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ABSTRACT

The fovea is an important anatomical landmark of the retina.
Detecting the location of the fovea is essential for the anal-
ysis of many retinal diseases. However, robust fovea lo-
calization remains a challenging problem, as the fovea re-
gion often appears fuzzy, and retina diseases may further
obscure its appearance. This paper proposes a novel vi-
sion transformer (ViT) approach that integrates information
both inside and outside the fovea region to achieve robust
fovea localization. Our proposed network named Bilateral-
Vision-Transformer (Bilateral-ViT) consists of two network
branches: a transformer-based main network branch for in-
tegrating global context across the entire fundus image and
a vessel branch for explicitly incorporating the structure of
blood vessels. The encoded features from both network
branches are subsequently merged with a customized multi-
scale feature fusion (MFF) module. Our comprehensive
experiments demonstrate that the proposed approach is sig-
nificantly more robust for diseased images and establishes the
new state of the arts on both Messidor and PALM datasets.

Index Terms— fovea localization, vision transformer, bi-
lateral neural network, feature fusion

1. INTRODUCTION

The macula is the central region of the retina. The fovea is
an important anatomical landmark located in the center of the
macula, responsible for the most crucial part of a person’s vi-
sion [1]. The severity of vision loss due to retinal diseases
is usually related to the distance between the associated le-
sions and fovea. Therefore, detecting the location of fovea is
essential for the analysis of many retinal diseases.

Despite its importance, robust fovea localization remains
a challenging problem. The color contrast between the fovea
region and its surrounding tissue is poor, leading to a fuzzy
appearance. Furthermore, the fovea appearance may be ob-
scured by lesions in the diseased retina; for example, geo-
graphic atrophy and hemorrhages significantly alter the fovea
appearance. Such issues make it more difficult to perform lo-
calization based on the fovea appearance alone. Fortunately,
anatomical structures outside the fovea region, such as blood
vessels, are also helpful for localization [2, 3]. For this rea-
son, we propose a novel vision transformer (ViT) approach
that integrates information both inside and outside the fovea
region to achieve robust fovea localization.

Our proposed network, named Bilateral-Vision-Transformer
(Bilateral-ViT), consists of two network branches. We adopt a

transformer-based U-net architecture [4] as the main branch
for effectively integrating global context across the entire
fundus image. In addition, we design a vessel branch that
takes in a blood vessel segmentation map for explicitly incor-
porating the structure of blood vessels. Finally, the encoded
features from both network branches are merged with a cus-
tomized multi-scale feature fusion (MFF) module, leading to
significantly improved performance. Thus, our key contribu-
tions are as follows:

• We propose a novel vision-transformer-based network ar-
chitecture that explicitly incorporates global image con-
text and structure of blood vessels for robust foveal local-
ization.

• We demonstrate that the proposed approach is signifi-
cantly more robust for challenging settings such as fovea
localization in diseased retinas (over 9% improvements
for specific evaluations). It also has a better generalization
capability compared to the baseline methods, as shown in
cross-dataset experiments.

• We establish the new state of the arts on both Messidor
and PALM datasets.

2. RELATED WORK

Before convolutional neural networks (CNNs) have gained
popularity in medical image analysis applications, researchers
usually utilize hand-craft features for fovea localization. Most
works use anatomical relationships among optic discs (OD),
blood vessels, and fovea regions. Deka et al. [5] and Medhi et
al. [6] generate the region of interest (ROI) using processed
blood vessels for macula estimation. Certain methods utilize
OD in the prediction of ROI and fovea center by selecting spe-
cific OD diameters [7], estimating OD orientations and mini-
mum intensity values [8, 9]. Other applications use combined
OD and blood vessels features to improve the performance of
fovea localization [2, 3]. These methods generally perform
less competitively than more recent deep-learning-based ap-
proaches.

Most deep learning-based methods formulate the fovea lo-
calization as a regression task [10, 11, 12, 13]. Some meth-
ods utilize retinal structures, such as OD and blood vessels,
as constraints for inferring the location of fovea. For ex-
ample, Meyer et al. [11] adopt a pixel-wise distance regres-
sion approach for joint OD and fovea localization. Besides
the regression-based approaches, Sedai et al. [14] propose a
two-stage image segmentation framework for segmenting the
image region around the fovea. Unlike all previous works,



Fig. 1. The overall architecture of our proposed Bilateral-ViT network.

we customize the recent transformer-based segmentation net-
work to incorporate blood vessel information and demonstrate
its superior performance compared to the existing approaches.

3. METHODOLOGY

3.1. Network Architecture

The overall architecture of Bilateral-ViT is illustrated in
Fig. 1. The proposed Bilateral-ViT is based on a U-shape ar-
chitecture with a vision transformer-based encoder (the main
branch) for exploiting long-range contexts. In addition, we
design a vessel branch to encode structure information from
blood vessel segmentation maps. Finally, Multi-scale Feature
Fusion (MFF) blocks are designed to effectively fuse data
from the main and vessel branches.

Main Branch. We adopt the TransUNet [4] as the main
branch due to its superior performance on other medical im-
age segmentation tasks. In the main branch, we utilize a
CNN-Transformer hybrid structure as the encoder. The CNN
part is used as the initial feature extractor. It provides fea-
tures at different scales for the skip connections to compen-
sate for the information loss in the downsampling operation.
The extracted features are then processed by 12 consecutive
transformer blocks at the bottleneck of the UNet architecture.
The transformer encodes the long-range dependencies of the
input fundus image due to the multi-head self-attention struc-
ture. The output features of the last transformer block are then
resized for later decoding operations.

Fig. 2. The structures of SIG block and MFF block. The subscript of C
denotes channel depths. Cin, Cmid and Cout represent channel depths of
input, intermediate, and output feature maps for the MFF block, respectively.
We set Cmid of three MFF blocks to small numbers, i.e.128, 64, 32, for
improving the efficiency of multi-scale feature fusion.

Vessel Branch. In the vessel branch, we aim to exploit
the structure information from the blood vessels. Unlike the
main branch, where the input is a fundus image, we put in a
vessel segmentation map generated by a pre-trained model.
The pre-trained vessel segmentation model is built on the
DRIVE dataset [15] with the TransUNet [4] architecture.
Four identical spatial information guidance (SIG) blocks are
utilized in the vessel branch to extract multi-scale vessel-
based features. The rescaled vessel segmentation maps are
fed into the SIG blocks, the details of which are illustrated in
Fig. 2-a. The design of SIG blocks makes extensive use of
customized ReSidual U-blocks (RSU). Qin et al. [16] indi-
cate that the RSU block is superior in performance to other
embedded structures (e.g., plain convolution, residual-like,
inception-like, and dense-like blocks), due to the enlarged
receptive fields of the embedded U-shape architecture.

Multi-scale Feature Fusion (MFF) blocks. In contrast
to the plain convolutional decoder blocks of the basic Tran-
sUNet, we use three Multi-scale Feature Fusion (MFF) blocks
as the decoders for effective multi-scale feature fusion. The
input to each MFF block is the concatenation of three types of
features: (1) the multi-scale skip-connection features from the
main branch, (ii) the hidden feature encoded by the last trans-
former block or the previous MFF block, (iii) the multi-scale
SIG features from the vessel branch. The architecture of the
MFF blocks is illustrated in Fig. 2-b, which is similar to one
of the SIG blocks. From MFF block 1 to MFF block 3, we
gradually increase the number of network layers in each MFF
block. In this way, the later MFF blocks can capture more
spatial context corresponding to larger feature maps. In the
end, the concatenated feature maps of MFF block 3 and SIG
block 4 are passed to two convolutional layers for outputting
the fovea region score maps.

3.2. Implmentation Details

We first remove the uninformative black background from the
original fundus image, then pad and resize the cropped image



Table 1. Comparison of performance on normal and diseased retinal images of both Messidor and PALM dataset. The best and second best results are
highlighted in bold and italics respectively.

1/8 R(%) 1/4 R(%) 1/2 R(%) 1R(%) 2R(%)
Messidor Normal Diseased Normal Diseased Normal Diseased Normal Diseased Normal Diseased

UNet (2015) [17] 82.65 79.00 95.15 93.33 97.76 95.00 97.95 95.33 97.95 95.33
U2 Net (2020) [16] 86.19 81.33 98.51 97.33 99.63 99.50 99.63 99.50 99.63 99.50

TransUNet (2021) [4] 87.31 84.33 98.32 97.67 100.00 99.83 100.00 99.83 100.00 99.83
Bilateral-ViT (Proposed) 87.50 84.00 98.51 98.67 100.00 100.00 100.00 100.00 100.00 100.00

1/8 R(%) 1/4 R(%) 1/2 R(%) 2/3 R(%) 1R(%)
PALM Normal Diseased Normal Diseased Normal Diseased Normal Diseased Normal Diseased

UNet (2015) [17] 57.45 9.43 74.47 18.87 76.60 41.51 76.60 50.94 76.60 64.15
U2 Net (2020) [16] 70.21 11.32 93.62 28.30 95.74 60.38 95.74 77.36 97.87 84.91

TransUNet (2021) [4] 82.98 5.66 95.74 18.87 97.87 43.40 97.87 52.83 97.87 75.47
Bilateral-ViT (Proposed) 82.98 13.21 95.74 37.74 97.87 69.81 100.00 81.13 100.00 92.45

region to a spatial resolution of 512 × 512. We perform in-
tensity normalization and data augmentation on the input im-
ages of the main branch and the vessel branch. To train our
Bilateral-ViT network, we generate circular fovea segmenta-
tion masks from the ground-truth fovea coordinates. During
the testing phase, we apply the sigmoid function to network
prediction for the probabilistic map. We then collect all pixels
with significant probabilistic scores and calculate their me-
dian coordinates as the final fovea location coordinates.

All experiments are coded by PyTorch and conducted on
one NVIDIA GeForce GTX TITAN GPU. The weights of
convolutional and linear layers are initialized by Kaiming ini-
tialization protocol [18]. The initial learning rate is 1e−3 and
gradually decays to 1e−7 over 200 epochs by Cosine Anneal-
ing LR strategy. The optimizer is Adam [19] and the batch
size is 2. We employ a combination of dice loss and binary
cross-entropy as the loss function.

4. EXPERIMENTS

We perform experiments on Messidor [20] and PALM [21]
datasets. The Messidor dataset is for diabetic retinopathy
analysis. It consists of 540 normal and 660 diseased retinas.
We utilize 1136 images from this dataset with fovea loca-
tions provided by [22]. The PALM dataset was released by
the Pathologic Myopia Challenge (PALM) 2019. It consists
of 400 images annotated with fovea locations, in which 213
images are pathologic myopia, and the remaining 187 images
are normal retinas. For the fairness of comparisons, we keep
our data split identical to [13].

To evaluate the performance of fovea localization, we
adopt the following evaluation protocol [22]: the fovea local-
ization is considered successful when the Euclidean distance
between the ground-truth and predicted fovea coordinates is
no larger than a predefined threshold value, such as the optic
disc radius R. For a comprehensive evaluation, accuracy
corresponding to different evaluation threshold (for example,
2R indicating the predefined threshold values are set to twice
the optic disc radius R) is usually reported.

4.1. Fovea Localization on Normal and Diseased Images

In Table 1, we evaluate the performance of normal and dis-
eased cases separately. We reimplement several widely used

Table 2. Comparison with existing studies on the Messidor and PALM
datasets based on the R rule. The best and second best results are highlighted
in bold and italics respectively.

Messidor 1/8 R (%) 1/4 R (%) 1/2 R (%) 1R (%) 2R (%)
Gegundez-Arias et al.(2013) [22] - 76.32 93.84 98.24 99.30
Aquino (2014) [3] - 83.01 91.28 98.24 99.56
Dashtbozorg et al.(2016) [23] - 66.50 93.75 98.87 -
Girard et al.(2016) [24] - - 94.00 98.00 -
Molina-Casado et al.(2017) [25] - - 96.08 98.58 99.50
Al-Bander et al.(2018) [10] - 66.80 91.40 96.60 99.50
Meyer et al.(2018) [11] 70.33 94.01 97.71 99.74 -
GeethaRamani et al.(2018) [26] - 85.00 94.08 99.33 -
Zheng et al.(2019) [27] 60.39 91.36 98.32 99.03 -
Huang et al.(2020) [12] - 70.10 89.20 99.25 -
Xie et al.(2020) [13] 83.81 98.15 99.74 99.82 100.00
Bilateral-ViT (Proposed) 85.65 98.59 100.00 100.00 100.00
PALM 1/8 R (%) 1/4 R (%) 1/2 R (%) 2/3 R (%) 1R (%)
Xie et al.(2020) [13] - - - 87 94
Bilateral-ViT (Proposed) 46 65 83 90 96

segmentation networks as comparison baselines, such as
UNet [17], U2 Net [16], and TransUNet [4]. Bilateral-ViT
obtains 100% accuracy from 1/2R to 1R on all the images of
Messidor, and 100% accuracy from 2/3R to 1R on normal
images of PALM. It demonstrates that the performance of
Bilateral-ViT is highly reliable for normal fundus images.

For the diseased cases on the PALM dataset, Bilateral-ViT
reaches 92.45% foveal localization accuracy for the threshold
of 1R and significantly outperforms the second-best results by
a large margin (7.54%). Fig. 3 provides some visual results of
fovea localization on diseases images from the PALM dataset.
Our Bilateral-ViT generates the most accurate predictions for
the severely diseased image images with large atrophic re-
gions (see Fig. 3-a and Fig. 3-b), or the heavily blurred image
(see Fig. 3-c). In Fig. 3-d where the fovea is close to the image
border, the predicted fovea locations from baseline networks
(UNet and U2 Net) appear on the wrong side of the optic disc.
However, TransUNet [4] and our method still perform well
potentially due to their long-range modeling capability. Such
results highlight that our proposed Bilateral-ViT has a signif-
icant advantage for diseased cases.

4.2. Comparison to the State-of-the-art methods

From Table 2, the Bilateral-ViT achieves state-of-the-art per-
formance for all the evaluation settings. In particular, on the
Messidor dataset, at 1/8R, our network reaches the best
accuracy of 85.65% with a gain of 1.84% compared to the
second-best score (83.81%) [13]. It also reaches an accuracy
of 100% at evaluation thresholds of 1/2R, 1R, and 2R; in
other words, the localization errors are at most 1/2R (approx-



Fig. 3. Visual results of fovea localization predicted by different methods.

Table 3. Top and Bottom: Performance of the ablation study on the
Messidor and PALM datasets respectively. VB refers to the vessel branch.
The best and second best results are highlighted in bold and italics.

Messidor 1/8 R (%) 1/4 R (%) 1/2 R (%) 1R (%) 2R (%)
ViT+plain decoder (TransUNet [4]) 85.74 97.98 99.91 99.91 99.91
ViT+VB+plain decoder 85.56 98.33 99.74 99.91 99.91
ViT+VB+MFF (Proposed) 85.65 98.59 100.00 100.00 100.00
ViT+VB (fundu as the input)+MFF 85.65 97.89 99.91 100.00 100.00
PALM 1/8 R (%) 1/4 R (%) 1/2 R (%) 2/3 R (%) 1R (%)
ViT+plain decoder (TransUNet [4]) 42 55 69 74 86
ViT+VB+plain decoder 45 52 72 77 85
ViT+VB+MFF (Proposed) 46 65 83 90 96
ViT+VB (fundu as the input)+MFF 43 58 82 89 96

imately 19 pixels for an input image size of 512×512). PALM
is a considerably more challenging dataset due to fewer im-
ages and complex diseased patterns. Our method achieves the
accuracy of 90% and 96% at 2/3R and 1R, which is 3% and
2% better than the previous work [13], respectively.

4.3. Ablation Study and Cross-Dataset Experiments

We conduct a comprehensive set of ablation experiments to
evaluate the effectiveness of different components (see Ta-
ble 3):

• ViT+plain decoder: the TransUNet architecture [4] com-
prised of a vision transformer-based encoder and a plain
decoder is used as the comparison baseline.

• ViT+VB+plain decoder: we add the vessel branch (vessel
segmentation mask as the input) to the baseline network.

• ViT+VB+MFF (the proposed Bilateral-ViT): we add the
vessel branch (vessel segmentation mask as the input) and
MFF blocks to the baseline network.

• ViT+VB (fundus as the input)+MFF: we add the vessel
branch (fundu image as the input) and MFF blocks to the
baseline network. This configuration compares the per-
formance differences between fundus images and vessel
segmentation maps as inputs to the vessel branch.
The performance of “ViT+plain decoder (TransUNet)”

and “ViT+VB+plain decoder” are similar on both datasets;
a possible reason is that the plain decoder does not have
adequate capacity to fuse features from the vessel branch
and transformer blocks. By further adding MFF blocks, the
proposed Bilateral-ViT (ViT+VB+MFF) shows superior per-
formance, suggesting the significance of the customized MFF
blocks. The performance of “ViT+VB+MFF’ is much better

Table 4. Performance of cross-dataset experiments. The models used hare
are exactly those selected in Bottom of Table 3. They are constructed on
PALM only and generate the following results on Messidor. The higher
results based on the R rule are better. The lower results based on distance
errors are better. VB refers to the vessel branch. The best and second best
results are highlighted in bold and italics respectively.

Cross-Dataset 1/8 R(%) 1/4 R(%) 1/2 R(%) 1R(%) 2R(%) Errors
Xie et al. [13] - - - 95.26 - 22.84
ViT+plain decoder (TransUNet) 77.82 95.95 98.59 99.03 99.30 10.76
ViT+VB+plain decoder 78.17 95.69 98.24 98.77 99.12 11.38
ViT+VB+MFF (Proposed) 81.78 96.48 98.42 99.38 100.00 8.57
ViT+VB (fundu as the input)+MFF 77.02 94.28 97.62 98.68 99.47 10.69

than “ViT+VB (fundus as the input)+MFF”, demonstrating
the usefulness of the vessel segmentation map. On the other
hand, we note that “ViT+VB (fundus as the input)+MFF”
outperforms all the existing works, implying our network
can achieve the state-of-the-art performance even without the
input of vessel segmentation map.

We conduct cross-dataset experiments to assess the gener-
alization capability of the proposed Bilateral-ViT. The models
are trained on PALM dataset and test on Messidor dataset.
From Table 4, the accuracy is 99.38% at 1R, which is a 4.12%
improvement over the best-reported result (95.26%). The av-
erage localization error for the original image resolution is
8.57 pixels compared to the previous best result of 22.84
pixels. In addition, the proposed Bilateral-ViT outperforms
the baselines by a significant margin, especially for 1/8R,
demonstrating its robustness for the cross-dataset setting.

5. CONCLUSIONS

This paper proposes a novel vision transformer (ViT) ap-
proach for robust fovea localization. It consists of a transformer-
based main network branch for integrating global context and
a vessel branch for explicitly incorporating the structure of
blood vessels. The encoded features are subsequently merged
with a customized multi-scale feature fusion (MFF) module.
Our experiments demonstrate that the proposed approach has
a significant advantage in handling diseased images. It also
has excellent generalization capability, as shown in the cross-
dataset experiments. Thanks to the transformer-based feature
encoder, the incorporation of blood vessel structure, and the
carefully designed MFF module, our approach establishes the
new state of the arts on both Messidor and PALM datasets.



6. COMPLIANCE WITH ETHICAL STANDARDS

Human retinal images made publicly available through Messidor and
PALM datasets are used in this study. As confirmed by the license
accompanying the open-access data, no ethical approval is required.
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Béatrice Cochener, Caroline Trone, Philippe Gain, Richard Or-
donez, Pascale Massin, Ali Erginay, et al., “Feedback on a
publicly distributed image database: the messidor database,”
Image Analysis & Stereology, 2014.
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