridge regression, separately.516

5. Evaluation517

The prediction errors associated with each CNN model developed are518

assessed using two statistical error metrics: the R2 and MSE. R2 values519

can exist within a range -1 and 1, with values closest to 1, representing520

the better prediction performance. MSE, by definition, has to be a non-521

negative value, and where values closer to zero represent the better perfor-522

mance. Table 1 presents the prediction error results for the base learners523

using the training and validation subsets. All the constructed Skipless-524

CNN models yield satisfactory results for the training samples; the best is525

for Basis 4 with an R2 of 0.9156 and MSE of 0.0126. All three skip connec-526

tion schemes enhance performance over the standard structure for all ba-527

sis functions evaluated (i.e., Basis 2, 3, 4, and 5) by their training subsets.528

The defined schemes have the maximum e↵ect on the base model for Ba-529
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sis 5 and the minimum e↵ect for Basis 4. For example, R2 increases from530

0.8466 to 0.8844, 0.9026, and 0.8847 for Basis 5 by including FirstSkip,531

MidSkip, and DualSkip into the standard structure, respectively. MidSkip532

and DualSkip perform marginally better than FirstSkip.533

Table 1: Prediction error analysis of the base learners applied to training and validation
data subsets.

Subset Model

R2 MSE

Basis 2 Basis 3 Basis 4 Basis 5 Basis 2 Basis 3 Basis 4 Basis 5

Training

SkiplessCNN 0.8657 0.8952 0.9156 0.8466 0.0327 0.0220 0.0126 0.0100

FirstSkipCNN 0.8908 0.9219 0.9247 0.8844 0.0266 0.0164 0.0112 0.0075

MidSkipCNN 0.9083 0.9302 0.9372 0.9026 0.0224 0.0147 0.0093 0.0063

DualSkipCNN 0.9002 0.9327 0.9283 0.8847 0.0243 0.0141 0.0107 0.0075

Validation

SkiplessCNN 0.7770 0.8237 0.8777 0.7816 0.0544 0.0371 0.0182 0.0142

FirstSkipCNN 0.7814 0.8160 0.8798 0.7974 0.0529 0.0387 0.0181 0.0132

MidSkipCNN 0.7867 0.8139 0.8802 0.8160 0.0519 0.0391 0.0179 0.0120

DualSkipCNN 0.7900 0.8434 0.8811 0.8038 0.0512 0.0329 0.0176 0.0128

The prediction error performance of the SkiplessCNN models is ac-534

ceptable for the validation data subsets, with an R2 of 0.7770 to 0.8777,535

and MSE of 0.0142 to 0.0544. FirstSkip has a marginally positive e↵ect on536

the validation subset with respect to Basis 2, 4, and 5models. For instance,537

regarding Basis 5, the R2 value increases from 0.7816 to 0.7974 and MSE538

decreases from 0.0142 to 0.0132. However, it has an adverse e↵ect on the539

Basis 3 model. Specifically, R2 decreases from 0.8237 to 0.8160. Com-540

pared to FirstSkip, MidSkip has a more positive e↵ect on the Basis 2, 4,541
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and 5 models. Furthermore, it has a negative e↵ect on the Basis 3 model.542

DualSkip is beneficial in all cases related to validation samples, especially543

for Basis 3 and 5. For example, for Basis 5, R2 increases from 0.7816 to544

0.8038.545

The results obtained for FirstSkip imply that transferring feature maps546

from earlier convolutional layers to final ones has a very positive e↵ect on547

the training dataset. This architecture has a marginally positive impact on548

the validation subset for Basis 2, 4, and 5 models, but an adverse impact549

on the Basis 3 model. In other words, the corresponding skip connection550

tends to make the predictive model focus more on capturing the underly-551

ing trend of the training (seen) subset.552

Compared to FirstSkip, flowing information from the middle convolu-553

tional layer to the last layer via the MidSkip skip connection has a more554

positive impact on all basis functions models of the training subset and555

the Basis 2, 4, and 5 models of the validation subset. This suggests that556

the feature maps of the middle convolution process contain important in-557

formation.558

Adding two simultaneous skip connections (DualSkip) favorably af-559

fects all basis functions with respect to the training and validation sub-560

sets. By comparing the architectures and results produced using MidSkip561

and DualSkip, the positive role of transferring raw feature maps is under-562

standable. Therefore, enriching the last convolutional blocks with infor-563

mation hidden in the neighboring layers is more e�cient than enriching564
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them using earlier convolutional blocks near the input layer.565

Figures 4 and 5 illustrate whether the combined models significantly566

influence the performance of the base learners based on the testing subset.567

The trend for the base learners over the testing subset is the same as their568

performance in the validation subset. The most likely reason is that the569

validation and testing subsets were drawn from the same data distribu-570

tion. Both subsets also consisted of the same number of data records. It571

is apparent from Figures 4 and 5 that the ensemble models built by either572

linear or ridge regression perform substantially better on the testing sub-573

set than the individual models. In the case of applying linear regression,574

the R2 and MSE lie in the range of 0.8456 to 0.9191, and 0.0092 to 0.0369,575

respectively. The results reveal that ridge regression worksmarginally bet-576

ter than linear regression with an R2 ranging from 0.8539 to 0.9220, and577

ranging from MSE of 0.0090 to 0.0349.578

Figure 6 presents an example of the pressure distributions for a repre-579

sentative permeability field, whose matrix permeability and fracture per-580

meability are 1 and 1750mD, respectively. The figure displays a very close581

match between the actual pressure distribution and the one obtained by582

applying the predictions derived from the developed ridge regression en-583

semble model in this study. The reservoir pressure distribution is impor-584

tant information used to determine the potential recovery factor of oil/gas585

reservoirs. These results confirm that this study’s innovative approach to586

develop e�cient and reliable DEL models to assist this specific aspect of587
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fluid-flow simulation is successful and worthy of further development.588

6. Discussion589

The linear regression is one of the most straightforward approaches590

to predict output via a linear function of input features. In the context591

of ML, it refers to the most usual least square linear regression method592

that attempts to minimize the cost function. A drawback, however, is that593

it does not penalize high magnitude weights in its error function and it594

assumes independence between its features. These characteristics can lead595

in some cases to certain features being assigned very high weights during596

the training. The cost function for linear regression is typically expressed597

as:598

cost f unction linear =
mX

i=1

(Y� f̂ (X))2 (21)

The ridge regression, as a modification of linear regression, involves599

a penalty (L2 regularization) to its error term, calculated as the sum of600

squared value of the weights. Giving a penalty in such a way results in a601

set of more evenly distributed weights. The cost function for ridge regres-602

sion becomes:603

cost f unction ridge =
mX

i=1

(Y� f̂ (X))2 +↵
pX

j=1

(wj)2 (22)

Here, ↵ is included as a coe�cient to penalize weights. It can take604
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di↵erent values. A ridge model with ↵ = 0 is the same as a simple linear605

regression. As the ↵ value nears infinity, an increasing number of coef-606

ficients of the model becomes zero until it is just a flat model with an607

intercept. In this study, we used the default value of ”one” for all cases.608

It was expected that ridge regression would perform better than linear609

regression, and the results presented in Section 5 confirm this point.610

Analysis of the case study, the proposedmethod, and the results lead to611

three recommendations for future research. First, the scope of the present612

study was restricted to 2D porous media with vertical and horizontal frac-613

tures. It is recommended to extend it to 3D porous media and incorporate614

inclined fractures. Moreover, it would be worthwhile to consider a wider615

range of permeability values for both the matrix and fractures. These ad-616

justments would provide a more comprehensive representation of subsur-617

face conditions. Second, the e↵ectiveness of the stacked generalization618

method using linear regression and ridge regression was confirmed on the619

given task. However, there is still room for improvement in the testing620

subset. To further enhance performance, exploring more advanced en-621

semble techniques could be one direction to consider. Third, developing622

more diverse base learners could also provide valuable insights for further623

improving the performance of the stacking ensemble.624
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7. Conclusions625

The substantial quantity of parameters involved in DL means that a626

large number of samples must be processed to provide e↵ective results.627

The ReLU has emerged as a popular activation functions applied in DL,628

and AMSGrad, an enhanced version of the Adam optimizer, improves629

DL convergence. By using skip connection (shortcut) schemes during630

gradient-based training, such as back propagation, the vanishing gradient631

problem can be mitigated. These four DL performance features were ap-632

plied to a case study to predict subsurface fluid flow and simplify a time-633

consuming component of oil/gas reservoir simulation. For this purpose,634

four distinct CNN learners - SkiplessCNN, FirstSkipCNN, MidSkipCNN,635

and DualSkipCNN - were developed for each multiscale basis function.636

Linear regression and ridge regression were then used separately to com-637

bine the four CNN into an ensemble model. The results confirm the e↵ec-638

tiveness of the two tested ensemble architectures since they strike a more639

stabilized balance between bias and variance errors.640
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Figure 3: Structure of the CNN base learners configured in this study.
43



Figure 4: Prediction error analysis of the DEL-based and CNN models applied to the
testing data subset, expressed in terms of R2.
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Figure 5: Prediction error analysis of the DEL-based and CNN models applied to the
testing data subset, expressed in terms of MSE.
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Figure 6: A comparison between the actual pressure distribution and the one obtained
by ridge regression ensemble model for a representative permeability field.
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