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ABSTRACT
With the advances in machine learning techniques and the potency of cloud computing there is an increasing
adoption of third party cloud services for outsourcing training and prediction of machine learning models.
Although cloud-hosted machine learning services enable more efficient storage and computation of data,
privacy concerns and data sovereignty issues remain a major challenge. Privacy-preserving machine learning
provides a promising solution. In this paper, a privacy-preserving neural network generation and utilization
framework is presented, the PPNNBP framework. PPNNBP allows model training and prediction to be
securely delegated to a third party with minimal data owner participation once the input data have been
encrypted without recourse to secret sharing or multiple party setting. This is achieved using a proposed fully
homomorphic encryption scheme, the Modified Liu Scheme (MLS), that permits certain operations over
cyphertexts and features order preservation. The PPNNBP framework using MLS addresses the challenge of
computational complexity of model learning using existing schemes; a complexity caused by the increasing
size of cyphertexts (cyphertext inflation) and the quantity of noise introduced into cyphertexts through the
application of multiplication operations, as learning progresses. Both the PPNNBP framework and MLS are
fully described and analysed. The reported evaluation demonstrates that the PPNNBP framework achieves
accuracy that is comparable to that obtained using a “standard” framework, whilst at the same time operating
in a secure manner with minimal data owner participation.

INDEX TERMS Homomorphic encryption, secure machine learning as a service, secure neural network.

I. INTRODUCTION

The growth in public cloud service providers has encour-
aged the emergence of competitive services whereby cloud
providers sell their computing power. Recently, many ef-
forts have been directed at Machine Learning as a Service
(MLaaS), where cloud providers offer model training and
online prediction services to clients. MLaaS is currently pro-
vided by major organizations including Microsoft, Google,
and Amazon [1]–[3]. For example, Google cloud Machine
Learning (ML) engine allows data owners to upload their
data that is used to train model in Tensorflow environment.
Pre-trained models can be offered online, for any user, to
download and fine-tuning such as Inception, AlexNet, and
VGG [4], [5]. However, both of the aforementioned out-

sourcing strategies require access to the raw data which is
often come with security concerns. There are various attacks
directed to risk data and ML models such as Model Inversion
Attack (MIA) [6]–[8]. These possible attacks demonstrate
that both ML models and training datasets can be the target
of privacy attacks, leading to sensitive information leakage.
This problem tends to limit the take-up of MLaaS, especially
in fields where data disclosure is not only a commercial
privacy problem, but also a legal concern [9], [10]. There is
thus a requirement for techniques that provide rigorous pri-
vacy guarantees to data owners, whereas providing the utility
to support MLaaS. This paper presents privacy-preserving
Neural Network (NN) training and usage.

Data encryption can substantially guarantee data privacy,
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but precludes any data manipulation. The introduction of
Fully Homomorphic Encryption (FHE) schemes, that feature
a number of mathematical operations that can be applied
directly to cyphertexts (without decryption), has offered a
potential means of achieving secure ML [11]–[13]. However,
although FHE may address the privacy concerns associated
with the wide-scale adoption of MLaaS, it features three
principal disadvantages. The first, and most significant, is
the number of operations supported by FHE schemes, typ-
ically limited to addition and multiplication, which in turn
means that more sophisticated operations, such as numeric
comparison, require data owner (or key holder) participa-
tion; for many applications the amount of participation is
substantial [13]–[15]. The second disadvantage is that the
size of the cyphertexts increases exponentially with the ap-
plication of each multiplication operation, as a consequence
of which large amounts of “noise” are also introduced into
the cyphertexts. This is typically resolved, in many FHE
schemes, by some form of noise management techniques
such as bootstrapping, modulus switching, scale invariant and
flattering [11], [16]. These techniques, however, tend to be
complex [17], [18]. Recently, noise-free FHE schemes have
been proposed whereby noise management can be avoided
by allowing an arbitrarily large quantity of noise [19], [20].
Most of these schemes rely on multivariate quadratic and uni-
variate high degree polynomial equation systems [21], [22].
The multivariate and high degree polynomial equations, in
noise-free FHE schemes, have introduced a cypher inflation
problem whereby the number of subcyphers used to encode
a plaintext increases exponentially with each multiplication.
This has raised problems concerning computational cost and
memory resource requirements [20]. The third disadvantage
is that the defined message space for most practical FHE
schemes is restricted to either the binary [23]–[25] or positive
integer space [26]–[28]. This means that the direct encryption
of real number values is not supported; introduced solutions
adversely affect the accuracy of any learnt model [29]–[32].
As a consequence of these disadvantages, the potential of
FHE in terms of secure MLaaS, has not been fully realised.

The PPNNBP framework introduced in this paper is di-
rected at the secure training, and usage, of NN models using
only encrypted data, in a manner that avoids the disadvan-
tages associated with existing FHE schemes as described
above. The framework achieves this by using a novel FHE
scheme, the Modified Liu Scheme (MLS), founded on the Liu
homomorphic encryption Scheme (LS) [20]. The MLS main-
tains the noise-free feature of LS, whereas at the same time
providing a mechanism to address the cypher inflation prob-
lem that occurs after each multiplication operation as learn-
ing progresses; thus addressing the computational/resources
cost problems. In addition, the MLS includes cyphertext
order preservation to allow secure data comparison, hence
avoiding data owner participation or recourse to complex
data comparison protocols [14], [33], [34]; the first FHE
scheme to do so. As in LS, MLS preserves the feature of
directly encrypting real numbers. The features of MLS can

be used to implement a variety of MLaaS services.
The main contribution of this paper is the PPNNBP frame-

work that can be used to securely generate NN models using
Back-Propagation (BP) learning. PPNNBP relies on a single
cloud server compared to other solutions which require two
[37], [38] or three [33] servers. The paper also proposes a
secure linear approximation of the nonlinear NN activation
function. The underlying reasons for selecting NN with BP
learning are as follows: (i) it is a more powerful learning algo-
rithm than (say) the linear regression and logistic regression
ML algorithms; and (ii) the BP learning method is a central
feature of more sophisticated Deep NN (DNN) and hence
the PPNNBP framework presented here “paves the way” to
privacy-preserving DNN. The PPNNBP framework therefore
allows for the secure training of NNs over encrypted data; the
training data, weights, biases and activation parameters are
all encrypted and only the learning rate and momentum are
given in plaintext form. Similarly, the usage of the trained
NN is conducted in an encrypted manner (both input data
and predicted output). The PPNNBP framework features
only minimal data owner participation during training and
usage. Unlike alternative frameworks [14], [17], [18], [35],
PPNNBP achieves an accuracy comparable with that of iden-
tical networks trained without encryption.

The rest of this paper is organized as follows. In Section
II, related works are reviewed. Section III outlines an attack
model. The peculiarities of the introduced MLS are presented
in Section IV. Section V proposes methods to approximate
sigmoid function as a low degree polynomial. Next, the
extension of NN with BP learning to preserve privacy using
the MLS is discussed. Section VII is devoted to experimental
results and evaluation. Finally, some concluding remarks and
future work are given in Section VIII.

II. RELATED WORK
MLaaS over encrypted data has been investigated with the
respect to many ML algorithms. In the context of NN there
are two MLaaS variations; Training as a Service (TaaS) and
Prediction as a Service (PaaS). In TaaS, a cloud provider sells
services that allow data owners to upload their encrypted data
and receive a trained NN model [18], [33], [36]–[38], [41].
For preserving data privacy, the trained model weights, bi-
ases and intermediate calculations as activation functions are
encrypted. In PaaS, a pre-trained NN model hosted by a cloud
provider is monetised for labelling clients instances in such a
way that the data privacy preservation is maintained for data
instances, predicted labellings and network model weights
and biases [14], [17], [33], [35], [37], [38]. The disadvantages
of using FHE for both TaaS and PaaS were highlighted in
the introduction to this paper. In the reminder of this section
a number of solutions to address these disadvantages are
reviewed. Each offers a potential solution but at a cost; costs
addressed by the solution presented in this paper.

From the literature it can be observed that the main fo-
cus of recent work with the domain of secure MLaaS has
been directed at secure PaaS [14], [17], [33], [35], [37],
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[38]. In many cases the learning method was executed over
plaintext training data and the (unencrypted) trained model
was then used to provide PaaS [14], [35]. The challenge
was how to “feed-forward” a network with private client
instances (queries), and calculate the nonlinear activation
functions, without revealing the network’s weights and biases
to the client. The straight forward solution relied on Secure
Multi-Parity Computation (SMPC) [33], [37], [38] and FHE
scheme [14], [37]. Using this solution, the clients encrypt
their private data instances using an appropriate FHE scheme.
The PaaS provider uses the encrypted instances to feed a NN.
First the inner products between the encrypted data instance
and unencrypted weights of the first layer are computed and
then sends the encrypted inner products to the client. The
client decrypts the products, applies the nonlinear activation
function and encrypts the result before sending it back to
the PaaS provider who repeats the process for the remaining
layers. This approach addresses the complexity of evaluating
the activation function but introduces three major limitations:
(i) a significant and undesirable computational overhead on
behalf of the client, (ii) high latency and high bandwidth
usage, and (iii) undesirable disclosure of the network weights
and biases to the client. The last introduces a security con-
cern whereby a MIA [8] can be used to reveal confidential
aspects of the data originally used to train the model. The
research presented in [30] therefore suggested a mechanism
whereby the weights and biases could be obscured using a
Oblivious Transformation (OT) technique that added noises
before delegating the evaluation of activation functions to
the client. However, the solution had a similar communi-
cation/computation overhead as in the case of [14]. Secure
PaaS mechanisms that do not require recourse to clients,
as in the case of [14], [30], typically work by using some
form of alternative activation functions that can operate in
encrypted form. A popular choice here is a quadratic ac-
tivation function, f (x ) = x2, that can be evaluated using
FHE properties as presented in [18], [35], [39]. However,
the quadratic function results in accuracy loss [40]. Whatever
the case, the replacement of the activation function does not
address the substantial involvement of clients or data owners,
in PaaS or TaaS, as FHE schemes typically required the
execution of noise management techniques or required the
re-encrypting of cyphertexts when noise exceeds a predeter-
mined level [17], [18], [35]; this is clearly undesirable. To
reduce the amount of time required to re-encrypt cyphertexts
(the principal communication overhead), the level of the
FHE scheme used can be increased [26]. However, this will
increase the size of the cyphertexts, and thus adversely reduce
the scheme multiplication efficiency [41]; this is clearly also
undesirable.

Secure TaaS using encrypted data has been considered
in [18], [33], [36]–[38], [41]. Here the model was trained
using encrypted data, and encrypted network weights and
biases are generated. In [33], [37], [38], the learning was
facilitated by: (i) splitting the training data across non-
colluding cloud servers who will jointly run SMPC protocols;

(ii) using secure inner product calculation with respect to the
multiplication of network weights and training data features;
and (iii) Yao’s comparison protocols to evaluate comparisons.
Two non-colluding cloud servers are required with respect
to the work presented in [37], [38], and three servers with
respect to the work presented in [33]. However, this form of
secure TaaS using encrypted data has three major limitations:
(i) the computational complexity of SMPC protocols, (ii)
the requirement for at least two non-colluding cloud servers,
and (iii) the high operating cost of utilizing multiple cloud
servers. The work in [41] presents several approaches for
TaaS within the practical limitations of existing Homomor-
phic Encryption (HE) schemes (without resorting to SMPC).
The idea was to replace computations with equivalent HE
properties and approximate well-established activation func-
tion. The replacement of activation functions with quadratic
function, as in the case of PaaS, is not appropriate for TaaS
as it features “unbounded derivation” that could result in
unusual behavior of the trained model [40]. The alternative
is to approximate established activation functions using a
linear polynomial; Chebyshev polynomials are used in [18],
[41] whereas Taylor polynomials are used in [17], [43]. Ex-
periments have demonstrated that higher degree polynomials
give a better approximation and thus a better replacement
for established activation functions. The Rectified Linear
Unit (ReLU) activation function was approximated in [17]
by using degree six polynomials and the sigmoid activa-
tion function using degree three polynomials. However, the
disadvantages of using these approximation were: (i) when
using higher degree polynomials the polynomial coefficients
become very small (for example ×10−31), these are usually
truncated to a small number of digits because of technical
limitations, which in turn affects accuracy, (ii) the amount of
noise added within the cyphertexts, after each homomorphic
multiplication, makes data owner (or client) participation
mandatory to re-encrypt cyphertexts when the noise exceeds
a pre-defined level or requires complex noise management
techniques, and (iii) the approximation requires the pre-
analysis of the input data to decide the appropriate intervals,
their corresponding approximation and their polynomial co-
efficients.

There are a limited number of frameworks that provide
both secure TaaS and secure PaaS, some of which are listed
in Table I. The frameworks use a variety of cryptographic
methods to maintain data privacy, including the SMPC [33],
[37], [38], OT [37], [38], and the Leveled HE (LHE) scheme,
which supports additions and limited multiplications [37].
The following four limitations can be identified from these
frameworks: (i) the requirement to represent data using
fixed points instead of decimal values, requiring the use of
fixed arithmetic for operations such as replacing activation
functions, (ii) the number of servers involved and thus the
associated security assumption, (iii) the requirement that data
owners participate, and (iv) the disclosure of intermediate
results. All secure frameworks, presented in [33], [37], [38],
require multiple servers that rely on the Secret Sharing (SS)
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TABLE I. Comparison of the privacy-preserving frameworks that offer both TaaS and PaaS. DO: Data Owner and SGD: Stochastic Gradient Descent

Framework
Crypto. Activation Decimal / # of

SS
Disclosure of Disclosure DO Disclosure of

Methods Function Fixed Cloud Inferencing of NN Involv. Intermediate
Arithmetic Servers Results Topology Results

SecureNN SMPC ReLU Fixed 3 Servers ✓ Client only Servers ✕ ✓
[33] 13-bit

SecureML LHE, OT ReLU, Decimal 2 Servers ✓ Client only Servers ✓ ✓
[37] & SMPC Softmax point

& quadratic
QUOTIENT OT ReLU Fixed 2 Servers ✓ Client only Servers ✓ ✓

[38] & SMPC 8-bit SGD
2-bit Weight

PPNNBP FHE Sigmoid Decimal 1 Server ✕ Client only Server ✓ ✕
& Linear point

to facilitate the secure NN learning. Regardless of the specific
role assigned to the servers, the trust model assumes that the
two servers are untrusted but do not collude; which is often
considered a security risk. The SS is used to reduce or in
some cases avoid data owner participation. This is achieved
by allowing multiple parties to collaboratively perform any
require operations on behalf of data owner which in turn
disclosure the intermediate results. In this paper, only one
cloud server is used to train the model without recourse to
SS or relying on unrealistic security assumption. For this
to be achieved, it requires more efficient encoding scheme
that allows for faster homomorphic computation and serve to
address FHE limitations. The MLS, described in detail later
in this paper, avoids the above disadvantages, and allows: (i)
unlimited homomorphic multiplications without the problem
of cypher inflation and without recourse to some form of
noise management; (ii) PaaS over encrypted data without
involving any data owner participation, whilst the prediction
process is progressing; and (iii) a dramatic reduction of
the amount of data owner participation for TaaS whereas
maintaining model accuracy. As in the case of [33], [37], [38]
frameworks, in PPNNBP the network topology is disclosed
to the server and the prediction result is only revealed to the
client.

III. ATTACK MODEL
In terms of attack model categorisation, the cloud provider
is assumed to be a passive adversary who follows the semi-
honest attack model. This means we assume that the NN
training and prediction algorithms will be honestly executed
(this is, after all, in the commercial interest of the provider),
but at the same time attempts may be made to learn additional
information by analysing the encrypted data received or
encrypted intermediate data produced during the execution.
The potential attacks that can be directed at the PPNNBP
system are: (i) Cyphertext Only Attacks (COAs) and (ii) MIA
[8]. A COA is where an attacker only has access to encrypted
data. In the case of the PPNNBP system this might be: the
training data, client data instances, intermediate calculations,
predicted labels and/or the trained model weights and biases.

In the case of MLS, a COA might be used to exploit the order-
ing feature of MLS cyphers and extract statistical measures
describing the frequency of distribution patterns, that might
then be used to identify the nature of the plaintext values.
However, this will only succeed if the attacker has previous
knowledge concerning the original data. A MIA is where an
attacker has access to the NN model and is able to utilise
PaaS with the intention of acquiring information concerning
the model’s behavior beyond simply the prediction results.
In this attack, and as noted in [8], the attacker can exploit
the predictions to reveal confidential aspects of the data
originally used to train the NN model.

IV. MODIFIED LIU SCHEME (MLS)
The MLS, utilised by the PPNNBP, is a new scheme that
modifies the original LS presented in [20]. The modifica-
tions incorporated into MLS had two primary objectives:
(i) addressing the cyphertext inflation problem that occurs
whenever homomorphic multiplication is applied using the
concept of trapdoors; and (ii) providing an ordering fea-
ture in the generated cyphertexts so as to allow encrypted
data comparison using what is referred to as the ω-concept,
the idea of including a “gap” between subcyphertexts so
that different cyphertexts can be generated for the same
plaintext value whereas data ordering is preserved (but not
data equality). MLS still retains the same characteristics
and homomorphic properties of the original LS, and thus is
noise-free, and supports both addition (⊕) and multiplication
(⊗) over cyphertexts, and the multiplication of cyphertexts
with plaintexts values (⊛). Subtraction operation (⊖) can
be implemented using multiplication with plaintext value
(⊛ -1) and additive property (⊕). The message space and
cyphertext space are as defined for the original scheme; R
and Rm respectively. This means direct encryption of real
values are supported. The following subsections, Subsec-
tions IV-A to IV-E, present the MLS scheme algorithms
and processes for; key generation, trapdoor calculation, data
encryption/decryption and cypher inflation prevention. Note
that in the remainder of this paper the cyphertext equivalent
of a plaintext value x is given by E(x) which, for simplicity,
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is written as x′.

A. KEY GENERATION
The same Secret Key (SK) configuration as used in the orig-
inal LS is used in MLS, SK(m)= [(k1, s1, t1), . . . (km,sm,
tm)]. The difference is that the values for the k and s com-
ponents are split into two parts, a “secret key” and “shared
key”. The secret part of the key is kept locally by the data
owner, whereas the shared part is used to calculate trapdoors
that allows the desired subcypher “dimensionality reduction”
(addressing the cypher inflation problem as discussed further
in Subsections IV-B and IV-E below). The first step required
to generate the secret key is to randomly select values for
SK(m) in such a way that the following conditions are
satisfied:

1) As in the case of LS, the number of subcyphertexts
generated by the MLS is m where m ⩾ 3.

2) km + sm + tm ̸= 0.
3) ki and si are positive integers (1 ⩽ i ⩽ m) and the

GCDs (Greatest Common Divisors) for ki and si are
> 1 and not equal to si or ki.

4) There exists only one element q (1 ⩽ q < m) such that
tq ̸= 0. This condition was introduced in [42] for facili-
tating secure data comparison in a secure k-Means data
clustering context. In MLS tq = (sq + kq)× ω, where
ω is the numeric gap between cyphertexts included so
that ordering is preserved. The ω value adopted was
10p, selected to create a large gap that permits increas-
ing the number of cyphertexts that can be generated for
the same plaintext value (a nondeterministic feature).

The list of random numbers R = [r1, . . . , rm−1], used for
encryption purposes together with the secret key, are all
random nonzero positive numbers between 1 and ω; selected
in such a way that rq , corresponding to element q in the secret
key, is greater than all the remaining random values.

B. TRAPDOORS CALCULATION
Trapdoors, as noted above, are used for “dimensionality
reduction”. There is one set of trapdoors, Trap = [trap1, . . . ,
trapm], associated with a single secret key, and there is a
one-to-one correspondence between the two. The last ele-
ment of the list, trapm, as will be demonstrated later, is of
particular significance and is designated as the kst value
and is calculated separately; thus for practical purposes Trap
= [trap1, . . . , trapm−1]. The process for producing Trap is
given by Algorithm 1. The algorithm commences by calcu-
lating the GCD of the subkeys s and k to be retained locally
by the data owner (lines 2 and 3). The set Trap and the shared
sets, SharedS and SharedK, are then defined in lines 4 and 5
as sets of m − 1 elements. The set Trap holds the trapdoor
values, whilst SharedS and SharedK hold the shared part of
the secret key used to calculate the trapdoor values held in
Trap. The algorithm then loops from i = 1 to i = m − 1
(lines 6 to 9) to calculate the shared part of the key, SharedS
and SharedK, that are then used to calculate the trapdoors as

per the equations given in lines 7 to 9. The kst value is then
calculated as per equation in line 10. The algorithm exits with
Trap and the kst value (line 11).

Algorithm 1 MLS trapdoor calculation
1: procedure TRAPDOORSCALCULATION(SK(m))
2: secretS= GCD(s1, . . . , sm−1)
3: secretK= GCD(k1, . . . , km−1)
4: Declare Trap as a set of m− 1 elements
5: Declare SharedS and SharedK as set of m−1

elements
6: for i = 1 to i = m− 1 do
7: sharedSi =

si
secretS ▷ sharedSi ∈ SharedS

8: sharedKi =
ki

secretK ▷ sharedKi ∈ SharedK
9: trapi =

sharedSi

sharedKi
▷ trapi ∈ Trap

10: kst = km + sm + tm
11: Exit with Trap and kst

C. ENCRYPTION
The MLS encryption function uses SK(m) to convert a value
x to m subcyphertexts E(x) = {e1, . . . , em} following steps
very similar to those adopted in LS as shown in Algorithm
2. The variable l, in line 8, is the cyphertext level counter,
the number of times that dimensionality reduction has been
applied to the cyphertext. There is no limit for the number
of levels supported by the MLS, however, the value of l
is required for decryption purposes (see Subsection IV-D
below). The MLS encryption function associated with the
conditions defined by the key generation conditions pre-
sented in Subsection IV-A preserve the order of the plaintext
value in the qth subcypher (eq). The proof of correctness is
given in Appendix A.

Algorithm 2 MLS encryption
1: procedure ENCRYPT(x,SK(m))
2: Uniformly generate m − 1 arbitrarily random

numbers R = {r1, . . . , rm−1}
3: Declare E as a list of m elements E = {e1, . . . , em}
4: e1 = (k1×t1×x+s1+k1×(r1−rm−1))

s1
5: for i = 2 to i = m− 1 do
6: ei =

(ki×ti×x+si+ki×(ri−ri−1))
si

7: em = km + sm + tm
8: E.l = 0
9: Exit with E

D. DECRYPTION
The decryption function decodes a cyphertext E to its plain-
text equivalent x, following a process very similar to the
original LS, as shown by Algorithm 3. The algorithm starts
by calculating the value for t (line 2). The algorithm then
calculates the new subcyphertext value for each subcypher
ei in E once the dimensionality of the cyphertext has been
reduced (lines 3 to 5). This step is required to produce a
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correct decryption. The level counter and secret part calcu-
lated in Algorithm 1 are used to return a cyphertext value to
its value before performing dimensionality reductions. The
algorithm then calculates the s value, line 6, which is then
used in line 7, with SK(m) and t, to calculate the decoded
value x. The algorithm will exit in line 8 with the decoded
(plaintext) value.

Algorithm 3 MLS decryption
1: procedure DECRYPT(E, SK(m), secretS, secretK)
2: t =

∑m−1
i=1 ti

3: if E.l ̸= 0 then
4: for i = 1 to i = m do
5: ei =

(ei×(secretSE.l/secretKE.l))
tE.l

6: s = em
(km+sm+tm)

7: x =
(
∑m−1

i=1 ((ei×si)−(s×si))/ki)

t
8: Exit with x

E. SUBCYPHER DIMENSIONALITY REDUCTION
In MLS, as in LS, cyphertext multiplication is achieved
by determining the outer product of the two cyphertexts.
Given two plaintext values x1 and x2, these are encrypted
using MLS and SK(m), to give E1 = {e11 , . . . e1m} and
E2 = {e21 , . . . , e2m} respectively. The cyphertext multi-
plication E1 ⊗ E2 is implemented as: {e11 , . . . , e1m} ⊗
{e21 , . . . , e2m} = {e11 ×e21 , . . . , e11 ×e2m , . . . , e1m ×e21 ,
. . . , e1m×e2m}. Therefore, for one multiplication the cypher-
text size (dimensionality) is increased from m to m2 and
continues to exponentially increase with each multiplication
operation. This cyphertext inflation, as noted earlier, causes
a computational overhead and also leads to a scalability
problem. Using the MLS the size of the generated cyphertext,
after a multiplication operation, is “reduced” back to m using
trapdoor information that allows re-encryption of the cypher-
text (without prior decryption); this is the “dimensionality
reduction” referred to earlier.

Algorithm 4 presents the pseudo code for the dimension-
ality reduction process. The algorithm takes as inputs: (i)
a sequence of subcyphertexts E = {e1, . . . ,em2}, (ii) a
set of trapdoors Trap, and (iii) the kst value. The algorithm
commences (line 2) by declaring a reduced cyphertext list
RE of length m. Next, an index j for the cyphertext set E
and an index z for the reduced cyphertext RE are declared
and initialised (line 3). The algorithm then loops through
m2 subcyphertexts in E (lines 4 to 12). Each iteration com-
mences (line 5) with the creation of a temporary cyphertext,
Temp′, made up of m subcyphertexts in E started by jth
index. The mth subcyphertext in Temp′ and the trapdoor
value kst are used to calculate the value for the parameter
s′ (line 6). The algorithm then (line 7) defines the variable
subCypher in which to hold the current subcyphertext value
once calculated. Next, the algorithm loops through Temp′

(lines 8 to 10) and determines the new subcyphertext value
and, on completion, appends it to the list RE which holds

the cyphertexts as calculated so far. The new subcyphertext
values are calculated using the FHE properties of the MLS
scheme; addition ⊕, subtraction ⊖ and multiplication ⊛.
The values of indexes, z and j, are then updated in line
12. Next, line 13, the cypher level counter is incremented
by one, E.l + 1. At the end of the process the newly cal-
culated cyphertext, of length m, is returned (line 14). In the
remainder of this paper the multiplication of two cyphertexts,
followed by dimensionality reduction, is indicated using the
operator

⊗
; whereas multiplying a cyphertext with a plain-

text value is indicated using the operator ⊛. The correctness
of dimensionality reduction algorithm (Algorithm 4) is given
in Appendix A.

Algorithm 4 Dimensionality reduction process
1: procedure DIMREDUCTION(E, Trap,kst)
2: Declare RE as a list of m elements
3: j = 1, z = 1
4: while j < m2 do
5: Temp′ = Copy subcyphertext in E started by jth

index of length m
6: s′ = temp′m ⊛ 1

kst ▷ temp′m ∈ Temp′

7: subCypher= 0
8: for i = 1 to i = m− 1 do
9: t′ = temp′i ⊖ s′⊛ trapi ▷ trapi ∈ Trap

10: subCypher=subCypher ⊕t′

11: rez = subCypher ▷ rez ∈ RE
12: z = z + 1, j = j +m

13: RE.l = E.l + 1
14: Exit with RE

V. POLYNOMIAL APPROXIMATION OF ACTIVATION
FUNCTION
The sigmoid activation function, given in (1), is a nonlin-
ear function that can not be directly computed using the
mathematical properties of FHE schemes [17], [18], [35]–
[37]. The operation of the sigmoid activation function can be
approximated, up to a certain accuracy, using a polynomial
approximation method that uses: (i) Taylor series expansions
[17], [43], (ii) Chebyshev polynomials [18], [41], and (iii)
Maclaurin series expansions [44]. In practice, this approx-
imation needs to be done using a high degree polynomial
for accurate results to be obtained. This in turn increases
the number of HE multiplications, the amount of noise, and
the size of the cyphertexts. In this paper, two sigmoid ap-
proximations are utilised, the proposed TaylorLinear (φ) and
FriendlyFunction (ϕ) as presented in [37]. With respect to the
PPNNBP, TaylorLinear approximation was used for training
the PPNNBP (TaaS), with limited data owner participation,
and the FriendlyFunction to provide query classification once
the NN had been trained (PaaS).

sigmoid(x) =
1

1 + e−x
(1)
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FIGURE 1. Comparison of the FriendlyFunction (ϕ) and TaylorLinear (φ) approximations and their error of approximation compared to the sigmoid function

The TaylorLinear approximation offers the advantage that
it maintains accepted accuracy levels and can be imple-
mented using MLS with very limited data owner participa-
tion. The Taylor series expansion is used to linearly approxi-
mate the e−x term, which is a part of the sigmoid activation
function as in (1). The e−x term is approximated as per (2)
where d is the degree of polynomial selected by the data
owner according to the required level of accuracy. Using
these parameters TaylorLinear approximates sigmoid, φ(x′)
where x′ is MLS cyphertext, as follows:

1) Using FHE properties of MLS, the cloud service
provider calculates the Taylor approximation 1 + e|x

′|

using the Taylor polynomial given in (3) where d
represents the degree of the function as selected by
the data owner according to the required accuracy set
against execution time (there is an inverse trade-off).

2) The data owner performs the “inversion” of value 1 +
e|x

′| to arrive at the approximated value 1
1+e|x′| .

3) If x′ ⩾ E(0) the cloud service provider will calculate
the activation function as 1 − 1

1+e|x′| . Otherwise the
activation function is as approximated in step 2.

e−x = 1− x+
x2

2!
− x3

3!
+ · · ·+ (−1)dxd

d!
(2)

1⊕ (1⊕ x′ ⊕ 1
2! ⊛ (x′⊗x′)⊕ 1

3! ⊛ (x′⊗x′⊗x′)
⊕ · · · ⊕ 1

d! ⊛ (x′⊗ . . .
⊗

x′))
(3)

The absolute value of x′, |x′|, used in step 1 is calculated
by multiplying x′ with −1, using ⊛, when cypher x′ is
less than the MLS cyphertext of zero. The comparison of
x′ with zero (in step 3) is conducted, using the MLS prop-
erties, by comparing the qth subcyphertext of x′ with qth
subcyphertext of zero encrypted. Step 3 also relies on a
mathematical rule associated with the sigmoid function that
allows the calculation of sigmoid(x) and sigmoid(−x) as per

equation sigmoid(−x) = 1−sigmoid(x). The TaylorLinear
requires some data owner participation; but this participation
is minimal compared with alternative approaches such as
those given in [17] and [41] as described earlier in Section
II.

A secure activation function is also required in the context
of the provision of PaaS. TaylorLinear can again be used
for this purpose. Alternatively FriendlyFunction (ϕ) linear
approximation, as considered in [37], may be used. This
offers the advantage, using the MLS, that it can operate over
encrypted data without any data owner participation. The
FriendlyFunction is a piecewise-linear approximation that
returns 0 when x < −0.5, 1 when x > 0.5 and x + 0.5
when −0.5 ⩽ x ⩽ 0.5. However, it is not as accurate as Tay-
lorLinear. Fig. 1, (a) and (c), shows a comparison of sigmoid
activation and its approximation using FriendlyFunction and
TaylorLinear with a range of values for d, d = {3; 5; 7}
and different values for the input x. The symbol φd is used
to refer to the TaylorLinear approximation function where
d is the degree of polynomial. The figure also shows the
error (δ) associated with the approximations; calculated as
the difference between the sigmoid function and the approx-
imated functions. The experiments show that the error of
TaylorLinear when d = 3 is δ ∈ [−0.024; 0.024], greater
than when d = 5 and d = 7, δ ∈ [−0.0048; 0.0048] and
δ ∈ [−0.0010; 0.0010] respectively. The FriendlyFunction
provides the worst case; δ ∈ [−0.40; 0.40]. Therefore, the
TaylorLinear approximation provides a better fit with the sig-
moid function than FriendlyFunction approximation and thus
may provide better TaaS and PaaS (although TaylorLinear
requires some user participation). Moreover, TaylorLinear
approximation presented in this paper can be used to obtain
efficient protocols to train ML models that require calculation
of sigmoid activation function.
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VI. PRIVACY-PRESERVING BACK-PROPAGATION
The PPNNBP approach comprises a multilayer feed-forward
network with BP learning which is both trained and used
over encrypted data. The privacy-preserving TaaS (PPTaaS)
is given in Algorithm 5 that calls Algorithms 6 for feed-
forward and Algorithms 7 for BP. The notation used is
presented in Table II. The inputs for PPTaas are: (i) a set of
encrypted training records D′ = {r′1, . . . , r′n}, each record r′i
features a set of a attributes {r′i,1, . . . , r′i,a}; (ii) a maximum
number of epochs, maxEpoch; (iii) a learning rate η; (iv)
a momentum µ; (v) a set of encrypted target class (data)
labels T ′ = {t′1, . . . , t′n} corresponding to the records in
D′, each featuring c binary attributes t′i = {t′i,1, . . . , t′i,c},
where c is the number of classes, and only one attribute
has the cyphertext of 1 indicating the class for the record
r′i ∈ D′; (vi) an input-hidden-output network topology
defined by L = {l1, . . . , lb} where l1 is always equals to
number of attributes in dataset and lb is equals to number
of class labels, (vii) a threshold error ϵ′, and (viii) a d value
for φ approximation; this will not be required if using ϕ
approximation. The training data D′, set of class labels T ′

and the error threshold ϵ′ are all encrypted using the MLS.
The outputs consist of weights W ′ and biases Θ′ encoded in
MLS for the network described by L.

Algorithm 5 Privacy-Preserving Training as a Service (PP-
TaaS)

1: procedure PPTAAS(D′, maxEpoch, η, µ, T ′, L, ϵ′, d)
2: Initialize W ′ and Θ′ randomly and encrypt values

using MLS
3: Initialize ∆W ′=Encrypt(0) and∆Θ′=Encrypt(0)
4: δ′=Encrypt(0)
5: for epoch = 1 to epoch = maxEpoch do
6: for s = 1 to s = n do
7: Y ′=PPFF(r′s, L, d, W ′, Θ′) ▷ Algorithm 6
8: δ′,W ′,θ′=PPBP(Y ′,t′s,L,δ′,W ′,Θ′)

▷ Algorithm 7

9: δ′ =
1

2× n
⊛ δ′

10: if δ′ < ϵ′ then
11: Exit with W ′ and Θ′

12: Exit with W ′ and Θ′

Algorithm 6 Privacy-Preserving Feed-Forward (PPFF)
1: procedure PPFF(r′, L, d, W ′, Θ′)
2: for i = 1 to i = l1 do
3: y′ 1i = r′i
4: for j = 2 to j = |L| do
5: for i = 1 to i = lj do
6: v′ = (w′ j−1

1 i

⊗
y′ j−1

1 )⊕ · · · ⊕
(w′ j−1

lj−1 i

⊗
y′ j−1

lj−1
)

7: y′ ji = φd(v′ ⊕ θ′ ji )
8: Exit with Y ′

Algorithm 7 Privacy-Preserving BP (PPBP)
1: procedure PPBP(Y ′,t′s,L,δ′,W ′,Θ′)
2: one′=Encrypt(1)
3: for i = 1 to i = lb do ▷ lb: # of neurons in output

layer
4: e′ = (y′ bi ⊖ t′s,i)

5: δ
′ b
i = e′

⊗
(y′ bi

⊗
(one′ ⊖ y′ bi ))

6: for j = |L| − 1 to j = 2 do
7: for i = 1 to i = lj do ▷ lj : # of neurons in layer

j
8: δ′ ji = y′ ji

⊗
( one′ ⊖ y′ ji )

⊗
[(w′ j

i 1

⊗
δ′ j+1
1 )⊕· · ·⊕(w′ j

i lj+1

⊗
δ′ j+1
lj+1

)]

9: for j = |L| − 1 to j = 2 do
10: for i = 1 to i = lj do
11: ∆θ′ ji = (η ⊛ δ′ ji )⊕ (µ⊛∆θ′ ji )
12: θ′ ji = θ′ ji ⊕∆θ′ ji
13: for k = 1 to k = lj−1 do
14: ∆w′ j

i k = (η ⊛ δ′ ji
⊗

y′ j−1
k )⊕

(µ⊛∆w′ j
i k)

15: w′ j
i k = w′ j

i k ⊕∆w′ j
i k

16: Error′ = [(y′ b1 ⊖ t′s,1)
⊗

(y′ b1 ⊖ t′s,1)]⊕ · · · ⊕
[(y′ bc ⊖ t′s,c)

⊗
(y′ bc ⊖ t′s,c)]

17: δ′ = δ′ ⊕ Error′

18: Exit with δ′,W ′,θ′

TABLE II. Notation used in Algorithms 5, 6 and 7

Symbol Definition

r′i,j The encrypted values of the jth attribute in the ith
record of the encrypted training set D′.

t′i,j The encrypted target class value of the jth neuron in
the output layer for the ith encrypted training sample
ri ∈ D′.

y′j
i The encrypted output of the ith neuron in jth layer.

θ′
j
i The encrypted bias value of the ith neuron in jth layer.

w′i
x y The encrypted weight connecting the xth neuron in the

ith layer with yth neuron in the following layer (i+1).
δ′ji The encrypted error value corresponding to ith neuron

in jth layer.
∆w′i

x y The encrypted value of change in weight that connects
xth neuron in ith layer with the yth neuron in the
following layer (i+1).

∆θ′
j
i The encrypted value of change in bias of ith neuron in

jth layer.
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As in the case of standard training using BP learning [45],
the privacy-preserving TaaS with BP learning is composed
of two stages: (i) Privacy-Preserving Feed-Forward (PPFF)
and (ii) Privacy-Preserving BP (PPBP). The algorithm com-
mences, line 2, by defining the encrypted sets W ′ and Θ′

and initialising them with random values; and then, line 3,
defines the encrypted gradient of the loss with respect to
the weights (∆W ′) and gradient of the loss with respect
to the biases (∆Θ′) and initialising them with the value
0 encrypted using MLS. In line 4 the overall error value
so far (the overall loss function), δ′, is then defined and
initialised with the MLS encrypted equivalent of zero. The
training is then commenced (lines 5 to 11), the algorithm
iterates until the specified maximum number of epochs is
reached (maxEpoch), or the error δ′ value becomes less than
the error threshold ϵ′. On each iteration each sample in the
encrypted dataset, r′s ∈ D′, is processed in turn (lines 6 to 8)
through calling PPFF and then PPBP. PPFF algorithm returns
a set of encrypted outputs, Y ′, for all neurons in NN as
specified in topology L. The PPBP takes the resulting output
from PPFF (Y ′), encrypted target label t′s, encrypted weights
and bias (W ′ and θ′), topology L and error so far δ′ as inputs
and returns updated error, weights and bias (line 8). As the
BP is derived by assuming that it is desirable to minimise the
error on the output neurons over all the samples presented to
NN, the error δ′ is calculated as an average overall sample
(equation in line 9). The overall error will then be compared
with the threshold ϵ′ in line 10.

The PPFF process is given in Algorithm 6, the inputs are
current encrypted data sample r′, network topology L, degree
of polynomial to approximate sigmoid d, set of encrypted
weights W ′ and biases Θ′. In the PPFF, the input data
sample r′ is applied to the input layer and its effect is prop-
agated, layer by layer, through the network until an output
is produced. Therefore, the output of input layer neurons
(y′ 1i ∀ neuron i ∈ l1) is matched to the attribute values in a
current training sample r′ (lines 2 and 3); recall the l1 in line
2 is the number of attributes in the attribute set (the number
of values in each record and thus the number of neurons in
the input layer). The remaining layers, the hidden layers and
the output layer, the input of each neuron is calculated as the
weighted sum by multiplying the output of neurons in the
previous layer with the weights connecting the two layers of
neurons (lines 4 to 6). To decide whether a neuron fires or not,
the input is passed onto an appropriate activation function.
In PPFF, the TaylorLinear approximation of the sigmoid
function with degree d, φd given in Section V, is used. The
result from φd determines the neuron output that becomes
the input for the neuron in the next connected to it (line
7). The PPFF calculations were performed using additive
and multiplicative MLS properties. To manage the growth
of cyphertexts dimensionality reduction was performed after
each multiplication. The PPFF algorithm will exit with a set
of neuron output Y ′ in line 8.

The PPBP is given in Algorithm 7. At the PPBP stage,
the network weights and biases are adjusted to minimise the

error function. With respect to the PPNNBP the BP used
the pattern mode, or what is also sometimes referred to as
the online method, where the weights and bias updates are
applied after the presentation of each training sample. The
inputs are the set of current neurons output Y ′, expected class
label t′s, network topology L, the overall error value δ′ and
set of encrypted weights W ′ and biases Θ′. The algorithm
starts by defining the variable one′ that will be initialised with
the MLS encrypted equivalent of 1 (line 2). A loop is then
commenced with calculating the error for each neuron in the
output layer (layer b). In standard BP, the error for neuron i
in the output layer is calculated by comparing the expected
output with the actual network output value as per (4) where
y i(1 − y i) is the derivative of the sigmoid function. This is
computed in a secure manner in lines 3 to 5 over encrypted
data using MLS properties. Since all the hidden neurons
have, to some degree, contributed to the errors evident in the
output layer, the encrypted output errors, δ′bi , are transmitted
backwards from the output layer to each neuron in the hidden
layer that immediately contributed to the output layer. This
process is then repeated layer by layer until each neuron in
the network has received an error that describes its relative
contribution to the overall error. The errors for neurons in the
hidden layers are calculated in lines 6 to 8 starting with the
layer immediately preceding the output layer (the |L| − 1th
layer).

δ b
i = (y i − t i)× (y i × (1− y i)) (4)

Once the error for each neuron has been determined, the
errors are then used by the neurons to update the values for
each weight and biase as per the equations in lines 11, 12,
14 and 15. As illustrated in Table II, ∆Θ′j

i is the change
in the bias of the neuron i in layer j, ∆w′j

i k is the change
in the weight between neurons i and k that connect layer
j and following layer (j + 1), and η is the learning rate.
To accelerate the learning process momentum (µ) is used
to encourage the changes to continue in the same direction
with larger steps. As the iterative process of incremental
adjustment continues, the weights and biases will gradually
converge to a locally optimal set of values that minimise
the loss function; in the best case scenario globally optimal
values will be reached.

VII. EXPERIMENTAL EVALUATION
This section presents the evaluation and analysis of the
MLS and PPNNBP using synthetic datasets and benchmark
datasets taken from the UCI data repository [46]. The syn-
thetic datasets were used to evaluate the MLS performance,
whereas the UCI datasets (listed in Table III) were used
to evaluate the PPNNBP process. Both MLS and PPNNBP
were implemented in the Java programming language. Java
Remote Method Invocation (RMI) technology was developed
to similate the client-server that both run on the same PC
[47]. The PC on which the experiments were conducted was
equipped with macOS High Sierra operating system, 8 GB
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memory and 3.8 GHz Intel Core i5 CPU. The experiments
were conducted using Ten Cross Validation (TCV); the re-
sults presented in the following subsections are therefore
average values. Minmax data normalization was applied to
the dataset. Table III also lists the number of records and
attributes in each dataset, the network (input-hidden-output
layer) topology, the learning rate η, and momentum µ pa-
rameter settings that were used for the experimentation. The
number of epochs was fixed at maxEpoch = 100 in all
cases. The NN weights and biases were initialised randomly
from the range [−0.4, 0.4]. In practice these parameter set-
tings would be pre-defined by the data owner. The PPNNBP
was trained using the TaylorLinear with d = 3 (φ3). In the
prediction stage the φ3 and FriendlyFunction (ϕ) were used.

TABLE III. Experiment datasets and neural network parameters (n: number of
samples, a number of attributes, η learning rate, and µ momentum)

Dataset n a Topology η µ

1.Banknote Auth. 1372 4 {4, 5, 2} 0.01 0.7
2. Blood Trans. 748 4 {4, 5, 2} 0.02 0.8
3. Breast Cancer 198 33 {33, 10, 2} 0.20 0.9
4. Breast Tissue 106 9 {9, 6, 6} 0.20 0.9
5. Chronic kidney 400 24 {24, 5, 2} 0.20 0.9
6. Dermatology 366 34 {34, 5, 6} 0.20 0.8
7. Ecoli 336 7 {7, 5, 8} 0.30 0.8
8. Iris 150 4 {4, 5, 3} 0.20 0.7
9. Leafs 340 15 {15, 10, 30} 0.40 0.5
10. Lenses 24 4 {4, 10, 3} 0.50 0.7
11. Libras Move. 360 90 {90, 10, 15} 0.30 0.5
12. Parkinsons 195 22 {22, 5, 2} 0.30 0.9
13. Pima Disease 768 8 {8, 5, 2} 0.20 0.9
14. Seeds 210 7 {7, 5, 3} 0.20 0.9

The objectives of the evaluation were to analyse: (i) the
operation of the MLS, (ii) the PPNNBP in terms of the
complexity of data owner participation, (iii) the computa-
tional overhead of PPNNBP in comparison with standard
NN (PPNNBP efficiency), (iv) the effectiveness of the ap-
proach (PPNNBP accuracy), (v) the overall security, and (vi)
compare PPNNBP with state-of-the-art frameworks. Each is
discussed in further detail in the following six subsections,
Subsections VII-A to VII-F.

A. MLS PERFORMANCE EVALUATION
In this subsection the MLS evaluation is presented. MLS
was evaluated by analysing the performance of the various
supported MLS operations. Performance was measured in
terms of the runtime required to: (i) generate the MLS key,
(ii) encrypt data, (iii) decrypt data, (iv) utilise the FHE
mathematical properties (⊕,

⊗
,⊛), and (v) secure compari-

son. In the experiments the number of subcyphertexts (m)
considered was m = {3, 9, 15}. The recorded runtimes to
generate the MLS key were 1.16 ms, 1.37 ms and 1.44 ms
for m = 3, 9 and 15 respectively. These results demonstrated
that the runtimes for generating the MLS keys increased with
the number of subcyphertexts m, the number of elements in
the secret key list SK(m), this was to be expected.

The performance associated with MLS encryption and
decryption, the HE mathematical properties (⊕,

⊗
and ⊛)

and order preserving properties, were also measured in terms
of the required runtime to perform the operations in the
context of different sizes of data records and the different
numbers of subcyphertexts featured in MLS. The results are
presented in Fig. 2. The data encryption, decryption and
the homomorphic operations featured “linear” processing
time in relation to the size of the data and the number of
subcyphertexts m. However, the runtimes were negligible;
using MLS a record with 1, 000 attributes can be encrypted
in 0.85 ms when m = 15, and decrypted in 0.52 ms. The HE
mathematical properties (⊕,

⊗
and ⊛) were more expensive,

in terms of runtime, than encryption and decryption although
the multiplication (

⊗
) runtime was much higher than the

addition because of dimensionality reduction. The runtime
associated with the HE mathematical operations increased
with the number of attributes featured in the data, and the
number of subcyphertexts in the MLS. However, the times
reported, as shown in Fig. 2, were again negligible. The
secure comparison of two MLS cyphertexts can be achieved
by comparing the qth subcyphertexts, therefore, regardless of
the number of subcyphertexts (the value of m) the recorded
data comparison runtime was constant at 0.2 ms.

B. DATA OWNER PARTICIPATION
This subsection considers the amount of data owner par-
ticipation required to: (i) prepare the data prior to network
generation, (ii) train the network using the PPNNBP frame-
work, and (iii) predict class label using PaaS. The results for
data owner preparations are presented in Table IV. The data
preparation comprised: Minmax data normalization (column
2); data encryption, excluding MLS key generation and trap-
door calculation (column 3); and preparation of the training
and testing samples to facilitate stratified CV (column 4).
Inspection of the table shows that the data owner participation
in preparing the data for network generation was negligible,
and did not introduce any overhead on behalf of the data
owner. The largest dataset, in terms of number of samples and
attributes, “Libras Move" only required, on average, 3.86 ms
for data normalisation, 3.84 ms for encryption and 6.98 ms
for stratified CV data preparation.

The data owner participation with respect to network train-
ing is given in column 8 of Table IV, measured in terms of
the average runtime over all ten of the TCV folds. Recall that
data owner involvement in the model training is limited to di-
vision (inversion) operations with respect to the TaylorLinear
approximation of the sigmoid activation function (whenever
it is encountered). It is possible to implement PaaS using
two different methods, TaylorLinear and FriendlyFunction,
which differ in how activation functions are approximated
and how much data owners are involved. TaylorLinear ap-
proximation requires data owner participation. As in the
case of training the model; the time complexity for data
owner participation using TaylorLinear will be in the order
of O(

∑i=b
i=1 li); the number of neurons in NN. Data owners
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FIGURE 2. The MLS performance evaluation for different value of m and different numbers of attributes in a record. The runtime values were averaged over 10
folds of TCV

will decrypt approximate activation function values, reverse
the values, encrypt the results, and send them to the cloud.
The data owner participation for PaaS was evaluated using
the “Libras Move" dataset because this was associated with
the largest number of neurons in the generated network (see
Table III). Predicting the label for one query record in the “Li-
bras Move" dataset, using a network topology of {90; 10; 15}
was 0.14 ms. Note that FriendlyFunction approximation can
be entirely conducted using the homomorphic operations
facilitated by the MLS properties, therefore no data owner
participation was required.

C. PPNNBP EFFICIENCY

The total runtime for training each network using PPNNBP
is given in column 6 of Table IV. Column 5 gives the runtime
to train the same network without using any encryption.
Note that the runtimes given in column 6 are in seconds
(s), whilst those given in column 5 are in milliseconds (ms).
As expected, training a NN over encrypted data introduces
a computational overhead. The difference is due to the
computation complexity of the FHE mathematical properties
and the linear approximation of the sigmoid function using
TaylorLinear. However, it is argued here, that this is not
an unacceptable overhead, even for the largest dataset, the
“Libras Move” dataset, the network was trained in 873.85 s.

Further experiments were conducted using a single ma-
chine to investigate the computational overhead associated
with using a trained PPNNBP to provide PaaS, as compared
to standard NN (over plaintext neural parameters). The re-
sults indicated that the runtime was negligible. The “Libras

Move” dataset was again considered in this respect as it had
the largest number of neurons in the NN topology and the
largest number of class labels (see Table III). Using Taylor-
Linear approximation, where d = 3, 1, 641, 256 predictions
could be made per hour. In contrast, when using Friend-
lyFunction approximation 4, 143, 012 predictions could be
made per hour. The use of standard NN coupled with the
standard sigmoid function allows 655, 463, 103 predictions
to be made every hour. Therefore, it can be concluded that
the standard NN is more efficient than the PPNNBP using
TaylorLinear and FriendlyFunction, although FriendlyFunc-
tion is more efficient than the linear approximation using
TaylorLinear.

D. PPNNBP ACCURACY

The classification accuracy obtained using standard NN over
unseen data samples was compared with the accuracy of
the PPNNBP approach using both TaylorLinear and Friend-
lyFunction approximation and the same network topology
and parameters. The intuition was that the PPNNBP should
produce comparable results to those obtained using the stan-
dard NN; if so the PPNNBP could be said to be operating
correctly. The accuracy evaluation metrics were: (i) Precision
(P), Recall (R), the F1 measure and accuracy (Acc) [48],
and (ii) the value of the loss function calculated for different
numbers of epochs in TaaS. To provide a precise and fair
comparison, the performance measures were calculated over
the same test set for all activation functions (sigmoid, φ,
and ϕ). This approach was previously used in [41], [49] for
comparing performances of different activation functions.
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TABLE IV. Runtime for data owner data preparation and network training operating statistics

Dataset
Data Data CV Stand.NN PPNNBP

Preparation Encryption time Execution Total execution Data miner Data owner
(ms) (ms) (ms) time (ms) time (s) process (s) process (s)

1. Banknote Auth. 1.08 1.59 5.63 632.64 487.13 249.49 237.64
2. Blood Trans. 1.10 1.08 1.95 365.82 283.69 155.21 128.49
3. Breast Cancer 2.21 2.80 1.96 268.58 195.32 132.67 62.65
4. Breast Tissue 1.20 0.47 0.64 124.32 67.25 36.41 30.84
5. Chronic kidney 1.51 2.17 3.95 275.72 189.05 118.36 70.69
6. Dermatology 1.75 2.58 3.92 375.04 263.81 172.58 91.23
7. Ecoli 0.74 0.95 1.84 313.13 240.77 141.09 99.69
8. Iris 0.52 0.28 0.64 101.71 65.69 34.45 31.24
9. Leafs 0.92 1.72 3.29 104.39 83.30 5.53 77.77
10. Lenses 0.49 0.08 0.11 4.19 1.82 0.14 1.68
11. Libras Move. 3.86 3.84 6.98 1202.13 873.85 656.75 217.11
12. Parkinsons 1.93 0.84 1.35 159.41 91.50 58.73 32.77
13. Pima Disease 1.79 3.00 3.04 410.20 312.84 178.40 134.44
14. Seeds 0.75 0.96 1.02 141.08 94.69 53.22 41.47

Table V shows the P, R, F1, and Acc values obtained when
using the standard and PPNNBP frameworks. From the table
it can be seen that:

P: For ten of the datasets considered the precision (P)
values obtained for all three approaches were more-
or-less equal. For the remaining four cases, “Blood
Trans”, “Leafs”, “Lenses”, and “Libras Move”, the
values obtained using TaylorLinear were compara-
ble with the standard approach and equal to it in
“Lenses”; whilst using FriendlyFunction the preci-
sion values obtained were slightly lower.

R: Recall (R) values were similar in nine cases. In
the remaining five cases, two cases, “Breast Tis-
sue” and “Libras Move”, the TaylorLinear pro-
duced comparable results to sigmoid, whilst Friend-
lyFunction produced slightly lower values. The
“Lenses” produced the same result as sigmoid
whilst the result was comparable using Friendly-
Function. In the case of the “Blood Trans” dataset,
the recall values obtained using TaylorLinear and
the sigmoid function were identical, however the
value obtained using FriendlyFunction was slightly
higher. In the case of the ”Leafs, FriendlyFunction
is lower than sigmoid and TaylorLinear.

F1: With respect to the F1 values obtained, these
were comparable in ten cases; whereas in one
case, “Breast Tissue”, TaylorLinear and Friendly-
Function produced identical values slightly lower
than the sigmoid function. In the remaining cases,
“Leafs”, “Lenses”, and “Libras Move”, the Taylor-
Linear was equal to sigmoid function in the case
of “Lenses”, higher in the case of “Libras Move”
and comparable to the sigmoid function in “Leafs”
whilst FriendlyFunction was slightly lower in all
cases.

Acc: In terms of accuracy (Acc), in six datasets the
values obtained for the TaylorLinear approach were

exactly the same as the sigmoid approach. Three
of these cases were also same as FriendlyFunction
approach; “Banknote Auth.”, “Breast Cancer”, and
“Chronic Kidney”. For “Dermatology”, “Iris”, “Li-
bras Move”, and “Parkinsons” the Acc obtained us-
ing TaylorLinear were slightly higher than the sig-
moid approach whilst FriendlyFunction produced
the same Acc as sigmoid in the case of “Derma-
tology” and “Iris” and less than sigmoid in the
remaining cases. In “Breadth Tissue”, “Ecoli”, and
“Leafs”, TaylorLinear obtained comparable Acc
to sigmoid and less to the FriendlyFunction. In
“Pima Disease” TaylorLinear and FriendlyFunction
produced same results lower than the sigmoid ap-
proach.

The overall average values for precision were 0.81, 0.80
and 0.77 for standard NN using the sigmoid function,
PPNNBP using TaylorLinear and PPNNBP using Friendly-
Function respectively. The overall average values for recall
were 0.78, 0.78, and 0.75 respectively. The average F1 values
were 0.79, 0.78, and 0.75; and the average Acc values were
0.84, 0.84, and 0.79. Therefore, it can be concluded that the
combined PPNNBP approach with TaylorLinear approxima-
tion produced comparable results to standard NN without
encryption. The results produced using FriendlyFunction ap-
proximation were not as accurate, because the approximation
was coarser than the values produced using TaylorLinear
approximation (as shown in Fig. 1).

The loss function values, during TaaS, were also compared
between standard and PPNNBP using the two different acti-
vation functions with respect to different numbers of epochs.
Fig. 3 shows the loss function for standard and PPNNBP for
different epochs from 10 to 190 in steps of 20. From the
figure it can be seen that in all cases FriendlyFunction pro-
duced the worst performance. The operation of the PPNNBP
framework coupled with TaylorLinear approximation and
standard NN were comparable. Thus it was concluded that
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TABLE V. Prediction accuracies using: (i) standard NN with sigmoid activation, (ii) PPNNBP with φ3 approximation, and (iii) PPNNBP with ϕ approximation

Dataset
Standard NN PPNNBP

P R F1 Acc TaylorLinear (φ3) FriendlyFunction (ϕ)
P R F1 Acc P R F1 Acc

1. Banknote Auth. 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
2. Blood Trans. 0.73 0.54 0.51 0.77 0.71 0.54 0.51 0.77 0.61 0.65 0.55 0.55
3. Breast Cancer 0.65 0.65 0.66 0.75 0.65 0.65 0.66 0.75 0.66 0.67 0.67 0.75
4. Breast Tissue 0.66 0.64 0.64 0.66 0.61 0.61 0.57 0.63 0.60 0.57 0.57 0.59
5. Chronic Kidney 0.97 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.97 0.98 0.98 0.98
6. Dermatology 0.94 0.94 0.94 0.95 0.96 0.96 0.97 0.97 0.95 0.94 0.95 0.95
7. Ecoli 0.62 0.59 0.61 0.87 0.62 0.62 0.62 0.86 0.58 0.59 0.59 0.83
8. Iris 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.97
9. Leafs 0.68 0.69 0.67 0.68 0.62 0.64 0.62 0.64 0.56 0.34 0.40 0.54
10. Lenses 0.76 0.73 0.74 0.79 0.76 0.73 0.74 0.79 0.68 0.68 0.66 0.70
11. Libras Move. 0.78 0.76 0.76 0.76 0.77 0.77 0.77 0.77 0.70 0.67 0.68 0.71
12. Parkinsons 0.85 0.82 0.84 0.88 0.85 0.83 0.85 0.89 0.82 0.83 0.83 0.87
13. Pima Disease 0.75 0.72 0.74 0.77 0.75 0.70 0.72 0.76 0.75 0.71 0.72 0.76
14. Seeds 0.94 0.94 0.95 0.94 0.94 0.94 0.95 0.94 0.91 0.91 0.91 0.91

Average 0.81 0.78 0.79 0.84 0.80 0.78 0.78 0.84 0.77 0.75 0.75 0.79

TaylorLinear approximation can approximate the value of the
sigmoid function whereas maintaining the overall accuracy
of the trained model.

FIGURE 3. Loss function for the three NN for different number of epochs

E. SECURITY
Using the PPNNBP framework the third party, cloud
provider, is considered to be an “Honest but Curious” party;
thus the semi-honest security model was considered where
the third party executes the stated algorithm without devia-
tion and does not fail to provide the required service. At the
same time the third party is curious, in the sense that it would
“look” at the available data and calculated intermediate re-
sults. The security of the PPNNBP framework was thus eval-
uated in terms of the semi-honest model by identifying po-
tential attacks that can be instigated during network training
(TaaS) and provision of PaaS. Model training was performed
on encrypted data, encrypted data labels, and encrypted NN
weights and biases, thus the only potential form of attack
was a COAs available whenever adversaries have access to
such cyphertexts. The MLS, as in the case of original LS,
is a probabilistic scheme that produces different cyphertexts
for the same plaintext value each time it is applied, even
when using the same secret key. This feature means that
MLS cyphertexts are semantically secure, hence accessing

cyphertexts does not provide any useful information, with
respect to the associated plaintext, from the perspective of an
adversary. COAs are more likely to succeed when attackers
have a background knowledge of the data frequency of the
original data values. Knowledge associated with the ordering
feature of some order preserving encryption schemes might
allow an adversary to infer the ranges containing dense data.
Alternatively, frequency analysis could allow attackers to
highlight cyphertexts with the same frequency as plaintexts
(if such plaintexts were available) and then identify cypher-
texts that have the same frequency. However, this will not be
possible in the case of MLS because different cyphers are
produced for the same plaintext values using the ω-concept
presented in Subsection IV-A. The entire model training was
conducted over MLS cyphers and no decryption took place
at the cloud side which implies even more security. Hence it
is argued that the PPNNBP framework, founded on MLS, is
secure with respect to COAs.

In the context of PaaS offered by a cloud provider, there
were two possible issues of concern in the PPNNBP frame-
work: (i) the presence of sensitive information in prediction
requests, and (ii) the knowledge embedded in the trained
model might be accessible to external adversities. In the
context of the first concern, prediction requests are sent in
encrypted form, the third party performs the requested infer-
ence over the encrypted data and then produces an encrypted
prediction that only be decrypted by the data owner. In
context of the second concern, all weights and biases are
encrypted using MLS which, as noted above, has semantic
security features; therefore “inversion” attacks can not be
instigated without access to the required encryption key.

F. COMPARISON WITH STATE-OF-ART FRAMEWORKS

In this subsection, experiments were conducted to compare
the PPNNBP framework and its building blocks with existing
solutions that provide TaaS and PaaS such as SecureNN [33],
SecureML [37], and QUOTIENT [38]. The objective of the
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TABLE VI. Comparing the accuracy of TaaS using different frameworks to
standard (unencrypted) equivalents

Framework Training Accuracy Accuracy loss

SecureNN (3 Layers) 0.934 -0.006
Standard NN 0.940
SecureML (ReLU) 0.934 -0.011
SecureML (Quadratic) 0.931 -0.014
Standard NN 0.945
QUOTIENT 0.897 -0.011
Standard NN 0.908
PPNNBP (φ3) 0.928 +0.008
Standard NN 0.920

experiments is to compare the accuracy of model, the security
provided, and the complexity of: (i) MLS multiplication, (ii)
secure comparison, and (iii) model training and prediction
with solutions introduced in other frameworks.

The PPNNBP training accuracy was compared with that of
SecureNN (with three layers), SecureML (using ReLU and
quadratic activation functions) and QUOTIENT (shown in
Table VI). As a baseline evaluation of training, we compare
secure training performance to its standard (unencrypted)
counterpart. In order to provide an accurate comparison,
accuracy loss is used. This is calculated as a difference
between the secure framework accuracy and the accuracy of
the standard model. As shown in Table VI, all frameworks
achieved accuracy levels similar to the standard approach;
all accuracy losses were less than 0.014. It is only in the
PPNNBP approach that secure training accuracy is higher
than that of the standard approach, and therefore the accuracy
loss is positive. This was due to the approximation used to
calculate the activation function.

For the purpose of security, training data, intermediate
results, and NN weights and biases must be preserved. In
PPNNBP the training data were encrypted using a key be-
longing to the data owner that was not disclosed to the server.
Intermediate results were also protected and not disclosed to
the server as only cyphertexts were manipulated. However,
comparable TaaS and PaaS frameworks rely on schemes and
protocols that secretly share training data and intermediate
results across two or three non-colluding servers (as shown in
Table I). Therefore, the security guarantees provided by these
frameworks are weaker than those provided by PPNNBP, as
data privacy may be compromised when servers collude. In
PPNNBP, the only information disclosed to the server is the
NN topology, which is essential for PPNNBP to operate cor-
rectly. This was also the case in SecureNN [33], SecureML
[37], and QUOTIENT [38] frameworks.

MLS introduces the subcyphertexts dimensionality reduc-
tion mechanism to manage the size of cyphertexts throughout
the training process. Table VII compares the runtimes of
MLS homomorphic multiplications, followed by dimension-
ality reduction

⊗
, with the approach facilitated by the OT

and Garbled Circuit (GC) introduced in the QUOTIENT
framework and the OT and LHE based approaches intro-
duced in SecureML. The runtime measures the time required

to multiply a vector with k-dimensions by the value of an
activation function. The experiments demonstrate that MLS
based multiplication outperforms all other approaches. Thus,
MLS is well suited to applications requiring extensive multi-
plication, such as DNN.

TABLE VII. Comparison of our MLS based multiplication of k-dimensional
vectors with activation function values with QUOTIENT using OT and GC and
SecureML using OT and LHE

k
QUOTIENT SecureML PPNNBP

OT GC OT LHE MLS with m=3
(s) (s) (s) (s) (s)

103 0.08 0.025 0.028 5.3 0.002
104 0.08 0.140 0.160 53.0 0.005
105 0.13 1.410 1.400 512.0 0.036
106 0.60 13.120 14.000 5000.0 0.252
107 6.00 139.800 140.000 50000.0 1.314

Experiments show that data comparisons using MLS prop-
erty take 0.2 ms and run on cloud without data owner partic-
ipation (Fig. 2). The cloud will know the comparison result
without revealing the exact value of cyphertexts. Comparable
solutions such as the PrivateCompare protocol introduced
in [33], performs data comparison in a bit-wise manner
and require the involvement of three parties. Therefore, the
number of communications required depends on the number
of bits in the data to be compared. As an example, values
with l -bit with a maximum number of bits of p will have
complexity equal to 2× l× log(p). In addition, at the end of
the PrivateCompare protocol, the server that runs the training
and prediction algorithms will be able to obtain the results of
the data comparison in addition to the exact value of the most
significant bits.

The experiments conducted in [33] and [38] demonstrate
that SecureNN and QUOTIENT frameworks require long
training times even for small datasets. As an example, in [38],
the reported training time for NN using the “breast cancer”
dataset was 14.51 h, while for PPNNBP, the training time
was 195.32 s. These are clearly the result of the complexity
of the adopted SMPC protocols. In the case of SecureNN,
the prediction time was 0.045 s, which means that 90, 000
predictions can be made in an hour as opposed to 1, 641, 256
using TaylorLinear and 4, 143, 012 using FriendlyFunction
approximation. Results indicate that PPNNBP is more effi-
cient than comparable frameworks.

There are potential limitations to the PPNNBP. The frame-
work was evaluated on a single computer without a network
simulation which measured the potential network overhead
associated with the involvement of data owners. In PPNNBP,
the involvement of data owners are expected to be small.
For example, in TaaS this is limited to O(n ∗

∑i=b
i=1 li) and

for PaaS it is limited to O(
∑i=b

i=1 li) where n is number of
samples in training data, b is number of layers specified in NN
topology, and li is number of neurons in the ith layer. This is
not like using the SMPC protocols that required extensive
communication between multiple parties.
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VIII. CONCLUSION AND FUTURE WORK
In this paper the PPNNBP framework, supported by MLS,
has been proposed. The framework, coupled with MLS, al-
lows for privacy-preserving multilayer NN with BP learning.
The model is trained using encrypted data and encrypted
network weights and biases. It can also be used to provide
secure PaaS. The training of networks and their usage does
not entail any significant computational overhead over data
owner, whist at the same time effectiveness is comparable
with that obtained using standard NN. Thus, the framework
is well suited for Secure MLaaS, which delegate TaaS and
PaaS to a third party data miner with limited data owner
involvement. In PPNNBP, only one cloud server is used
to provide TaaS and PaaS. The advantages offered by the
PPNNBP framework result from the MLS which addresses
the problem, found in existing FHE schemes, of the ex-
ponential increase in cyphertext size and the inclusion of
noise every time a multiplication operation is conducted. In
addition, MLS incorporates a MLS feature, the ω-concept,
that preserves data ordering and thus allows for secure data
comparison. Using MLS, as in the case of FHE schemes, the
nonlinear sigmoid activation can not be easily implemented,
hence the paper proposes the TaylorLinear approximation for
model training which requires some data owner participation.
For providing PaaS two alternative linear approximations
to the sigmoid function were considered, TaylorLinear and
FriendlyFunction. The second offers the advantage that it
requires no data owner participation, but at the expense of
some reduction in prediction accuracy. For future work, the
authors intend to investigate the utility of MLS with respect
to different ML algorithms.

.

APPENDIX A MLS PROOF OF CORRECTNESS
A. DIMENSIONALITY REDUCTION ALGORITHM
Assuming MLS number of subcyphertext m = 3 and q = 1
(this means only t1 ̸= 0). The subcyphertexts for encrypting
v1 and v2, using Algorithm 2, are calculated as follows:

Encrypt(v1,SK(3)) = E1 = {e11 , e12 , e13} where

e11 = k1t1v1+s1+k1(r1−r2)
s1

= k1t1v1+s1+k1r1−k1r2
s1

e12 = k2t2v1+s2+k2(r2−r1)
s2

= s2+k2r2−k2r1
s2

e13 = (k3 + s3 + t3) = kst
(5)

Encrypt(v2,SK(3)) = E2 = {e21 , e22 , e23} where

e21 = k1t1v2+s1+k1(r1−r2)
s1

= k1t1v2+s1+k1r1−k1r2
s1

e22 = k2t2v2+s2+k2(r2−r1)
s2

= s2+k2r2−k2r1
s2

e23 = (k3 + s3 + t3) = kst

(6)

Multiplying Encrypt(v1,SK(3)) and Encrypt(v2,SK(3))
gives E1 ⊗ E2 = E = {e11e21 , e11e22 , e11e23 , e12e21 ,

e12e22 , e12e23 , e13e21 , e13e22 , e13e23}. Using the dimension-
ality reduction algorithm (Algorithm 4) the resulted cypher
E can be re-encrypted without being first decrypted whilst
reducing the number of subcyphertexts to only 3 subcypher-
texts; when decrypted this should give v1 × v2. Following
the steps outlined in Algorithm 4, every three consecutives
subcyphers in E will be associated with a trapdoor in Trap
and kst which will be used to calculate one cypher in the
reduced cypher RE= {re1, re2, re3}. For example, re1 is cal-
culated from {e11e21 , e11e22 , e11e23}. Applying Algorithm
4 the reduced subcyphers will be as follows:

re1 = (((e11e21)− (
e11e23

kst
))× trap1) + (((e11e22)

−(
e11e23

kst
))× trap2)

re2 = (((e12e21)− (
e12e23

kst
))× trap1) + (((e12e22)

−(
e12e23

kst
))× trap2)

re3 = (((e13e21)− (
e13e23

kst
))× trap1) + (((e13e22)

−(
e13e23

kst
))× trap2)

According to Trapdoor calculation algorithm (Algorithm 1)
the values for trap1 and trap2 are s1×secretK

secretS×k1
and s2×secretK

secretS×k2
;

and the value for kst will be k3 + s3 + t3. After calling
cypher reduction, the level of RE is one (RE.l = 1). The
RE cypher can then be decrypted using Algorithm 3 to give
v1×v2. Following Algorithm 3, as the cyphertext level value
in RE is not equal to zero, a new subcyphertext value for each
subcypher rei in RE is calculated (lines 3 to 5) the new RE
subcyphertexts are:

re1 = 1
t
[ s1
k1

(e11e21 − e11e23
kst

) + s2
k2

(e11e22 − e11e23
kst

)]

re2 = 1
t
[ s1
k1

(e12e21 − e12e23
kst

) + s2
k2

(e12e22 − e12e23
kst

)]

re3 = 1
t
[ s1
k1

(e13e21 − e13e23
kst

) + s2
k2

(e13e22 − e13e23
kst

)]

The cyphers are then used, in lines 6 and 7 of Algorithm 3,
and processed the follows:

t = t1 + t2 = t1 + 0 = t1
s = re3

(k3+s3+t3)
= re3

kst

v =
((re1×s1)−(

re3
kst

×s1))

k1
+

((re2×s2)−(
re3
kst

×s2))

k2
t

= 1
t
[ s1
k1

× (re1 − re3
kst

) + s2
k2

× (re2 − re3
kst

)]

(7)

The values for re3
kst , re1, and re2 must then be calculated.

The values for re3
kst are given by:

re3
kst

= 1
t
[ s1
k1kst

(e13e21 − e13e23
kst

) + s2
k2kst

(e13e22 − e13e23
kst

)]

= 1
t
[
s1e13e21
k1kst

− s1e13e23
k1kst2

+
s2e13e22
k2kst

− s2e13e23
k2kst2

]

Where:

s1e13e21
k1kst

= s1
k1kst

(kst)( k1t1v2+s1+k1r1−k1r2
s1

) (5) and (6)
= k1t1v2+s1+k1r1−k1r2

k1
= t1v2 +

s1
k1

+ r1 − r2
s1e13e23
k1kst2

= s1
k1kst2

kst kst = s1
k1

s2e13e22
k2kst

= s2
k2kst

e13e22 = s2
k2kst

kst( s2+k2r2−k2r1
s2

)

= s2+k2r2−k2r1
k2

= s2
k2

+ r2 − r1
s2e13e23
k2kst2

= s2
k2kst2

kst kst = s2
k2
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In other words:

re3
kst

= 1
t
[t1v2 +

s1
k1

+ r1 − r2 − s1
k1

+ s2
k2

+ r2 − r1 − s2
k2

]

= 1
t
t1v2 = v2 given that t = t1

The values for re1 and re2 (in (7)) are given by:

re1 = 1
t
[
s1e11e21

k1
− s1e11e23

k1kst
+

s2e11e22
k2

− s2e11e23
k2kst

]

The operands in the above are calculated, retrospectively, as
follows:

s1e11e21
k1

= s1
k1

[( k1t1v1+s1+k1r1−k1r2
s1

)( k1t1v2+s1+k1r1−k1r2
s1

)]

= s1
k1

[( k1t1v1
s1

+ 1 + k1r1
s1

− k1r2
s1

)( k1t1v2
s1

+ 1+
k1r1
s1

− k1r2
s1

)]

= s1
k1

[
k2
1t

2
1v1v2
s21

+ k1t1v1
s1

+
k2
1t1r1v1

s21
− k2

1t1r2v1
s21

+

k1t1v2
s1

+ 1 + k1r1
s1

− k1r2
s1

+
k2
1t1r1v2

s21
+ k1r1

s1

+
k2
1r

2
1

s21
− k2

1r1r2
s21

− k2
1t1r2v2

s21
− k1r2

s1
− k2

1r1r2
s21

+
k2
1r

2
2

s21
]

= s1
k1

[
k2
1t

2
1v1v2+k1t1s1v1+k2

1t1r1v1−k2
1t1r2v1+k1t1s1v2

s21
+s21+k1r1s1−k1r2s1+k2

1t1r1v2+k1r1s1+k2
1r

2
1−k2

1r1r2
s21

−k2
1t1r2v2−k1r2s1−k2

1r1r2+k2
1r

2
2

s21
]

=
k2
1t

2
1v1v2+k1t1s1v1+k2

1t1r1v1−k2
1t1r2v1+k1t1s1v2+s21

s1k1
+k1r1s1−k1r2s1+k2

1t1r1v2+k1r1s1+k2
1r

2
1−k2

1r1r2
s1k1

−k2
1t1r2v2−k1r2s1−k2

1r1r2+k2
1r

2
2

s1k1

=
k1t

2
1v1v2
s1

+ t1v1 +
k1t1r1v1

s1
− k1t1r2v1

s1
+ t1v2

+ s1
k1

+ r1 − r2 +
k1t1r1v2

s1
+ r1 +

k1r
2
1

s1

− k1r1r2
s1

− k1t1r2v2
s1

− r2 − k1r1r2
s1

+
k1r

2
2

s1

=
k1t

2
1v1v2
s1

+ t1v1 +
k1t1r1v1

s1
− k1t1r2v1

s1
+ t1v2

+ s1
k1

+ 2r1 − 2r2 +
k1t1r1v2

s1
+

k1r
2
1

s1
− 2 k1r1r2

s1

− k1t1r2v2
s1

+
k1r

2
2

s1s1e11e23
k1kst

= s1
k1kst

( k1t1v1+s1+k1r1−k1r2
s1

)(kst)

= 1
k1

(k1t1v1 + s1 + k1r1 − k1r2)
= t1v1 +

s1
k1

+ r1 − r2
s2e11e22

k2
= s2

k2
( k1t1v1+s1+k1r1−k1r2

s1
)( s2+k2r2−k2r1

s2
)

= s2
k2

[( k1t1v1
s1

+ 1 + k1r1
s1

− k1r2
s1

)(1 + k2r2
s2

−
k2r1
s2

)]

= s2
k2

[ k1t1v1
s1

+ k1k2t1r2v1
s1s2

− k1k2t1r1v1
s1s2

+ 1

+ k2r2
s2

− k2r1
s2

+ k1r1
s1

+ k1k2r1r2
s1s2

− k1k2r
2
1

s1s2

− k1r2
s1

− k1k2r
2
2

s1s2
+ k1k2r1r2

s1s2
]

= k1t1s2v1
s1k2

+ k1t1r2v1
s1

− k1t1r1v1
s1

+ s2
k2

+ r2 − r1

+ k1r1s2
s1k2

+ 2 k1r1r2
s1

− k1r
2
1

s1
− k1r2s2

s1k2
− k1r

2
2

s1s2e11e23
k2kst

= s2
k2kst

( k1t1v1+s1+k1r1−k1r2
s1

)(kst)

= ( k1t1s2v1+s1s2+k1s2r1−k1s2r2
s1k2

)

= k1t1s2v1
s1k2

+ s2
k2

+ k1s2r1
s1k2

− k1s2r2
s1k2

In other words (recall t = t1):

re1 = 1
t [

k1t
2
1v1v2
s1

+ t1v1 +
k1t1r1v1

s1
− k1t1r2v1

s1
+ t1v2

+ s1
k1

+ 2r1 − 2r2 +
k1t1r1v2

s1
+

k1r
2
1

s1
− 2k1r1r2

s1

−k1t1r2v2
s1

+
k1r

2
2

s1
− t1v1 − s1

k1
− r1 + r2

+k1t1s2v1
s1k2

+ k1t1r2v1
s1

− k1t1r1v1
s1

+ s2
k2

+ r2

−r1 +
k1r1s2
s1k2

+ 2k1r1r2
s1

− k1r
2
1

s1
− k1r2s2

s1k2

−k1r
2
2

s1
− k1t1s2v1

s1k2
− s2

k2
− k1s2r1

s1k2
+ k1s2r2

s1k2
]

= k1t1v1v2
s1

+ v2 +
k1r1v2

s1
− k1r2v2

s1
(8)

Recall that t = t1 + t2, however, as the key generation
conditions require that there is only one tq ̸= 0 that is t1
thus t = t1.
The value for re2 (in (7)) is then given by:

re2 = 1
t [t1v2 +

s1
k1

+ r1 − r2 +
t1k2r2v2

s2
+ s1k2r2

k1s2

+2k2r1r2
s2

− k2r
2
2

s2
− k2t1r1v2

s2
− s1k2r1

k1s2
− k2r

2
1

s2

− s1
k1

− s1k2r2
k1s2

+ s1k2r1
k1s2

+ s2
k2

+ 2r2 − 2r1+
k2r

2
2

s2
− 2k2r1r2

s2
+

k2r
2
1

s2
− s2

k2
− r2 + r1]

= 1
t [t1v2 +

t1k2r2v2
s2

− k2t1r1v2
s2

]

= v2 +
k2r2v2

s2
− k2r1v2

s2

Where:

s1e12e21
k1

= s1
k1
[( s2+k2r2−k2r1

s2
)(k1t1v2+s1+k1r1−k1r2

s1
)]

= s1
k1
[(1 + k2r2

s2
− k2r1

s2
)(k1t1v2

s1
+ 1 + k1r1

s1

−k1r2
s1

)]

= s1
k1
[k1t1v2

s1
+ 1 + k1r1

s1
− k1r2

s1
+ t1k1k2r2v2

s1s2

+k2r2
s2

+ k1k2r1r2
s1s2

− k1k2r
2
2

s1s2
− k1k2t1r1v2

s1s2

−k2r1
s2

− k1k2r
2
1

s1s2
+ k1k2r1r2

s1s2
]

= t1v2 +
s1
k1

+ r1 − r2 +
t1k2r2v2

s2
+ s1k2r2

k1s2

+2k2r1r2
s2

− k2r
2
2

s2
− k2t1r1v2

s2
− s1k2r1

k1s2

−k2r
2
1

s2

s1e12e23
k1kst

= s1
k1kst

( s2+k2r2−k2r1
s2

)(kst)

= s1s2+s1k2r2−s1k2r1
k1s2

= s1
k1

+ s1k2r2
k1s2

− s1k2r1
k1s2

s2e12e22
k2

= s2
k2
( s2+k2r2−k2r1

s2
)( s2+k2r2−k2r1

s2
)

= s2
k2
(1 + k2r2

s2
− k2r1

s2
)(1 + k2r2

s2
− k2r1

s2
)

= s2
k2
[1 + k2r2

s2
− k2r1

s2
+ k2r2

s2
+

k2
2r

2
2

s22
− k2

2r1r2
s22

−k2r1
s2

− k2
2r1r2
s22

+
k2
2r

2
1

s22
]

= [ s2k2
+ r2 − r1 + r2 +

k2r
2
2

s2
− k2r1r2

s2
− r1

−k2r1r2
s2

+
k2r

2
1

s2
]

= [ s2k2
+ 2r2 − 2r1 +

k2r
2
2

s2
− 2k2r1r2

s2
+

k2r
2
1

s2
]

s2e12e23
k2kst

= s2
k2kst

( s2+k2r2−k2r1
s2

)(kst) = s2
k2

+ r2 − r1

Finally:
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v = 1
t [

s1
k1

× (k1t1v1v2

s1
+ v2 +

k1r1v2
s1

− k1r2v2
s1

− v2)

+ s2
k2

× (v2 +
k2r2v2

s2
− k2r1v2

s2
− v2)]

= 1
t [t1v1v2 + r1v2 − r2v2 + r2v2 − r1v2]

= 1
t [t1v1v2]

= v1v2

As expected from decrypting cyphertext RE.

B. ORDER PRESERVING FEATURE CORRECTNESS

In MLS, data ordering is preserved using the data encryption
function associated with: (i) the key generation conditions
(Subsection IV-A), and (ii) the ω-concept that, although
generating random values, retains the data ordering across the
cyphertexts. The ω-concept uses a simple mathematical rule
to ensure a “gap” between cyphertexts so that adding random
offsets (sampled from a particular range) will not cause any
overlap, and hence guarantees data ordering. The value for
ω can be determined using 10p, and the random values ri
can then be sampled from range 0 to ω. Random values
are generated each time the encryption function is called,
a side-effect of this is that data equality is not preserved.
This feature facilitates precluding Cyphertext Only Attacks
(COAs) by generating different cyphertexts for the same
plaintext value, even when the same list of keys is used (the
probabilistic feature of the MLS scheme). If we consider the
situation where q = 1 and m = 3, the encryptions of v1 and
v2 are E1 = {e11 , e12 , e13} and E2 = {e21 , e22 , e23} where:

e11 =
k1t1v1+s1+k1(r11−r12 )

s1

e21 =
k1t1v2+s1+k1(r21−r22 )

s1

As already noted, the encryption function selects a different
value for ri every time the encryption function is invoked,
thus r1i ̸= r2i . If v1 > v2. Thus, applying the encryption
function, and since the k1, s1 and t1 values are all positive,
the consistent values (private keys) will be:

k1t1v1 + s1 > k1t1v2 + s1

Adding random numbers to the above might change the data
ordering. The ω-concept is used to create a “gap” between
every consecutive plaintext value so as to allow the addition
of a random number while preserving the data ordering. The
value of ω is embedded in t1, when q = 1, in other words
t1 = (s1 + k1)× ω. Recall the value of t1 is multiplied with
the v in MLS encryption function. The value of the random
numbers r1i and r2i are sampled from 0 to ω. Therefore, the
maximum value of r11 − r12 is ω and also the maximum
value of r21 − r22 is ω (less than the gap multiplied with
v in encryption function). Recall that ri1 when q = 1 is
greater than the value of other random values. Therefore, the
encrypted values of v1 and v2 can be compared:

k1v1 > k1v2
k1v1ω ≫ k1v2ω where ω = 10p

k1v1ω(s1 + k1) ≫ k1v2ω(s1 + k1)
k1v1t1 ≫ k1v2t1

k1v1t1 + s1 ≫ k1v2t1 + s1
(9)

In mathematics if c is an integer number greater than 1,
then c× num >> c+num; the ω-concept uses this basic
mathematical rule so that if a random value, sampled from
the range 0 to ω, is added to the two operands in (9) the data
order will still hold.

k1v1t1 + s1 + k1(r11 − r12) > k1v2t1 + s1 + k1(r21 − r22)
k1v1t1+s1+k1(r11−r12 )

s1
>

k1v2t1+s1+k1(r21−r22 )

s1
e11 > e21

(10)
As argued in MLS the data order is preserved in eq

subcyphertext.
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