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Abstract. A mechanism to support the prioritisation of multi-variate
pathology data, in the absence of a ground truth prioritisation, is pre-
sented. The motivation is the ever increasing quantity of pathology data
that clinicians are expected to consider. The fundamental idea, given a
previously unseen pathology result and the associated pathology history,
is to use a deep learning model to predict future pathology results and
then use the prediction to classify the new pathology result according to a
pre-defined set of prioritisation levels. A further challenge is that patient
pathology history, expressed as a multi-variate time series, tends to be
irregularly time stamped and of variable length. The proposed approach
used a Recurrent Neural Network to make predictions and a bounding
box technique for the classification. The approach was evaluated using
Urea and Electrolytes pathology data. The operation of the proposed
approach was also compared with previously reported approaches, and
was found to outperform these previous approaches.

Keywords: Data Ranking · Multivariate Time Series · Deep Learning
· Pathology Data.

1 Introduction

Pathology results play an important role for decision making in any clinical
environment. Clinicians use pathology results to diagnose patient conditions and
decide on best next measures. Large amounts of pathology results are generated
on a daily basis. For many conditions, such as kidney disease, pathology results
are generated at regular intervals, sometimes over many years. Many pathology
results comprise a set of values, not just one; in other words they are multivariate.
The amount of pathology data that clinicians are expected to look at on a daily
bases presents a significant information overload problem. A problem that is
compounded by our ever increasing technical ability to collect pathology data;
not helped by the recent COVID-19 pandemic which has put further strain
on resources. In order to solve the problem, it is suggested that some form of
automated pathology result prioritisation is required, and that this can best be
achieved using the tools and techniques of machine learning whereby results can
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be classified using a prioritisation scale of some kind. However, the challenge of
the application of deep learning to pathology data is the absence of a “ground
truth”, a set of examples illustrating what a priority pathology result looks like,
and what it does not look like. The reason for this is the resource required to
generate such a ground truth.

There has been some previous work directed a pathology result prioritisa-
tion in the absence of a ground truth [7, 8]. In [8] it was assumed that high
priority pathology results equated to anomalous priority results and hence an
anomaly detection mechanism was adopted. However, given a large number of
priority pathology results these would no longer be considered to be anomalous
and therefore not be prioritised. In [7] a proxy ground truth was used based
on the known outcomes of previous patients; whether they became emergency
patients, in-patients, out-patents or remained with their General Practitioner
(GP). The proxy ground truth was used to train a deep learner. Some improve-
ment was reported over the work presented in [8]. However, the way the proxy
ground truth was calculated meant that possible correlations between different
pathology values were not considered.

An alternative pathology result prioritisation mechanism, to that given in
[7] and [8], is presented in this paper directed at patients that have conditions
where pathology results, each comprised of a set of values, are generated as an
ongoing part of a care programme. In other words we have time series of previous
pathology results. The fundamental idea is to predict whether the next pathology
result in the sequence will be out of the anticipated normal range with respect
to the pathology test under consideration. To be more specific, the use of an
RNN-based pathology result forecasting model is advocated to predict follow-
on results which can then be compared to the expected range. To distinguish
prioritisation levels, a novel “Bounding Box” mechanism, which can distinguish
between levels of prioritisation, is proposed. For the evaluation presented later
in this paper three prioritisation levels were considered: high, medium and low.
However, the bounding box technique will also work with any numbers of levels
of two or more.

From the foregoing, the hypothesis that this paper seeks to establish is that
there are patterns (trends) in a patients’ historical pathology data which can be
considered to be markers that are indicative of future pathology values. To act
as a focus for the work the application domain of Urea and Electrolytes (U&E)
pathology testing was considered. The proposed approach was evaluated using
U&E data provided by Arrowe Park Hospital in Merseyside in the UK. This
application domain was selected because it is the most commonly undertaken
biochemistry test used to provide essential information on renal function.

The remainder of this paper is organised as follows. A review of relevant
previous work is presented in Section 2. This is followed, in Section 3, by a
review of the Urea and Electrolytes pathology application domain, used as a
focus for the work. The proposed approach is considered in Section 4, and the
evaluation of the proposed approach in Section 5. The paper is concluded in
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Section 6 with a summary of the main findings and some suggested directions
for future work.

2 Previous Work

The broad area of research into which the work presented in this paper falls, is
that of big data prioritisation [12], where the aim is to determine which data
items take priority over other data items. Data prioritisation can be applied in
many areas [1, 6, 10], while in the medical area, the concept is more similar to
patient triage [3] or prognosis [2], which supports decision-making through pre-
dicting the severity or risk of a given patient’s condition. There has been some
previous work directed at using machine learning for patient triage [4, 5, 14]. In
[4] various forms of multinomial Logistic Regression (LR) were used: multinomial
LR, eXtreme gradient boosting (XGBoost), random forests (RFs) and Gradient-
Boosted Decision Trees (GBDTs) were explored to identify high-risk emergency
department patients with suspected cardiovascular disease. In [5], natural lan-
guage prediction methods were adopted to predict admission to a Neurosciences
intensive Care Unit. In [14] a machine Learning based AutoScore–Derived triage
tool was developed for predicting mortality risk after patients admitted to emer-
gency departments. Most of the work aimed at predicting triage adopted su-
pervised learning using a predefined training data labeled by domain experts, a
resource intensive process which does not scale up to give general applicability.
One of the challenges for the prioritisation of pathology data is the absence of
training data.

Another challenge of time series pathology data is that it is usually irregular
[15]; the spacing of observations is not constant. Most time series prediction
methods, the technology adopted with respect to the approach presented in this
paper, assume unit-spaced (regular) time series data [11]. Pathology time series
data also tends to be multivariate in nature; the time series have more than one
time-dependent variable. Each value depends not only on its past values but also
the values for the associated variables. There are very few reported studies where
irregular time series have been used directly. The majority of studies adopt some
form of imputation so that spacing is of a unit length to ensure that time series
are all of the same length. Or alternatively some form of padding and masking
is used [13]. A number of alternatives are considered later in this paper.

3 U&E Testing Application Domain

The work presented in this paper is focused on Urea and Electrolytes pathology
test data, U&E testing. U&E testing is usually performed to confirm normal
kidney function or to exclude a serious imbalance of biochemical salts in the
bloodstream. The U&E test data considered in this paper comprised five values
per record: (i) Bicarbonate (bi), (ii) Creatinine (cr), (iii) Potassium (po), (iv)
Sodium (so) and (v) Urea (ur). The measurement of each is referred to as a
“task”, thus we have five tasks per test. Abnormal levels in any of these tasks
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may indicate that the kidneys are not working properly. However, a one time
abnormal result does not necessarily need to be prioritised. A new task value
that is out of range for a patient who has a previous recent history of out of
range task values, but the latest result indicates a trend back into the normal
range, may not be a priority result. Conversely, a new task value that is within
the normal range for a patient who has a history of normal range task values,
but the latest result indicates a trend heading out of the normal range, may need
to be prioritised. Given a new set of pathology values for a U&E test we wish
to determine the priority to be associated with this set of values.

The U&E data used for evaluation purposes with respect to the work pre-
sented in this paper comprised a set of clinical patient records,D = {P1, P2, . . . },
where each record Pi ∈ D was of the form:

Pi = ⟨PatientID,History, TestResult, ReferencedRange⟩ (1)

Where: (i) PatientID is the ID for the patient in question; (ii) History is
a set previously obtained pathology results expressed as a set a multivariatre
time series T = [t1, t2, . . . ], where each ti ∈ T comprised a 5-tuple of the form
⟨vbi, vcr, vpo, vso, vur⟩, (iii) TestResult is a current previously unseen pathology
result R also comprised of an n tuple of the form ⟨vbi, vcr, vpo, vso, vur⟩, and (iv)
ReferencedRange is a set of bounds defining the normal range for the patient
in questionn for the values associated with each task represented as two sets,
L = [l1, l2, . . . ] and U [u1, u2, . . . ], where L holds the minimum (normal low)
values and U holds the maximum (normal upper) values. There is a one-to-one
correspondence with T . The normal low and high dimensions indicate a “band”
in which pathology results are expected to fall given a healthy patient. These
bands vary from task to task, will not be the same for each patient and may
change for a given patient over the course of time. A training record Pi ∈ D will
also include a task label c taken from a set of classes C.

4 Prioritisation for U&E Pathology Patients Results

The fundamental idea, for prioritising pathology results, presented in this pa-
per is that prioritisation can be achieved by predicting whether future patient
pathology results will be out of the normal range. An overview of the proposed
process is given in Figure 1. The process commences with a new multi-variate
pathology result R = ⟨v1, v2, . . . , vn⟩. This is combined with the pathology his-
tory of the patient in question to give a time series T = [t1, t2, . . . , R]. This is then
passed to a prediction model where the next set of results P = ⟨v1, v2, . . . , vn⟩
is predicted. A bounding-box technique is then used to classify R according to
P . Thus, Figure 1, there are two main stages within the overall process:

1. Future Result Prediction: The process of predicting future pathology
results given a new, previously unseen, multi-variate pathology result and
the pathology result history for a given patient.
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2. Bounding Box Classification: The process of assigning a priority level to
a previously unseen pathology result using the predicted future pathology
results.

Each of the above is discussed in further detail in the following two sub-sections.

Fig. 1. Schematic outlining the proposed pathology data
prioritisation process

Fig. 2. LSTM architec-
ture for future pathology
results prediction

4.1 Future Results Prediction

There are a range of prediction mechanism that could have been adopted with
respect to Stage 1 of the proposed process, a Long Short Term Memory (LSTM)
mechanism was adopted. The architecture of the proposed LSTM is showed in
Figure 2. From the figure it can be seen that the proposed LSTM comprised
four layers: (i) the input layer which receives a time series T which includes
the new pathology result R of interest, (ii) the padding layer where the time
series were transformed from irregular time series to regular time series, (iii) the
hidden layer comprised of LSTM cells arranged in two sub-layers, and (iv) the
fully connected layer where the predicted future test results are generated. The
hidden layer is where the training takes place. The training set is divided into a
set of overlapping input/output samples. During training, each sample forms a
prediction step in the overall LSTM model generation process. The hidden layers
compute the intermediate results and pass them on to the next iteration, which
makes it possible for the network to maintain memory of the state of earlier
historical records, so that the effect of the early results can be considered for the
prediction.

The adopted LSTM architecture comprised 16 cells arranged in two sub-
layers in the hidden layer, and n neurons in the output layer for predicting a
set of n pathology task values (n = 5 with respect to the U&E data set used
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to evaluate the proposed approach). The “input shape” of the data is a time
series T = [t1, t2, . . . ], where each point t1 comprises a n-tuple. An important
aspect of training a LSTM network is the iterative updating of weights using the
training data. To achieve this, the Adam stochastic gradient descent was used.
The adopted loss function was the Mean Squared Error (MSE) loss function.
The structure and parameters used were selected a as consequence of a number
of preliminary experiments (not reported here), and because these had been
adopted in related work [9].

4.2 Bounding Box Classification

Once a set P = ⟨v1, v2, v3, ..., vn⟩ of predicted test results have been obtained,
derived from a new pathology result to be prioritised, the next step is to assign a
priority class to the new pathology result. As noted earlier, the prioritisation idea
considered in this paper is to use the normal range associated with a particular
task and patient. The normal range will vary from task to task and from patient
to patient, but in each case will be defined by a minimum and maximum value.
Thus, the normal range “zone” is defined by a n dimensional bounding box,
where n is the number of tasks and each side will equate to the normal range
associated with a task defined by the minimum and maximum value for the task
in question. If a predicted pathology result falls entirely within this bounding box
the pathology result will be deemed to have a “low” priority. Anything outside
can then be labelled as “high” priority. However, a binary classification (high-
low) is considered too coarse a classification; we require more than one class label
for results that fall outside of the “low priority bounding box”. In this paper we
will consider a three class prioritisation, C = {high,medium, low}. Thus if a
pathology result falls outside of the “low priority bounding box” it will be either
medium or high priority. The question is how this can best be calculated. One
idea is to simply calculate the Euclidean distance from the geometric centre of
the low priority bounding box and use a threshold of some kind to distinguish
high priority pathology results from low priority results. However, this will mean
that the distance from a pathology result close to a corner of the bounding box
to the geometric center, will be treated the same as a result some way away
from a side of the bounding box. Thus to distinguish between medium priority
and high priority pathology result a second bounding box, the “medium priority
bounding box” was defined by expanding the low priority box by a factor χ.

The pseudo code for the Bounding Box Comparison approach is given in
Algorithm 1. Note that the algorithm assumes n = 5. The inputs to the al-
gorithm are: (i) a predicted pathology result P = {v1, v2, . . . vn}, (ii) the set
L = {li, l2, . . . ln} of low normal range values, (iii) the set U = {ui, u2, . . . un} of
upper normal range values and (iv) the expansion factor χ to be applied. The
algorithm commences, line 2, by defining a default class of “high”. Then, line 3,
the algorithm determines whether P falls inside the low priority bounding box
using a function inNormalZone. This returns a result tuple comprised of a set
of binary values, 0 = inside and 1 = outside. In the U&E case the tuple is of
size n = 5, but it can be any other values according to the type of pathology
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Algorithm 1 Bounding Box Comparison

1: input P , L, U χ
2: class = high ▷ Default class
3: result = inNormalZone(P,U, L) ▷ Determine if P in normal range
4: if result == ⟨0, 0, 0, 0, 0⟩ then
5: class = low ▷ Predicted point entirely within normal zone
6: else
7: result = ⟨1, 1, 1, 1, 1⟩
8: for ∀vi ∈ P do
9: offset = (ui − li)× χ
10: if (ui + offset) ≥ ti ≥ (li − offset) then
11: resulti = 0
12: end if
13: end for
14: if result == ⟨0, 0, 0, 0, 0⟩ then
15: class = medium ▷ Predicted point entirely within medium zone
16: end if
17: end if
18: return class

under consideration. If the resulting tuple equates to ⟨0, 0, 0, 0, 0⟩ then P is en-
tirely within the low priority bounding box and allocated the class “low” (line
5). Otherwise the result tuple is set to ⟨1, 1, 1, 1, 1⟩ (line 7) and we proceed to
expand the low priority bounding box in each direction in an iterative manner
(lines 8 to 13). On each iteration the expansion is conducted using an offset
applied to each normal low and upper value. The offset, with respect to each
task is calculated as shown in Equation 2, where li ∈ L, ui ∈ U , and χ is a pre-
defined multiplier (factor). On each iteration (line 10), ti ∈ R is compared with
the expanded range and the outcome added to the result tuple. On completion,
if the tuple equates to ⟨0, 0, 0, 0, 0⟩ the new pathology record P is allocated the
class “medium” (line 15). Otherwise the default class, “high”, is used. The class
is then returned (line 18). It is easy to see how the process can be repeated and
further classes added if desired.

offset = (ui − l − i)× χ (2)

A value for chi can be established empirically. However, for the evaluation
presented here a proxy ground truth was used (more on this in Sub-section
5.1). The proxy training data set was of the form presented in Sub-section 3. A
value for χ was then “learnt”, for each class, by clustering all potential χ values
and then determining the mid point between the two cluster centroids. For the
evaluation presented in the following section a binary classification scenario was
considered C = {c1, c2}. The adopted process is illustrated in Algorithm 2. The
input to the algorithm is the training set D and the set of classes C (see Section
3). A value for χ for each value vk in each time series Tj in each set of time series
T for each patient record Di in D was calculated using the Equation 3 where
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uk and lk are the upper and lower range limits associated with vk, and dist is
the distance of vk from the mid-point between uk and lk calculated as shown
in Equation 4. The average value χ for each class is calculated, lines 12 and 13
in Algorithm 2. The mean of the two averages is then the final value for χ to
be used. For future work the intention is to investigate the potential of using
different values for chi for different tasks. In the present study the same value of
χ was used throughout.

Algorithm 2 Factor χ Generation

1: Input D, C
2: Chi = {Chi1, Chi2}
3: for Di ∈ D do
4: for Tj ∈ T, T ∈ Di do
5: for vk ∈ Tj do

6: dist = abs
(
vk − uk−lK

2

)
7: χ = 2×dist

uk−lk
8: Chii = Chii ∪ χ, i = class ID for class c ∈ Di

9: end for
10: end for
11: end for
12: avec1 = average(Chi1) ▷ cluster centre for c1 ∈ C
13: avec2 = average(Chi2) ▷ cluster centre for c2 ∈ C

14: χ =
avec1+avec2

2

15: return χ

χ =
2× dist

uk − lk
(3) disti = abs

(
vk − uk − lK

2

)
(4)

5 Evaluation

The evaluation of the proposed approach is reported on in this section. For the
evaluation, as noted earlier, a U&E data set provided by Arrowe Park Hospital
in Merseyside in the UK was used. The data set was entirely anonymised and
ethical approval for its usage in anonymised form obtained by Arrowe Park
Hospital. Details concerning this data set are given in Sub-section 5.1 below.
The Objectives of the evaluation were

1. To investigate the most appropriate imputation strategy for addressing the
unequal length of the pathology time series to be considered.

2. To determine the overall performance of the proposed approach using a proxy
ground truth, as proposed in [7], and comparing with previously proposed
approaches.

The first is considered in Sub-section 5.2 and the second in Sub-section 5.3. The
value for χ was determined using the classifications in the training data. Five-
cross validation was used through out. The average value for χ was found to be
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0.57. All the experiments were run using a windows 10 desktop machine with a
3.2 GHz Quad-Core IntelCore i5 processor and 24 GB of RAM. For the LSTM,
a GPU was used fitted with a NVIDA GeForceRTX 2060 unit.

5.1 Evaluation Data Set

The evaluation data set used was provided by Arrowe Park Hospital in Mersey-
side in the UK. A general format of the data was presented in Section 3. The
data set comprised 3,734 patient records with five U&E task results (time series)
per patient. The operation of prediction models is typically conducted using a
test set that features known values for the variable to be predicted which can
be compared with the predicted values produced by the model. However, as
noted in the introduction to this paper such test data is typically not available
because of the resource required. Indeed this was the motivation for the work
presented in this paper. As also noted earlier, in [7] a proxy ground truth was
used. The same approach was therefore adopted with respect to the evaluation
of the proposed approach. The final destinations of the patients within the U&E
data set were used to create a proxy ground truth; whether they ended-up as
emergency, in or out patients; equating to high, medium and low priority respec-
tively (C = {high,medium, low}). The proxy ground truth data set comprised
255 patients with high priority, 123 with medium priority and 3,356 with low
priority, covering all five tasks.

5.2 Data Imputation

As noted earlier, the interval between pathology results (points in the multivari-
ate time series), and the overall length of the pathology multi-variate time series,
was variable. This is illustrated, using the U&E data set, in Figures 3 and 4.
Figure 3 shows the number of days between the individual patients considered.
For the figure the patients were ordered according to the maximal interval in
their pathology history and each given a sequential ID number. In Figure 3,
sequential ID numbers are listed on the x-axis, and maximal intervals on the
y-axis. From the figure it can be seen that the majority of patients have a max-
imum pathology interval of less than 100 days. Figure 4 shows the range of time
series lengths. The figure was generated by grouping the time series lengths, in
the U&E evaluation data, into 10 bins of 6 starting with length 1, this covering
time series from 1 to 60. From, the figure it can be seen that the majority of
time series fell into the first bin, lengths 3 to 6.

LSTM model generation requires all time series to be of the same length. We
would also like our time series to reflect the correct spacing between pathology
results (we could have simply assumed a unit spacing). To engineer this we
experimented with five alternative strategies:

1. Mean imputation: Using the mean value in the time series to impute
additional values.
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Fig. 3. Maximal interval in days per pa-
tient

Fig. 4. Frequency of occurrence of differ-
ent time series lengths

2. Median imputation: Using the medium value in the time series to impute
additional values.

3. Mode imputation: Using the mode value in the time series to impute
additional values.

4. Zero imputation: Using the value 0 to impute additional values.
5. Padding and masking: Skip missing time series values.

To evaluate these different strategies ‘loss plots” were generated for each strat-
egy as shown in Figure 5. The number of epochs is given on the x-axis, and
the loss in terms of Mean Squared Error (MSE) on the y-axis (note the y-axis
scale is different for each graph). The same number of epochs was used in each
case. The plots show the “training history” of the LSTMs. Each plot shows the
loss between the training and test (validation) data as the model generation
progressed. We want the loss to be minimal once model generation is complete.
From the figure it can be seen that in all cases the training and test curves
converge. Closer inspection indicates that the “padding and masking” method
achieved the minimum loss.

Table 1 gives the classification accuracy, precision and recall values obtained,
using the five imputation strategies when the proposed bounding box classifica-
tion was applied (best results in bold font). The reported results are averages
obtained using five-cross validation. From the table it can be seen that best
performance was obtained using padding and masking (confirming the results
from Figure 5). As noted in Section 4, Padding and Masking is considered to
offer the advantage that it preserves the original length and irregular spacing of
the time series; this seems to be the most appropriate method for dealing with
the differing lengths of time series as it does not change the original information
provided by the data itself. Zero imputation produced the worst performance.

5.3 Overall Performance

Table 2 gives the best results from Table 1 compared to the results reported in
[7] and [8] where a very similar proxy ground truth was used; best results are
again highlighted in bold font. In [7] two classification models were considered a
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(a) Loss of using mean imputer (b) Loss of using median imputer

(c) Loss of using mode imputer (d) Loss of using zero imputer

(c) Loss of using padding and masking

Fig. 5. Performance comparison of the five alternative imputation strategies in terms
of LSTM model generation

Imputation Acc. Precision Recall
Strategy High Med. Low High Med. Low

Mean 0.56 0.60 0.51 0.53 0.59 0.59 0.75

Median 0.33 0.57 0.29 0.16 0.31 0.38 0.29

Mode 0.60 0.60 0.51 0.41 0.55 0.57 0.50

Zero 0.21 0.28 0.21 0.17 0.27 0.24 0.31

Pad. & Mask. 0.73 0.69 0.62 0.61 0.58 0.69 0.47

Ave 0.48 0.55 0.43 0.38 0.43 0.49 0.46
Table 1. Performance comparison of the five alternative imputation strategies in terms
of accuracy, precision and recall



12 J. Qi et al.

k Nearest Neighbour model and an LSTM model, the best results for both are
included in Table 2. In a [8] an Anomaly Detection (AD) approach was proposed.
Two versions were considered, a point-based AD approach and a time series AD
approach. The best reported results for both are also included in Table 2. Note
that in [8] only average precision and recall were reported.

Method Acc. Precision Recall
High Med. Low High Med. Low

LSTM and Bounding Box 0.73 0.69 0.62 0.61 0.58 0.69 0.47

LSTM [7] 0.61 0.58 0.55 0.69 0.79 0.59 0.63

kNN [7] 0.60 0.42 0.51 0.85 0.70 0.55 0.75

Point-based AD [8] 0.34 0.35 0.43

Time Series AD [8] 0.45 0.45 0.43
Table 2. Average Accuracy, Precision and Recall results compared with the results
reported in [7] and [8]

From Table 2 it can be seen that the proposed LSTM prediction coupled with
bounding box classification produced the best overall accuracy. Closer inspection
of the table indicates that good precision was obtained, using the proposed
method, with respect to high and medium priority classes. The poor performance
of the anomaly detection approaches (Point-based AD and Time Series AD)
is probably because anomalous pathology results do not necessarily equate to
priority pathology results.

6 Conclusions

The work presented in this paper was directed at multi-variate pathology data
prioritisation in the absence of a ground truth. This is typically the case because
of the resource required. A proposed approach has been presented that used
LSTM prediction couple with a novel bounding box classification mechanism.
The main contributions of this paper are: (i) the idea of using LSTM predicted
test results as a marker for prioritisation and (ii) the derived “bounding box”
technique for prioritisation classification. A further challenge was the irregular
sampling interval of pathology data, and the variable length of the pathology
history associated with a given pathology result. A number of alternative im-
putation techniques were therefore considered. The operation of the proposed
approach was compared with alternative techniques from the literature using
a proxy ground truth. The results indicated a better overall performance than
that achieved by earlier work. A best accuracy of 73% was obtained. Padding
and masking was found to be the most appropriate method for ensuring all time
series were of the same size. For future work the authors intend to investigate:
(i) the generation of artificial evaluation data sets to provide for a more com-
prehensive evaluation, and (ii) a comprehensive collaborate with clinicians to
obtain feed back regarding the prioritisation produced and to test the utility
of the best performing mechanism in a real setting. The authors are currently
liaising with domain experts on the practical impact of the proposed pathology
data prioritisation mechanism presented this paper.
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