
Efficient Distributed MST Based Clustering for Recommender Systems

Ahmad Shahzad
School of Electrical Engineering and

Computer Science
University of Liverpool, Liverpool, L69 3BX, U.K

Email: ahmads@liverpool.ac.uk

Frans Coenen
School of Electrical Engineering and

Computer Science
University of Liverpool, Liverpool, L69 3BX, U.K

Email: coenen@liverpool.ac.uk

Abstract—This paper presents the Distributed
Kruskal Algorithm for Minimum Spanning Tree (MST)
based clustering to be used in the context of recom-
mendation engines. The algorithm can operate over
large graph data sets distributed over a number of
machines. The operation of the algorithm is evaluated
by comparing both the quality of the cluster configu-
rations produced, and the accuracy of the predictions,
with non-MST based clustering approaches. The results
indicate that the proposed approach produces compa-
rable recommendations at much lower storage, hence
runtime, costs.

Keywords—Minimum Spanning Tree based Clustering,
Recommendation Engines

I. Introduction
Clustering is a an important and very well studied

machine learning problem. The aim of clustering is to
partition a given data set, possibly a graph data set, into
smaller groups to maximise the inter-cluster similarity and
minimise the intra-cluster similarity. Clustering has many
applications but one application, and that of interest with
respect to this paper, is recommendation engines. The idea
is to recommend items to the users of a recommendation
engine according to the cluster into which they are located.
To cluster the users of a recommendation engine the idea
presented in this paper is to represent the users and items
as a graph where the weights are the strength of the
connections between user and items.
There are many graph clustering techniques that have

been proposed, but one technique, and that of interest
with respect to this paper is Minimum Spanning Trees
(MST) based clustering. Given a connected, edge weighted,
undirected graph G = (V, E), where V is a finite set of
nodes, and E ⊆ V × V is a finite set of edges such that
each edge ei ∈ E has a weight wi, a spanning tree T is a
subset E such that all the vertices are connected without
any cycles. Formally:

T = (V, E′) where E′ ⊆ E

A graph can have many spanning trees, but all have |V |
vertices and |V | −1 edges. The MST for a graph G is the
spanning tree with the minimum possible total edge weigh
w(T):

w(T) =
∑

eεE(T)

w(e) (1)

The size of the graphs that we wish to process, has
increased significantly in the age of digitisation and the
era of artificial intelligence. Large graphs appear in a
number of contexts including recommendation engine
context. These graph data sets cannot be held in the
memory typically available with respect to a single machine.
Hence, programming paradigms like Spark are becoming
increasingly popular. Using Spark data is distributed across
a cluster of machines; algorithms are then applied over the
cluster rather than using a single machine. Consequently, an
important area of study is the operation of classical graph
algorithms in the context of cluster computing frameworks.
One example, and that of interest with respect to the
work presented in this paper, is the processes whereby a
graph can be mapped onto a cluster of machines. Given n
machines in a cluster, E will be distributed uniformly across
the cluster so that each machine ni will hold approximately
|E|/n edges. Thus, to derive the MST for a given graph
G, it is necessary to find the subset of edges E′ that
minimises w(T)k (as defined in Eq. 1). This paper presents
the Distributed Kruskal Algorithm, a distributed MST
algorithm inspired by the classical Kruskal Algorithm [1]
and the Prarallel Prim’s algorithm [2] which improve the
run time performance compared to earlier approaches.

The rest of this paper is organised as follows. An overview
of relevant previous work is presented in Section II. This
is followed by a description of the proposed approach
in Section III. The evaluation of the approach is given
in Section IV. The paper is then completed with some
conclusions presented in Section V.

II. Related Work

MST based clustering has been rigorously tried and
tested [3]. Traditional MST-based clustering algorithms
usually use the Euclidean distance between two end vertices
as the edge weight. However, in [4] the cosine similarity
was used as the edge weight. Cosine similarity is computed
by treating two vertices as a vectors and their relationship
with rest of graph nodes as vector dimensions. Successful
attempts have been made to improve the efficiency of MST
based clustering. For example in [5] MST-based clustering
using a partition-based based approach over a nearest
neighbour graph was proposed for reducing the compu-
tational overhead. Whilst in [6] a two level approximate

Euclidean MST approach for efficient calculation of MST
was proposed.

However, the above algorithms are intended for deploy-
ment on single machines. As noted in the introduction
to this paper the size of the graph datasets we wish to
process are increasing year-on-year; hence it is often the
case that graph data has to be distributed across a cluster of
machines. In [2] the Parallel Prim’s algorithm was proposed,
a mechanism for generating an MST given a distributed
graph data set. The algorithm assumes that graph vertices
can fit into the memory of a single machine whilst graph
edges cannot and hence are distributed across a cluster of
machines.
MST based clustering techniques have been used in

recommendation engines. Typically edge weights are cal-
culated using the Euclidean distance, cosine similarity or
dissimilarity. A further alternative is to use collaborative
filtering to improve the effectiveness of the recommendation
[7].

III. MSF based Clustering
In this section the proposed MST based clustering

for recommendation engine approach is presented. The
section is divided into two parts, Sub-section III-A presents
the proposed MST generation algorithm, the Distributed
Kruskal’s Algorithm, whilst

A. The Distributed Kruskal’s Algorithm
The proposed Distributed Kruskal algorithm is presented

in this sub-section. The algorithm is founded on the
classical Kruskal’s algorithm, and takes inspiration from
Parallel Prim’s algorithm [2] but differs in the way edges
are grouped and partitioned over the cluster taking into
account the total number of nodes available. The proposed
Distributed Kruskal Algorithm, as in the vase of the
approach presented in [2], assumes that the memory
available at the main node is sufficient for all the vertices
to be stored, but that edges have to be distributed over a
cluster of machines. The proposed algorithm uses a disjoint
set data structure, with parent and rank hash maps. It
is assumed that the main node of the cluster has more
memory available than the worker nodes so that it can
reduce all the data which are processed in parallel by the
worker nodes.

The pseudo code for the proposed Algorithm is presented
in Algorithm 1. The algorithm takes as input a Graph
G(V, E) and the number of nodes n available in the mchine
cluster. Then, line 2, it initialises a disjoint set, d, which will
use two hash maps; one containing the rank of each vertex
and other the parent of each vertex. In line 3 and empty
MSF is defined which will be populated and returned. In
line 4 an empty list is defined to hold edges leaving *the
disjoint set. The loop starting at line 5 populates d and
the associated hash maps for each vertex. At line 8, the
edges of the graph are distributed across the n available
machines in a random manner. Then a while loop is started

(line 9) which continues as long as there are any remaining
edges which are leaving the disjoint set. At line 10 a hash
map is created which contains the parent vertex for each
vertex. This newly created hash map is then populated
using the disjoint set maintained during the life cycle of the
algorithm. The parent map is broadcast to all the nodes at
line 14. Line 15 starts a parallel execution of the code on
all nodes where the edges on each machine find minimum
edges leaving the disjoint set which are then reduced to
the main node to form a consolidated set at line 18. A loop
starting at line 19 then takes the union of all the edges to
the disjoint set one by one, and adds them to the MSF.
Once the loop is finished it returns the MSF.

Algorithm 1 Distributed Kruskal’s Algorithm
1: function DistributedKruskal(G(V, E), n)
2: d← DisjointSet()
3: msf ← {}
4: edgesLeavingDisjointSet← E
5: for all v ∈ V do
6: d.makeSet(v)
7: end for
8: distributedEdges ←

distributeEdges().groupByKey(n)
9: while |edgesLeavingDisjointSet| ≥ 1 do
10: parentMap← HashMap()
11: for all v ∈ V do
12: parentMap.insert(v, d.find(v))
13: end for
14: Broadcast parentMap
15: for all e ∈ distributedEdges do . mapper

function executed in parallel
16: findMinimum(e, parentMap)
17: end for
18: edgesLeavingDisjointSet← reduceMaps()
19: for all edge(u, v) ∈ edgesLeavingDisjointSet

do
20: d.union(u, v)
21: msf.insert(edge(u, v))
22: end for
23: end while
24: return msf
25: end function

The presented algorithm 1 taken input of a graph G(V, E)
and returns and MSF which contains the set V and the
selected edges.

B. Clustering Techniques
Data clustering is a common unsupervised machine

learning task. There are as range of clustering techniques
that have been proposed and frequently used. For the
evaluation presented later in this paper two of the most
frequently referenced were selected:
• k-Means Algorithm
• Bisecting k-Means Algorithm

Both of these algorithms include in their input the number
of required clusters k. However, the k-Means algorithm
does not consider the number of items within a cluster,
where as Bisecting k-Means attempts to keep the number
of data points within each cluster uniform. The relevance
here is that data clustering is also a good mechanism for
distributing data over a cluster of machines where it is
typically important that the data is distributed equally
over machines (in other words the data clusters are of
similar size). The significance is that an equal distribution
of data across a cluster of machines provides for more
effective “data look up”. So both of the above mentioned
algorithms are also evaluated in terms of standard deviation
of cluster sizes.

IV. Evaluation
This section presents the results of a sequence of experi-

ments conducted to evaluate the proposed approach. For
the experiments the Movielens database was used, The
Movielens database [8] is a popular choice for the study
of recommendation engine algorithms. Movielens is a web-
based recommender system that can be used to recommend
movies to its members according to their movie preferences.
It operates by applying collaborative filtering to its user’s
movie ratings and reviews. It contains about 1 million
reviews for 3952 movies. Rating are expressed using the
numeric range 1 to 5. For the evaluation presented in this
section 1 million ratings, provided by 6040 users, were used.
For the evaluation both the quality of the cluster

configuration produced using the proposed MST based
approach and the quality of the recommendations were
considered. For the first experiments were conducted using
the two clustering algorithms described in Sub-section
III-B: (i) k-Means and (ii) Bisecting k-Means. The quality
of the cluster configurations produced using the proposed
MST approach (MST Data), using both k-Means and
Bisecting k-Means, was compared with the quality of the
cluster configurations produced when k-Means or Bisecting
k-Means was applied to the the whole Movielens dataset
(Full Data). Two mechanisms for measuring the quality
of a cluster configuration were used: (i) Silhouette Score
(coefficient) and (ii) Cosine Similarity Score. A range
of values for k were considered, k = {10, 20, 50, 100}.
Recall that the MST Data, produced using the proposed
Distributed Krusal’s MST algorithm, will be a lot smaller
than the original Full Data. The MST data contains all
the vertices of the full data set, but only the edges that
are part of MST.

A good cluster configuration does, of course, not neces-
sarily mean that good recommendations are made. To test
the quality of the recommendations the data sets (MST
Data and Full Data) were split into a training and test
component using a ration of 90 : 10. The accuracy with
which the top ten movies were predicted was then recorded.
Again both k-Means and Bisecting k-Means clustering
was used applied to both the MST Data and the Full

Data, however, in this case the range of values for k was
k = {10, 20, 50, 100, 300}
All the experiments were conducted on a spark cluster.

There were 5 spark nodes in total, One of them is main
driver node and other 4 were worker nodes. Each worker
node had 2 GB of memory and Spark Driver had 4 GB of
memory available. Each node had an i7 quad core 2.6HZ
processor. All nodes were connected via hadoop-yarn.
The remainder of this section is organised as follows.

The two cluster configuration evaluation metrics used are
presented in Sub-section IV-A. The results obtained with
respect to the cluster configuration analysis are given in
Sub-section IV-B, while the results for the recommendation
accuracy are given in Sub-section IV-C.

A. Cluster Configuration Evaluation
The silhouette score of a cluster is an indicator of both

the cohesiveness and separation of a cluster configuration
[9]. For any data points i in a cluster Ci, the mean distance
a(i) between the point i and all other data points in the
same cluster can be defined as:

a(i) = 1
|Ci| − 1

∑
j∈Ci,i6=j

d(i, j) (2)

where d(i, j) is the distance between data points i and j.
For any data points i in a cluster Ci), the minimum

mean dissimilarity b(i) between the point i and the data
points in any other cluster Ck can be defined as:

b(i) = min
k 6=i

1
|Ck|

∑
j∈Ck

d(i, j) (3)

The Silhouette Score of a data point i is then given by:

s(i) = b(i)− a(i)
max{a(i), b(i)} , if |Ci| > 1 (4)

The overall Silhouette Score for a given cluster configu-
ration is then the mean of the individual point scores.
Silhouette Scores ranges from -1 to 1, where a higher score
indicates a good cluster configuration
The Cosine Similarity Score [10] is a measure of the

cohesiveness of the clusters in a cluster configuration. Given
two points described by two vectors, A and B, the Cosine
Similarity Score is calculated as follows:

cos(A, B) = A ·B
‖A‖ × ‖B‖ =

∑n
i=1 AiBi√∑n

i=1 (Ai)2
√∑n

i=1 (Bi)2

(5)
The range of Cosine Similarity Score is from 0 to 1. Hence,
two points represented by identical vectors will have a
Cosine Similarity Score of 1. To determine the quality of a
cluster configuration, Cosine Similarity Score for each user
within a cluster is calculated and summed up to represent
the score for that cluster.

Figure 1: Cosine Similarity for bisecting k-means Figure 2: Cosine Similarity for k-means

Figure 3: Silhouette Score bisecting k-means Figure 4: Silhouette Score k-means

Figure 5: Prediction Using Top 10 Items Figure 6: Prediction Using Top 20 Items

Figure 7: Prediction Using Top N Items Figure 8: Efficiency of MST based Clustering

B. Cluster Configuration Analysis
The results for the cluster configuration quality analysis

are presented in Figures 1 to 4. In the figure the x-
axis represents k and the y-axis the Silhouette or Cosine
Similarity Score as appropriate. Figures 1 and 2 give the
Cosine Similarity Scores, and Figures 3 and 4 the Silhouette
Scores. From the figures it can be seen that best Cosine
Similarity Scores are obtained using low values of k, and
that better scores are obtained when using the proposed
Distributed Krusal’s MST algorithm (the mST Data). The
best Cosine Similarity Score was obtained sing the MST
Data, k = 10 and k-Means clustering. With respect to
the Silhouette scores many negative values were recorded
indicating that some samples might have been assigned to
the wrong cluster. Interestingly, the best Silhouette scores
when using the MST Data were obtained using high values
of k, although not the case when using Full Data.

C. Recommendation Analysis
The results for the recommendation analysis are pre-

sented in Figures 5 to 8. In the figure the x-axis represents
k and the y-axis the number of movies correctly recom-
mended. From the figures it can firstly be seen that with
respect to both data sets the accuracy scores are consistent,
regardless of cluster sizes. It can also be seen that when
using the Full data a better recommendation accuracy is
obtained than when using the MST Data. However, the
advantage offered by the MST based approach is that it is
more efficient because the MST Data is much smaller. To
calculate MST Data over one million data set of Movielens
it takes less than 10 seconds using Distributed Kruskal’s
algorithm.

V. Conclusions and further suggestions

In this paper an approach to MST-based clustering for
recommendation engines has been presented. The idea
was, that by using the proposed MST-based approach,
the data would be reduced in size so that it comprised
the set of vertices V and only the minimum number of
edges from the set of edges E. The resulting MST data
could then be clustered to support recommendation. For
MST generation the Distributed Kruskal algorithm was
proposed. The approach was evaluated with respect to
two clustering algorithms, k-Means and Bisecting k-Means,
and comparisons made between using the MST Data and
the Full Data. It was found that the proposed MST-based
approach produced better cluster configurations than when
using the Full Data, however, at the expense of slightly
reduced recommendation prediction accuracy. However, the
overall advantage was that the proposed approach would be
much faster than alternative Full Data approaches. Hence,
the proposed approach is suited to settings where speed
and efficiency needs to be preferred over accuracy, like
in matchmaking for on-line games. For future work, the
authors intend to apply their approach to further data sets

so as to strengthen the empirical analysis presented in this
paper.

References
[1] J. B. Kruskal, “On the shortest spanning subtree of a graph and

the traveling salesman problem,” AMS, vol. 7, pp. 48–50, 1956.
[2] R. P. Swaroop Indra Ramaswamy, “Distributed

minimum spanning trees,” 2015. [Online]. Avail-
able: http://stanford.edu/~rezab/classes/cme323/S15/projects/
distributed_minimum_spanning_trees_report.pdf

[3] C. T. Zahn, “Graph-theoretical methods for detecting and
describing gestalt clusters,” IEEE Transactions on Computers,
vol. C-20, no. 1, pp. 68–86, 1971.

[4] A. Huang, “Similarity measures for text document clustering,”
Proceedings of the 6th New Zealand Computer Science Research
Student Conference, 01 2008.

[5] R. Jothi, S. K. Mohanty, and A. Ojha, “Fast approximate
minimum spanning tree based clustering algorithm,”
Neurocomputing, vol. 272, pp. 542 – 557, 2018. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S092523121731295X

[6] X. Wang, X. Wang, and X. Li, A Fast Two-Level Approximate Eu-
clidean Minimum Spanning Tree Algorithm for High-Dimensional
Data, 07 2018, pp. 273–287.

[7] O. Baida, N. Hamzaoui, A. Sedqui, and A. Lyhyaoui, “Rec-
ommendation based on co-similarity and spanning tree with
minimum weight,” 09 2012, pp. 355–359.

[8] F. M. Harper and J. A. Konstan, “The movielens datasets:
History and context.” ACM Transactions on Interactive
Intelligent Systems, no. 4, 2015. [Online]. Available: https:
//dl.acm.org/doi/10.1145/2827872

[9] P. J. Rousseeuw, “Silhouettes: A graphical aid to the
interpretation and validation of cluster analysis,” Journal of
Computational and Applied Mathematics, vol. 20, pp. 53 – 65,
1987. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/0377042787901257

[10] M. Schwarz, M. Lobur, and Y. Stekh, “Analysis of the effec-
tiveness of similarity measures for recommender systems,” in
2017 14th International Conference The Experience of Designing
and Application of CAD Systems in Microelectronics (CADSM),
2017, pp. 275–277.

http://stanford.edu/~rezab/classes/cme323/S15/projects/distributed_minimum_spanning_trees_report.pdf
http://stanford.edu/~rezab/classes/cme323/S15/projects/distributed_minimum_spanning_trees_report.pdf
http://www.sciencedirect.com/science/article/pii/S092523121731295X
http://www.sciencedirect.com/science/article/pii/S092523121731295X
https://dl.acm.org/doi/10.1145/2827872
https://dl.acm.org/doi/10.1145/2827872
http://www.sciencedirect.com/science/article/pii/0377042787901257
http://www.sciencedirect.com/science/article/pii/0377042787901257

	Introduction
	Related Work
	MSF based Clustering
	The Distributed Kruskal's Algorithm
	Clustering Techniques

	Evaluation
	Cluster Configuration Evaluation
	Cluster Configuration Analysis
	Recommendation Analysis

	Conclusions and further suggestions
	References

