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Abstract—The idea of ‘citizen sensing’ and ‘human as sensors’
is crucial for social Internet of Things, an integral part of
cyber-physical-social systems (CPSS). Social media data, which
can be easily collected from the social world, has become a
valuable resource for research in many different disciplines, e.g.
crisis/disaster assessment, social event detection, or the recent
COVID-19 analysis. Useful information, or knowledge derived
from social data, could better serve the public if it could be
processed and analyzed in more efficient and reliable ways. Ad-
vances in deep neural networks have significantly improved the
performance of many social media analysis tasks. However, deep
learning models typically require a large amount of labeled data
for model training, while most CPSS data is not labeled, making
it impractical to build effective learning models using traditional
approaches. In addition, the current state-of-the-art, pre-trained
Natural Language Processing (NLP) models do not make use of
existing knowledge graphs, thus often leading to unsatisfactory
performance in real-world applications. To address the issues, we
propose a new zero-shot learning method which makes effective
use of existing knowledge graphs for the classification of very
large amounts of social text data. Experiments were performed
on a large, real-world tweet dataset related to COVID-19, the
evaluation results show that the proposed method significantly
outperforms six baseline models implemented with state-of-the-
art deep learning models for NLP.

Index Terms—Natural language processing, knowledge graph,
zero-shot learning, internet of things, social media data analysis.

I. INTRODUCTION

W ITH the rise of smart devices and technologies, the
Internet of Things (IoT), mobile social networks and

cloud computing, ‘human as sensors’ or ‘citizen sensing’ [1]
has become a popular phenomenon for which humans are
not only the data users, but also the data providers. It allows
the general public to collect, analyze, report and disseminate
information, enabling them to better perceive and understand
the world. Meanwhile, it is crucial for the development of
social IoT [2], an integral part of the Cyber-Physical-Social
systems (CPSS) [3], [4]. Enormous amount of social media
data can be collected and further processed and analyzed in
various downstream tasks which may have great influence on
human society. For example, users may post real-time traffic
information on Twitter, which facilitates traffic event detection
[5]. Other examples include reports of injured or missing peo-
ple, infrastructure damage, and warnings and cautions; which
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all help crisis/disaster assessment and emergency response [6],
[7].

To extract useful information and knowledge from social
media data, Natural Language Processing (NLP) techniques
are usually adopted. Recently, Deep Neural Networks (DNNs)
have shown impressive performance in NLP, image processing,
and many other data mining tasks. Under the traditional
supervised learning paradigm, DNNs have become unbeatable
in terms of classification performance, provided that there are
sufficiently large amounts of well labeled examples. Example
application domains include vehicle identification from im-
ages, document classification, and neural machine translation.
However, they usually break down when there is not sufficient
labeled data. The ability to transfer the knowledge gained
while solving one problem and applying it to a different but
related problem (referred to as transfer learning) can alleviate
this issue. One notable example of using transfer learning in
NLP, so far, is to pre-train representations on a large unlabelled
text corpus and then adapt the trained representation to a
supervised target task. A number of pre-trained models have
been developed very recently, e.g. word2vec [8], GloVe [9]
and Bidirectional Encoder Representations from Transformers
(BERT) [10], that have been applied to various tasks, e.g.
image caption generation [11], sentiment analysis from social
media [12], and text classification in smart city application [6].
Besides the use of pre-trained models, the research community
has also shown great interest in other forms of transfer
learning, e.g. domain adaptation [13], multi-task learning [14],
zero-shot learning [15], etc. Particularly, zero-shot learning
requires a classifier to recognize samples from classes that
were not observed during training. Such characteristic makes
it especially suitable for processing and analyzing social media
data, as social media data is mostly unlabeled and it is difficult
to label a good amount of data representative of various
classes.

With the unprecedented volume of data generated from
CPSS, the use of advanced graph-based methods, e.g. graph
embedding and graph neural network, to model the relation-
ship between data items has become a promising research
direction. Although many studies have been conducted, re-
search on how to efficiently and effectively exploit the power
of graph-based methods, given the overwhelming amount of
CPSS data, is still at an early stage. Recently, research on how
to effectively utilize existing, quality knowledge bases within
DNNs has attracted significant attention [16]. The knowledge
stored in many existing knowledge bases and knowledge
graphs represents facts and human wisdom accumulated over
centuries. Including such knowledge in learning systems has
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great potential. On one hand, systems do not need to learn
existing knowledge from scratch; on the other, mistakes made
in classification previously can be avoided to a great extent.
Embedding has emerged as an important approach to predic-
tion, inference, data mining, and information retrieval. Graph
embedding algorithms that represent the hierarchical structure
of a knowledge base in the format of vectors have been
increasingly investigated. By transferring the rich structural
information from knowledge bases to learning systems, better
prediction, classification and recommendation performance
could be anticipated. However, the convergence of deep learn-
ing and knowledge graph embedding is a challenging research
topic that has not been extensively studied.

For the issues discussed above, we propose a new zero-shot
learning method which exploits the use of existing knowledge
graphs for the classification of large amounts of social text
data (i.e. Twitter messages related to COVID-19) without
training data. Following the key ideas in zero-short learning,
the proposed method does not explicitly define the class labels.
The pre-trained sentence based BERT model (S-BERT) [17] is
first used to represent tweet messages in the embedding space
to be further matched with classes. As the purpose of S-BERT
is to learn a sentence-level representation, while most class
labels contain only one or few words, S-BERT embedding may
not be as semantically consistent as word-level embedding
methods. To address this problem, we construct a knowl-
edge graph embedding model for label representation with
a comprehensive knowledge graph named ConceptNet [18].
The sentence embedding is then projected to the knowledge
graph through the least-squares linear projection. The proposed
model is referred to as the S-BERT-KG model. We apply the
model to COVID-19 related tweet classification without any
labeled data for training. To our best knowledge, this is the
first work that takes the zero-shot learning architecture for
tweet classification. Experimental results demonstrated that the
proposed S-BERT-KG model is able to gain significant im-
provement over other baseline models and produce reasonable
prediction accuracy without any labeled data.

The rest of the paper is organized as follows. We review
some representative work on social media data classification,
zero-shot text classification, graph neural networks, and graph
embedding in Section II. In Section III, we describe the S-
BERT-KG architecture, knowledge graph embedding, and the
zero-shot text classification procedure in detail. Section IV
describes the experiments conducted on a large Twitter dataset
related to COVID-19 and presents the evaluation results com-
pared with baseline models. Finally, we conclude the paper
and discuss some future research directions in Section V.

II. RELATED WORK

In this section, we review some representative work on so-
cial media data classification, zero-shot text classification, and
discuss some latest applications using graph neural networks
and graph embedding.

Social media data classification: As of May 2020, there
are around 500 million tweets posted on Twitter each day.
Social media “senses” nearly everything happening around the

world, and the produced data has become a valuable source for
research in different disciplines. In contrast to data collected
from the physical world, social media data has some attractive
features. For example, it covers far more areas and topics,
can be collected at low cost, and enjoys high-level semantics
understandable to human users. With the ideas of ‘citizen
sensing’ and ‘human as sensors’, a number of real-world
applications have been developed, e.g. traffic event detection
[5], spammer detection [19], and natural disaster assessment
[6], [7]. Various NLP techniques have been applied to extract
useful information from short tweet messages. For instance,
the work in [7] proposed a large word2vec embedding that
was trained on 52 million crisis-related tweets and used to
classifies crisis tweets using Support Vector Machines, Naive
Bayes and Random Forest methods. The study in [6] designed
a framework based on the Convolutional Neural Network
(CNN), which used convolution and pooling operations to
capture important information to identify useful or crisis-
related tweets. The work in [19] developed a collaborative
neural network spammer detection mechanism, which fused
multi-source information by collaboratively encoding long-
term behavioral and semantic patterns. The work in [5] imple-
mented CNN and Recurrent Neural Network (RNN) deployed
on the top of word-embedding models for detecting traffic
events. Recently, Twitter has seen a massive surge in the
daily traffic related to the COVID-19 pandemic outbreak. A
number of studies has collected a large amount COVID-19
related social media data [20] and applied topic modeling
techniques [21] to analyze topic trends. In short of labeled
data, studies exploiting supervised or semi-supervised NLP
models to automatically classify tweets are still very limited. In
this paper, we apply state-of-the-art NLP techniques to extract
knowledge from COVID-19 related messages on social media
in an unsupervised manner.

Zero-shot text classification: To extract knowledge from
Cyber-Physical-Social (CPS) data, traditional supervised
learning paradigm needs sufficient labelled data for model
training, while most CPS data is not labeled. Recently, the re-
search focus has shifted towards learning from a large amount
of unlabeled data, and has achieved remarkable progress in
domain adaptation [13], few-shot learning [22], zero-shot
learning [15], or more generally, transfer learning [23]. Bidi-
rectional Encoder Representations from Transformers (BERT)
[10] and its variants (e.g, S-BERT [17], RoBERTa [24], BART
[25]) are pre-trained language models that achieved state-of-
the-art results in various text classification tasks, e.g., machine
translation, question answering and language inference. While
in the zero-shot classification scenario, a classifier is required
to work on labels that it is not explicitly trained with. In
the computer vision domain, one common approach for zero-
shot learning is to use existing feature extractors to represent
images and any possible label names in their corresponding
embedding space [26]. Some annotated data might be used to
align the image and label embedding. The framework allows
any label (seen or unseen during training) and any image
to be embedded in the same latent space to measure their
similarity. In the text domain, one single NLP model can be
utilized to embed both data and any class names into the same
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embedding space without an alignment step. In particular, [27]
concatenated both the sentence data and class names as model
input, and treated zero-shot learning as a binary classification
task; [28] took both sentence and label names into the BERT
model and considered zero-shot text classification as a Natural
Language Inference (NLI) task. Inspired by the work in [17]
and [28], we propose a zero-shot text classification architecture
for social media data analysis. The proposed method directly
makes use of models pre-trained with NLI tasks, thus does not
need any labeled data for model training.

Graph neural network and graph embedding: The grow-
ing number of connected IoT equipments can be described
with graphs, e.g. vertices denote sensors while edges denote
the connection between them. Understanding the structure
of such complex and ubiquitous IoT networks remains a
challenging task. Graph Neural Networks (GNNs) [29], a
class of deep learning method designed to perform inference
on data described by graphs, motivated researchers to model
IoT data based on the internal relationships between different
sensors. One typical application of GNNs in IoT is traffic
prediction, where the traffic network can be modeled as a
spatial-temporal graph; the nodes are loop sensors installed
on roads, and the edges represent the intersections or road
segments connecting these sensors. The work in [30] and
[31] utilized Graph Convolutional Networks (GCNs) to cap-
ture spatial dependency, leveraged recurrent neural networks
(RNNs) for modeling temporal dynamics, and attained state-
of-the-art performance in the traffic prediction task. With the
enormous amount of cyber data available on the Internet,
significant efforts from industry and academia have been made
into constructing knowledge bases [16], e.g. DBpedia [32] and
ConceptNet [18]. To represent the hierarchical structure of a
knowledge base in the format of vectors, graph embedding
methods have been increasingly investigated, e.g. DeepWalk
[33], Node2vec [34], SDNE [35], etc. Meanwhile, recent
studies [36], [37] leveraged these external knowledge graphs
to further enhance language representation by integrating the
rich structured knowledge facts into NLP model input. In this
paper, we further explore the knowledge graph embedding
technique in the zero-shot text classification scenario for better
natural language understanding.

III. ZERO-SHOT LEARNING WITH KNOWLEDGE GRAPH

In this section we describe the S-BERT-KG model in terms
of a tweet classification task for extracting informative tweets.
Let X be the set of tweets to be categorized and L be the
set of possible class names (or labels) for X . The goal is
to represent both tweets X and label names L in the same
embedding space, so as to classify any tweets by measuring
the similarity between tweet embeddings (usually in a form of
a sentence) and label embeddings, without using any labeled
data. It should be noted that the set of possible label names L
are not explicitly defined in the zero-shot scenario, which can
be any object in a given knowledge graph or words in a given
vocabulary. As it is impractical to evaluate the model on all
possible labels in a vocabulary, we need to specify a possible
label set, i.e., seven representative classes of COVID-19 tweets
in this study.

The overall architecture of S-BERT-KG is shown in
Figure 1. A pre-trained Sentence BERT (S-BERT) [17] is
firstly used to embed sentence u = f(x, θf ) and label
v = f(y, θf ) where x ∈ X and y ∈ L. An external knowledge
graph (i.e. ConceptNet) is used to construct a knowledge graph
embedding space with the retrofitting [38] method. Sentence
embedding and label embedding are then projected to the
knowledge graph embedding space via a learned projection
matrix P to determine if a tweet belongs to a specific class(es)
based on their cosine similarity. In the following, we firstly
introduce the relevant BERT models, then present the method
used for knowledge graph embedding, and finally show the
zero-shot text classification process.

A. Bidirectional Encoder Representations from Transformers
(BERT) and Sentence BERT (S-BERT)

As an important component of modern NLP tasks, pre-
trained word embeddings (such as word2vec [39] and GloVe
[9]) can substantially improve the performance of NLP tasks
compared to the embeddings learned from scratch. For each
word in the vocabulary, these context-free models generate a
single word embedding representation, despite the fact that the
meaning of such words may vary in different scenarios. While
the contextual models, such as OpenAI GPT [40], ELMo [41],
and BERT [10], can generate a representation for each word
based on the contexts (i.e. surrounding words in a sentence).
These contextual models usually contain more hidden layers
and require a lot of unlabeled data for training. When these
pre-trained contextual models are applied in domain-specific
tasks, fine-tuning with a small amount of labeled data is
usually sufficient.

Pre-trained BERT Encoder

CLS ...

Tokenizer
BERT

SEP

C ...

Sentence x Label y

vu

Cosine-sim(u,v)

pooling

Fig. 2. Sentence-BERT (S-BERT) architecture

BERT has achieved state-of-the-art performance in a num-
ber of NLP tasks, e.g. text classification, question answering,
and language inference. However, for sentence-pair regression
tasks such as language inference, BERT requires that both
sentences are fed into the network simultaneously, which
demands significant computation at resources especially when
the number of sentences is large. The recent Sentence-BERT
architecture [17], that uses the Siamese structure to derive
semantically meaningful sentence embeddings, reduces the
effort for finding the most similar pair while maintaining
accuracy. For zero-shot classification purposes, instead of
taking sentence pairs, the S-BERT model takes a Sentence
x and a Label y into the model to measure their similarity.
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Fig. 1. S-BERT with Knowledge Graph embedding (S-BERT-KG) architecture

The architecture of the S-BERT model is illustrated in Figure
2.

As shown in Figure 2, a tokenizer is used to split the tweet
input into tokens {w1, w2, ..., wn}, add special tokens (e.g.,
[CLS] and [SEP]) and convert these tokens into indices of the
tokenizer vocabulary. The output hidden state C is used as the
aggregated sequence representation for the classification tasks
and {t1, t2, ..., tn} represents the corresponding word embed-
ding vectors for tokens {w1, w2, ..., wn}. S-BERT contains an
additional pooling layer to evaluate models under different
pooling strategies by using: 1) the output of CLS-token (C); 2)
the mean of all hidden states, or 3) the maximum of all output
vectors. It is trained with SNLI [42], Multi-NLI [43], and STS
[44] datasets so as to provide similar sentence embeddings for
semantically similar sentences [17]. On the basis of this idea,
we could directly take the pre-trained model and classify a
sentence x to a label ŷ with Eq. 1, given all possible label
names L.

ŷ = arg max
y∈L

cos(u, v)

u = f(x, θf ), x ∈ X
v = f(y, θf ), y ∈ L

(1)

where cos is the cosine similarity, f is the function represented
by S-BERT, θf denotes the pre-trained parameters of f , X
and L represent the set of tweets and possible class labels
respectively.

B. Knowledge Graph Embedding

One issue using S-BERT for zero-shot text classification is
that S-BERT is trained to learn effective sentence-level repre-
sentations, but may not generate semantically consistent single
word label representations as other word embedding methods
do (e.g. word2vec and GloVe). Also, all pre-trained language
models (e.g. BERT, word2vec, and GloVe) lack common-
sense or domain-specific knowledge, which usually results in

unsatisfactory performance for short message representation.
To address these two issues, we construct a knowledge graph
embedding model based on ConceptNet [18] for zero-shot
tweet classification.

ConceptNet [18] is a knowledge graph that connects words
and phrases of natural language with labelled edges. Its
knowledge is collected from multiple sources that include
expert generated resources and crowd-sourcing. It aims to rep-
resent the common sense knowledge involved in understanding
language and to improve natural language applications by
enabling applications to better understand the meaning behind
the words. ConceptNet represents relations and words (e.g.
shown in Fig. 1) as triples, e.g. (Washington d.c., capitalOf,
United States), (United States, has, 50 States) and (United
States, typeOf, Country).

By adding the rich graph structure information from Con-
ceptNet into common NLP techniques, particularly, word
embedding methods (i.e. word2vec and GloVe), we could
construct a semantic space that is potentially more effective
than distributional semantics in terms of better prediction,
classification and recommendation performance. Retrofitting
[38] is a process that adjusts an existing matrix of word
embeddings with a knowledge graph. It calculates new word
vectors qi with the objective of staying close to both their
original values in other word embedding vectors (i.e. word2vec
and GloVe) q̂i, and their neighbors qj in the knowledge graph
with edges (i, j) ∈ E. The knowledge graph embedding Q can
be computed by minimizing the following objective function:

Ψ(Q) =

n∑
i=1

αi ‖qi − q̂i‖2 +
∑

(i,j)∈E

βij ‖qi − qj‖2
 (2)

where Q = (q1, q2, ..., qn) is the learned knowledge graph
embedding matrix, α and β values control the weights of
word embedding and knowledge graph. The word vectors in
Q are firstly initialized to be equal to the vectors in Q̂ and
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then retrofitted. An iterative updating method [45] is used to
calculate Q that converges in just a few iterations.

C. Embedding Alignment and Classification Process

We have embedded tweet and label representations into
the S-BERT embedding space, and constructed a knowledge
graph embedding for all possible labels. Next, we need to
learn a linear projection function that can align the tweet and
label embeddings. This allows one to embed any tweets and
labels into the same knowledge embedding space to measure
their similarity. For text data, this process can be done by
aligning the representations of the same vocabulary words
in different embedding space. We take the top K frequently
used English words from the vocabulary of the S-BERT
model, and learn a projection matrix P with least-squares
linear projection. The process maps the word embeddings
from the S-BERT embedding space to the knowledge graph
embedding space. For label representations, whether using the
representation after projection f(y, θf )P , or directly deploying
the embedding from knowledge graph embedding space Qy ,
leads to similar prediction performance. After this embedding
alignment process, the equation to classify a given tweet
becomes:

ŷ = arg max
y∈L

cos(f(x, θf )P, f(y, θf )P ) (3)

The embedding alignment and the zero-shot text classifi-
cation of using the S-BERT-KG method are then detailed
in Algorithms 1 and 2 respectively. The purpose of the
embedding alignment process is to learn a projection matrix P
that maps the S-BERT representation to the knowledge graph
embedding space. In Algorithm 1, we first learn a knowledge
graph embedding using ConceptNet (Line 1), then obtain the
representation of the most common vocabulary words from S-
BERT and the knowledge graph embedding (Lines 2-5), and
finally learn a projection matrix (Line 6). For zero-shot text
classification (as shown in Algorithm 2), we use the tweet
representations (Lines 6-7) and the label representations (Lines
2-3) to generate label prediction (Line 8) without any training
process.

Algorithm 1 S-BERT-KG embedding alignment
Input: pre-trained S-BERT model parameters θf , GloVe

word embedding Q̂, knowledge graph Ω
Output: Projection Matrix P

1: Calculate knowledge graph embedding Q with GloVe
word embedding Q̂ and knowledge graph Ω using Eq.
2;

2: Initialize S-BERT model with pre-trained parameters θf ;
3: Take K most common vocabulary words V from the S-

BERT model;
4: Obtain knowledge graph embeddings for words V : QV ;
5: Obtain their S-BERT embeddings for words V : f(V, θf );
6: Learn a least-squares linear projection matrix P from
f(V, θf ) to QV .

Algorithm 2 S-BERT-KG zero-shot text classification
Input: pre-trained S-BERT model parameters θf , unlabeled

tweet dataset X , possible label names L, projection matrix P
Output: label predictions Ŷ .

1: for each label y in L do
2: Represent each label y with S-BERT embedding:

f(y, θf );
3: Project f(y, θf ) into the knowledge graph embedding

space with projection matrix P , which gives f(y, θf )P ;
4: end for
5: for each tweet x in X do
6: Represent each tweet x from X with S-BERT embed-

ding: f(x, θf );
7: Project f(x, θf ) into the knowledge graph embedding

space with projection matrix P , which gives f(x, θf )P ;
8: Generate label prediction ŷ for tweet x with Eq. 3;
9: end for

IV. EXPERIMENTS

In this section, we first describe the large unlabeled COVID-
19 Twitter dataset we collected from Twitter and the two
small labeled datasets we manually created for the evaluation
purpose. We then report the evaluation results and compare
the performance of S-BERT-KG with several state-of-the-art
deep learning methods.

A. Dataset

TABLE I
DISTRIBUTIONS OF THE COVID TWITTER DATASETS

Classes Multi-class Dataset (D1) Multi-label Dataset (D2)

Advice 137 155
China 449 554
Mask 225 272
News 309 408

Transportation 46 57
USA 476 596

Vaccine 96 115

total 1,738 1,941

A number of recent studies have been conducted to process
COVID-19 related tweets, e.g. sentiment analysis and topic
modeling. However, research that focuses on extracting in-
formative tweets and classifying them to meaningful classes
has rarely been found due to the lack of a labeled dataset.
Moreover, we have not spotted any public COVID-19 related
twitter datasets that are labeled with meaningful categories.
We collected all COVID-19 related tweets with tweet IDs
provided by GeoCoV19 [20], which contain more than 524
million multilingual tweets from Feb 1st to May 1st 2020. We
took one week to collect all the tweets with IDs in GeoCoV19
using the Twitter API, and formed a 12.8GB dataset. So far,
we have not seen any notable research on zero-shot learning
with unlabeled Twitter datasets. In this study, we only used
the tweets written in English, and preprocessed the tweet text
to lower case and removed punctuation, question marks and/or
URLs.
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To evaluate the performance of the proposed model using
standard evaluation metrics for supervised learning, we man-
ually labeled some tweets and constructed two small datasets.
Hashtags represent keywords or topics in a tweet message.
To define meaningful categories for the datasets, we collected
frequently used hashtags from the COVID-19 twitter dataset
(e.g., #COVID19, #socialdistancing, #wuhan, #covid19 US,
#vaccine, #n95, etc.). As it was impractical to define very
detailed categories (e.g., COVID19 in US, COVID19 in UK,
COVID19 in China, COVID19 in Italy, COVID19 in Spain,
etc.) to label all these tweets, we manually examined the
hashtags and selected seven trending topics related to the
COVID-19 pandemic. It should be noted that the selected
seven labels are exploited only for the evaluation purposes. We
could select any word from a knowledge graph vocabulary as
a label for zero-shot text classification. For each day between
Feb 1st and May 1st, we sampled a number of tweets and
categorized them into the following seven classes.

1) Advice: Stay at home, wash hands, wear mask or social
distancing.

2) China: Wuhan, China Coronavirus Updates, China
news, or other tweets related to China.

3) Mask: Mask shortage, wear mask, mask types, etc.
4) News: Coronavirus updates, news, rules, etc.
5) Transportation: Flights, traffic, traveling, etc.
6) USA: U.S. Coronavirus Updates, U.S. news, or other

tweets related to the United States.
7) Vaccine: Vaccine news, vaccine progress, vaccine injec-

tion, etc.
One labeled dataset is for evaluation of multi-class clas-

sification, and the other for multi-label classification as one
tweet may be related to multiple topics. After removing non-
informative and duplicate tweets, the two datasets (D1 and
D2) contained 1,738 and 1,941 labeled tweets respectively.
D2 contains all the tweets in D1 and an additional 203 tweets
with multiple labels. The detailed distribution of the datasets
is shown in Table I.

For the experiments we used the ConceptNet 5.7, which
contains over 21 million edges and over 8 million nodes
(around 1.5 million English nodes). We constructed a sub
knowledge graph from ConceptNet using its API with all the
vocabulary words that appearing in the COVID-19 Twitter
dataset. However, we found that the constructed sub-graph
embedding did not provide any improvement over the original
version of ConceptNet Numberbatch1. Therefore, we utilized
the original version in our proposed architecture for better
reproducibility.

B. Baseline Models

We re-implemented six baseline models for zero-shot multi-
class and multi-label classification, and compared their perfor-
mance with the proposed S-BERT-KG model.
• GloVe-AVG: We used GloVe [9] word embedding to

represent each word in a sentence and all the possible
label names. The averaged embedding vector was used

1https://github.com/commonsense/conceptnet-numberbatch

to represent the sentence and further measure distance
with each label.

• BERT-CLS and BERT-AVG: We used the last hidden
state output of the standard BERT [10] model to represent
sentence embedding and label embedding. The output of
the CLS token was used for the BERT-CLS version; and
the averaged last hidden state output was used for the
BERT-AVG version.

• S-BERT: We used Sentence-BERT [17] pre-trained with
SNLI, MultiSNL and STS datasets to represent sentence
and label embeddings for zero-shot classification.

• S-BERT-GloVe: Besides using the S-BERT model, We
also learned a function to project S-BERT embedding into
the GloVE embedding space.

• BART-NLI: The study presented in [28] showed that
zero-shot text classification can be modeled in a natural
language inference architecture, where the hypothesis is
constructed by associating a label, e.g., “news”, with
the pre-defined problem “The text is about ?”. Given a
sentence, the model is trained to determine whether the
hypothesis is true. A recent BART model [25], pre-trained
with the SNLI dataset, was used in our zero-shot tweet
classification task for comparison.

In this paper, we chose a traditional word embedding
model (GloVe-AVG) and five deep learning based models
for performance evaluation. We show that the zero-shot text
classification task can be modeled as a natural language
inference problem by comparing BERT-CLS and BERT-AVG
with S-BERT. We compare S-BERT and S-BERT-GloVe with
the proposed S-BERT-KG to demonstrate the effectiveness of
incorporating an external knowledge graph for better language
understanding. We also show the performance of the proposed
model against the state-of-the-art BART-NLI model.

C. Setup

The GloVe [9] word embedding vectors used in the exper-
iments contain 400K uncased words in the vocabulary and
were pre-trained with 6 billion tokens2. We use the GloVe
word vector with 300 dimensions for all experiments.

For the BERT-CLS and BERT-AVG models, we used the
pre-trained BERT-uncased-base model, which contained 12
transformer blocks and 768 dimensions in the hidden units.
For the S-BERT, S-BERT-GloVe and the proposed S-BERT-
KG models, we took the large S-BERT model pre-trained with
the SNLI and STS datasets as described in [17]. The “mean”
strategy for the pooling layer was applied.

For the S-BERT-GloVe and S-BERT-KG, we selected
20,000 most frequently used words from the BERT vocabulary
to learn the projection matrix P . For BART-NLI, we engaged
the large BART model pre-trained with the SNLI dataset. We
applied the transformers3 and sentence-transformers4 libraries
to implement all the models; all pre-trained models used in
our study can be downloaded via these two libraries.

2https://nlp.stanford.edu/projects/glove/
3https://huggingface.co/transformers/
4https://www.sbert.net/
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The experiments were run using PyTorch 1.7.1, Tensorflow
2.4, Python 3.6, and Windows 10 running on a desktop
computer with an i7-9700F CPU, 32GB RAM and RTX-2070S
GPU.

D. Evaluation

We exploited the standard evaluation metrics for assessing
classification performance, i.e. accuracy, weighted average
precision, recall and F1, with the two labeled datasets. For the
multi-label classification task, we calculated the exact match
for accuracy and also reported Hamming loss, which is the
fraction of labels that are incorrectly predicted. The evaluation
results of the proposed S-BERT-KG and other models are
shown in Table II and III and IV.

We report the precision, recall and F1 score of using the 4
BERT-based models for all seven different labels selected in
our studies in Table II (for multi-class classification) and III
(for multi-label classification). From both tables, we observe
the proposed S-BERT-KG model significantly outperformed
all other BERT-based models for labels: China, News, USA
and Vaccine. For example, in the multi-class classification
scenario (Table II), the S-BERT-KG model improved by
around 21% F1 for tweets related to China, 20% F1 for tweets
related to news, 19% F1 for tweets related to USA, 16%
F1 for tweets related to vaccine, 13.30% in macro averaged
F1 and 18.19% in weighted average F1. This confirmed
that projecting S-BERT embedding to the knowledge graph
embedding space could, in general, offer better performance
for zero-shot classification.

One highlight from Table IV is that the BERT-CLS and
the BERT-AVG models had the lowest performance in both
classification scenarios. It shows that directly using the BERT
model was not suitable for sentence classification without
any training data. While applying the S-BERT model pre-
trained with SNLI, MultiNLI and STS datasets, we observed
significant improvement in terms of all evaluation metrics, e.g.
around 10% in accuracy and 20% in F1 score in the multi-
class scenario compared with BERT-CLS. This observation
demonstrated the effectiveness of sentence representation with
large S-BERT models pre-trained with Natural Language
Inference (NLI) datasets. Table IV shows that the GloVe-AVG
model outperformed the S-BERT with 12.49% in accuracy for
multi-class classification and 14.17% in accuracy for multi-
label classification, indicating that although S-BERT could
learn good sentence-level embeddings, it might not generate
semantically consistent word-level embeddings for labels.

Another notable observation in Table IV is that the proposed
S-BERT-KG model significantly outperformed S-BERT-GloVe
with respect to all the metrics considered. This indicated
that the knowledge graph embedding could integrate com-
mon sense knowledge from the external knowledge base and
improve model performance. When comparing S-BERT-KG
with the recent BART-NLI model, we also observed significant
improvement with 10.76% in accuracy, 10.76% in recall,
13.45% in F1 for multi-class classification, and 16.88% in
recall, 16.82% in F1, 2.50% in hamming loss for multi-label
classification. It should be noted that the BART-NLI model

is based on a recent seq2seq architecture with a bidirectional
encoder (e.g. BERT) and a left-to-right decoder (e.g. GPT),
which outperformed BERT in NLI tasks.

In Table IV, we also reported the running time (t) of
different models for multi-class classification and multi-label
classification. The GloVe-AVG model that directly calculates
the average value of word embedding vectors took the least
time for prediction. If we compare BERT-CLS, S-BERT and
BART-NLI, the increased time was related to the size of
the models. For multi-class classification, the S-BERT model
took 14.59 seconds while the S-BERT-KG model took 30.25
seconds. Thus, knowledge graph embedding alignment process
consumed around 15 seconds to run. It is also noted that our
proposed model shows a clear superiority to the BART NLI
model in both efficiency and effectiveness. Since the S-BERT-
KG model does not require a training process, which may take
hours or days, it has the potential to be applied to real-time
or near real-time streaming tweet classification.

For further comparison, we generated the t-SNE visualiza-
tion5 of the sentence and label embeddings (as shown in Figure
3) of the GloVe-AVG, S-BERT, and S-BERT-KG models. In
the sub-figures, different colors represent different labels. By
comparing 3a with 3b we can observe that the S-BERT model
generates better sentence embeddings, i.e. the tweets related to
China are better clustered. However, as the labels are poorly
aligned in S-BERT, the overall performance was worse than
GloVe-AVG as shown in Table IV. While using the S-BERT-
KG, labels appeared much closer to their corresponding data
clusters compared to the S-BERT model, and the sentences
were also well clustered. With the visualization, we could
further confirm that combing the sentence embedding model
with the knowledge graph embedding is an effective method
for leveraging unlabeled data for zero-shot tweet classification.

V. CONCLUSION AND FUTURE WORK

Extracting useful information from enormous amount of
social IoT data can be extremely challenging due to the
lack of labeled quality data. Our study and experiments
also confirmed that it is impractical to use the traditional
supervised learning paradigm for deep neural network training.
In addition, most deep learning models have not exploited the
value of existing quality knowledge bases, usually in the form
of graphs. Our current work manages to address these two
issues and develops the S-BERT-KG model following the zero-
shot learning paradigm for classification of COVID-19 related
tweets. Performance of the S-BERT-KG model has been both
impressive and promising, as evidenced by the evaluation
results on both multi-class and multi-label classification tasks.

For future work, we plan to refine the proposed model in a
number of directions. As we did not find more recent models
pre-trained in the Sentence BERT architecture, we engaged the
S-BERT model described in [17] for all the experiments and
evaluation. It is expected that the S-BERT-KG model could
be further improved with more recent models, e.g. roBERTa
[24] and BART [25]. We plan to investigate the self-training
method to further exploit the knowledge from the large amount

5https://lvdmaaten.github.io/tsne
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TABLE II
PERFORMANCE COMPARISON OF DIFFERENT MODELS FOR ALL SEVEN LABELS IN MULTI-CLASS CLASSIFICATION IN TERMS OF PRECISION (P),

RECALL (R), AND F1 SCORE (F1)

Labels BERT-AVG S-BERT S-BERT-GloVe S-BERT-KG
P R F1 P R F1 P R F1 P R F1

Advice 45.53 40.88 43.08 41.67 47.45 44.37 36.21 15.33 21.54 44.05 27.01 33.48
China 63.84 25.17 36.10 92.59 55.68 69.54 91.88 55.46 69.17 91.26 90.65 90.95
Mask 100.0 04.89 09.32 73.64 78.22 75.86 79.52 58.67 67.52 74.75 67.11 70.73
News 21.57 97.73 35.34 56.82 08.09 14.16 67.14 15.21 24.80 68.93 45.95 55.15

Transportation 00.00 00.00 00.00 68.42 28.26 40.00 93.75 32.61 48.39 80.00 26.09 39.34
USA 100.0 05.67 10.74 82.65 17.02 28.22 68.63 29.41 41.18 68.65 53.36 60.05

Vaccine 00.00 00.00 00.00 09.87 93.75 17.86 09.76 96.88 17.73 20.72 89.58 33.66

macro avg 47.28 24.91 19.23 60.81 46.92 41.43 63.84 43.37 41.47 64.05 57.11 54.77
weighted avg 64.25 29.29 23.15 71.83 40.28 43.58 70.64 40.10 46.25 71.04 62.66 64.44

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT MODELS FOR ALL SEVEN LABELS IN MULTI-LABEL CLASSIFICATION IN TERMS OF PRECISION (P),

RECALL (R), AND F1 SCORE (F1)

Labels BERT-AVG S-BERT S-BERT-GloVe S-BERT-KG
P R F1 P R F1 P R F1 P R F1

Advice 23.38 41.94 30.02 34.23 32.90 33.55 23.33 09.03 13.02 25.00 05.81 09.42
China 50.38 24.19 32.68 95.54 61.91 75.14 90.62 62.82 74.20 95.59 90.07 92.75
Mask 82.86 10.66 18.89 83.63 69.49 75.90 89.51 47.06 61.69 96.46 40.07 56.62
News 25.84 58.58 35.86 49.28 08.33 14.26 42.72 10.78 17.22 60.00 31.62 41.41

Transportation 12.50 01.75 03.08 34.78 14.04 20.00 66.67 07.02 12.70 71.43 08.77 15.62
USA 62.79 13.59 22.34 75.51 18.62 29.88 68.35 25.00 36.61 64.40 60.40 62.34

Vaccine 14.29 01.74 03.10 10.86 91.30 19.41 11.65 96.52 20.79 18.84 87.83 31.03

macro avg 38.86 21.78 20.85 54.83 42.37 38.31 56.12 36.89 33.75 61.68 46.37 44.17
weighted avg 48.40 25.54 26.14 69.23 38.99 43.80 65.59 37.00 42.59 70.55 56.19 58.76

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT MODELS IN TERMS OF ACCURACY (A), PRECISION (P), RECALL (R), F1 SCORE (F1), HAMMING LOSS

(H), AND RUNNING TIME (t) IN SECONDS

Methods Multi-class Classification Multi-label Classification
A P Rl F1 t A P R F1 H t

GloVe-AVG 52.76 65.15 52.76 46.93 2.76 32.05 75.96 40.10 42.73 12.93 2.79
BERT-CLS 30.96 50.26 30.96 23.83 10.84 3.76 24.46 37.92 28.76 32.73 11.42
BERT-AVG 29.29 64.25 29.29 23.15 10.85 10.20 48.40 25.54 26.14 19.95 11.24

S-BERT 40.27 71.83 40.28 43.58 14.59 17.88 69.23 38.99 43.80 17.77 15.64
S-BERT-GloVe 40.10 70.64 40.10 46.25 30.67 18.70 65.59 37.00 42.59 17.87 31.92

BART-NLI 51.21 80.53 51.21 50.41 107.19 37.10 84.78 39.31 41.94 14.17 116.75
S-BERT-KG 62.66 71.04 62.66 64.44 30.25 34.00 70.55 56.19 58.76 12.67 31.19

of unlabelled data, and exploit the few-shot learning technique
when only a limited amount of labeled data is available.
With the proposed zero-shot text classification architecture, we
would like automatically create more labeled data for more
comprehensive evaluation. Currently, all the labels used in
this study are individual words. However, it may destroy its
original semantics by representing key phrases with individual
words using word embedding methods. We will further explore
the performance of knowledge graphs in addressing this issue,
and further apply the power of knowledge graphs, graph
embeddings, and graph neural networks to other social IoT
applications.
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