T-Trees, Vertical Partitioning and Distributed Association Rule Mining

Frans Coenen, Paul Leng and Shakil Ahmed
Department of Computer Science, The University of Liverpool
Liverpool, L69 3BX, UK
{frans,phl,shakil}@csc.liv.ac.uk
Overview and Motivation

• An approach to distributed/parallel ARM (DATA-VP) is presented that makes use of a vertical partitioning strategy to distribute the input data set.

• Features:
 1. Founded on a compressed set enumeration tree (the T-tree) together with an associated ARM algorithm (Apriori-T).
 2. Partitions can be mined in isolation.
 3. Partitioning is such that the possibility of the existence of large itemsets dispersed across partitions is taken into account.
The Total Support Tree (T-tree)
The Total Support Tree (T-tree)

Support Threshold = 25%
Number of frequent sets = 15
T-tree Internal Representation
The Apriori-T Algorithm

- Combines classic Apriori algorithm with T-tree data structure, i.e. tree generated level by level.
- Candidate K itemsets are produced using "downward closure property of itemsets".
- Includes “X-checking” --- neighbouring branches of the T-tree (sofar) inspected to determine if a given K-1 subset is supported.
- X-checking has a corresponding overhead.

Note: Authors have developed other tree based ARM algorithms, e.g. Apriori-TFP.
Advantages

1. Fast traversal of the tree using indexing mechanisms, and

2. Reduced storage, in that itemset labels are not required to be explicitly stored; thus no sibling references/pointers are required (although this is partially offset by storage required for array elements associated with roots of unsupported branches).
Distributed/Parallel ARM

- Still a desire to (i) analyse increasingly larger data sets and (ii) achieve better computational effectiveness.
- One possible solution is distributed/parallel ARM

Distributed ARM algorithms may be classified according to two categories

1. Data distribution (*segmentation* and *partitioning*).
2. Candidate set distribution (also called task distribution).
Distributed Apriori-T Algorithm with Data Distribution (DATA-DD)

Features horizontal segmentation of data

DATA-DD Algorithm

- Each process generates a level K local T-tree for its allocated segment.
- Processes share level K details so that each has a complete T-tree up to level K.
- Processes prune their versions of the T-tree so far.
- Repeat for further levels until no more candidate sets.

Principal Disadvantage: Messaging Overhead in terms of (i) number of messages and (ii) size of content of messages.
Distributed Apriori-T Algorithm with Task Distribution (DATA-TD)

Each process has access to the entire data set and candidate sets distributed amongst processes

DATA-TD Algorithm

- Each process generates its level K candidate sets according to some agreed approach ("round robin", partitioning).
- Process generates a level K local T-tree for their candidate sets.
- Processes share level K details so that each has a complete T-tree up to level K.
- Processes prune their versions of the tree sofar.
- Repeat for further levels until no more candidate sets.

Principal Disadvantage: Messaging Overhead in terms of (i) number of messages and (ii) size of content of messages (but less than DATA-DD which shares data about all candidate sets).
Distributed Apriori-T Algorithm with Vertical Partitioning (DATA-VP)

Features “vertical” partitioning of data.

DATA-VP Algorithm

- Each process generates an entire T-tree for its partition (X-checking only within partitions)
- On completion processes share T-tree details so that each has a complete global T-tree.
Vertical Partitioning

Single attributes in the data set split so that each process has its own allocationItemSet (AIS).

\[
\text{allocationItemSet} = \{ n \mid \text{startColNum} < n \leq \text{endColNum} \}
\]

VP Algorithm

\[
\forall \text{records in input data}
\]

\[
\text{if (record \cap \text{allocationItemSet} \equiv true)}
\]

\[
\text{record} = \{ n \mid n \text{ in record} \& \ n \leq \text{endColNum} \}
\]

\[
\text{else delete record in input data}
\]
DATA-VP Example 1

\[\text{AIS} = \{A, B, C\} \quad \text{AIS} = \{D, E\} \]

Data Partitioning
DATA-VP Example 1

AIS = \{A, B, C\}

A B C
B C
C
-
-

A B C D E
B C D E
C D E
D E
E

Data Partitioning

AIS = \{D, E\}
DATA-VP Example 1

AIS = \{A,B,C\}
A B C
B C
C

A B C D E
B C D E
C D E
D E
E

Data Partitioning

A B C D E
B C D E
C D E
D E
E

AIS = \{D,E\}

DATA-VP Example 1

AIS = \{A,B,C\}

A B C
B C
C

A B C D E
B C D E
C D E
D E
E

AIS = \{D,E\}

A B C D E
B C D E
C D E
D E
E

Data Partitioning

B
C
B

2
3
2

Support Threshold = 25%

Num. frequent sets = 3

Num. frequent sets = 3
DATA-VP Example 1

AIS = \{A, B, C\}

A B C
B C
C

A B C D E
B C D E
C D E
D E
E

AIS = \{D, E\}

A B C D E
B C D E
C D E
D E
E

Data Partitioning

Support Threshold
= 25%

Num. frequent sets = 3

Num. frequent sets = 12
DATA-VP Example 2 (With Data Reordering)

A B C D E
B C D E
C D E
D E
E
DATA-VP Example 2 (With Data Reordering)

E D C B A
E D C B
E D C
E D
E

A B C D E
B C D E
C D E
D E
E

Data Reordering
DATA-VP Example 2 (With Data Reordering)

AIS = \{E, D, C\}

E D C B A
E D C B
E D C
E D
E

Data Reordering

A B C D E
B C D E
C D E
D E
E

AIS = \{B, A\}
DATA-VP Example 2 (With Data Reordering)

AIS = \{E, D, C\}

\[
\begin{array}{c}
E \quad D \quad C \\
E \quad D \quad C \\
E \quad D \\
E
\end{array}
\]

Data Reordering

AIS = \{B, A\}

\[
\begin{array}{c}
E \quad D \quad C \quad B \\
E \quad D \quad C \\
E \quad D \\
E
\end{array}
\]

\[
\begin{array}{c}
A \quad B \quad C \quad D \quad E \\
B \quad C \quad D \quad E \\
C \quad D \quad E \\
D \quad E \\
E
\end{array}
\]
DATA-VP Example 2 (With Data Reordering)

AIS = {E, D, C}

AIS = {B, A}

Data Reordering
DATA-VP Example 2 (With Data Reordering)

AIS = \{E,D,C\}

EDC
EDC
EDC
ED
E

EDCBA
EDCBA
EDCBA
EDC
ED
E

AIS = \{B,A\}

EDCBA
EDCBA
EDCBA
-
-
-

Data Reordering

ABCDDE
BCDDE
CDE
DE
E

Support
Threshold = 25%

Num. frequent sets = 7
DATA-VP Example 2 (With Data Reordering)

AIS = \{E, D, C\}

EDC
EDC
EDC
ED
E

Support
Threshold = 25%

Num. frequent sets = 7

AIS = \{B, A\}

EDCBA
EDCBA
EDCBA
E

Num. frequent sets = 8

Data Reordering
Some Results \((T20.I10.D500K.N500)\)

Processing time (Seconds)

<table>
<thead>
<tr>
<th>ALGORITHM</th>
<th># Processes</th>
<th>Support %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>Apriori-T</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>DATA-DD</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>DATA-TD</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>DATA-VP</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Implementation: Java, JavaSpaces
Advantages of DATA-VP

• Minimal amount of message passing compared to DATA-DD and DATA-TD.
• Minimal message size, especially with respect to DATA-DD.
• Enhanced efficiency as the number of processes increases, unlike DATA-DD.
Summary and Conclusions

1. Experiments show that the DATA-VP approach performs much better than those methods that use data and task distribution (especially if we order the data).

2. This is largely due to the T-tree data structure which: (a) facilitates vertical partitioning of the input data, and (b) readily lends itself to distribution/parallelisation.

3. More generally we have demonstrated that both the T-tree data structure and the Apriori-T algorithm are good generic mechanisms that can be used effectively to implement many approaches to distributed/parallel ARM.